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AN EXTREMAL NONNEGATIVE SINE POLYNOMIAL

ROBERTO ANDREANI AND DIMITAR K. DIMITROV

ABSTRACT. For any positive integer n, the sine polynomi-
als that are nonnegative in [0, 7] and which have the maximal
derivative at the origin are determined in an explicit form.
Associated cosine polynomials K, (6) are constructed in such
a way that {K,(0)} is a summability kernel. Thus, for each
p, 1 < p < oo and for any 2w-periodic function f € Lp[—m, 7],
the sequence of convolutions K, * f is proved to converge to
fin Ly[—m,w]. The pointwise and almost everywhere conver-
gences are also consequences of our construction.

1. Introduction and statement of results. There are various
reasons for the interest in the problem of constructing nonnegative
trigonometric polynomials. Among them are the Gibbs phenomenon
[16, Section 9], univalent functions and polynomials [7], positive Jacobi
polynomial sums [1] and orthogonal polynomials on the unit circle [15].

Our study is motivated by a basic fact from the theory of Fourier
series and by an intuitive observation which comes from an overview
of the variety of known nonnegative trigonometric polynomials. The
sequence {k,(0)} of even, nonnegative continuous 2m-periodic func-
tions is called an even positive kernel if k,(0) are normalized by
(1/27) [T ky,(0) d§ = 1 and they converge locally uniformly in (0, 2r)
(uniformly on every compact subset of (0,27)) to zero. It is a slight
modification of the definition in Katznelson’s book [8]. In what follows
we denote by ki, f the convolution (1/2m) [* k() f(0—t) dt. It is well
known that, for every 2m-periodic function f € L,[—m, 7], 1 < p < oo,
the sequence of convolutions k, * f converges to f in the L,[—m,7]-
norm provided k,, is a sequence of even positive summability kernels.
The convolutions converge also pointwise and almost everywhere. We
refer to the first chapter of [8] for the details.
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On the other hand, most of the classical positive summability kernels
are sequences of nonnegative cosine polynomials which obey certain
extremal properties. Fejér [3] proved that the cosine polynomials

(1.1) Fn(9)21+2i<1—%+1> cos kb,

k=1

are nonnegative and established the uniform convergence of the se-
quence F,, * f to f for any continuous 27w-periodic function f. It is
easily seen that Fejér’s cosine polynomial (1.1) is the only solution of
the extremal problem

max{a1+~-~+an : 1+Zakcosk920}.
k=1

A basic tool for constructing positive kernels is the Fejér-Riesz repre-
sentation of nonnegative trigonometric polynomials (see [4]). It states
that for every nonnegative trigonometric polynomial T'(6),

(1.2) T(0) =ap + Z(ak cos kO + by, sin k),

k=1
there exists an algebraic polynomial R(z) = Y_;_,cx2" of degree
n such that T(0) = |R(e")|?, and conversely, for every algebraic

polynomial R(z) of degree n, the polynomial |R(e?)|? is a nonnegative
trigonometric polynomial of order n. Fejér [4] showed that

(1.3) \ai + b3 <2cos (m/(n+2))

for any nonnegative trigonometric polynomial (1.2) with ap = 1 and
that this bound is sharp. As a consequence he obtained the estimate

(1.4) a1 < 2cos (7/(n+2))

for the first coefficient of any nonnegative polynomial of the form

1+ Z ay, cos k0.
k=1
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Moreover, Fejér determined the nonnegative trigonometric and cosine
polynomials for which inequalities in (1.3) and (1.4) are attained. A
nice simple proof of Jackson’s approximation theorem in Rivlin [10,
Chapter 1] makes an essential use of the extremal property of this
cosine polynomial.

These observations already suggest that many sequences of nonnega-
tive trigonometric polynomials whose coefficients obey certain extremal
properties are positive summability kernels.

While there are many results concerning extremal nonnegative cosine
polynomials [2, 12], only a few results of the same nature about
nonnegative sine polynomials are known. Since sine polynomials are
odd functions, in what follows we shall call

sn(0) = Z by, sin k0
k=1

a nonnegative sine polynomial if s,(6) > 0 for every 6 € [0,7]. It is
clear that, if s,(6) is nonnegative, then by > 0 and b; = 0 if and only
if s, is identically zero. Rogosinski and Szegd [11] considered some
extremal problems for nonnegative sine polynomials. Among the other
results, they proved that

n(n+2)(n+4)/24 n even

provided by, are the coefficients of a sine polynomial s, (6) in the space

S = {sn(ﬁ) =sind + Zbk sinkf : s,(0) >0 forfe [O,ﬂ']}.

k=2

However, the sine polynomials for which the above limits are attained
were not determined explicitly. The first objective of this paper is to
fill this gap.

Theorem 1. The inequality (1.5) holds for every s,(0) € S;.
Moreover, if n = 2m + 2 is even, then the equality S5, ,(0) =
(m 4+ 1)(m + 2)(m + 3)/3 is attained only for the nonnegative sine
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polynomaial
(1.6)
(o ) o ) 2)

k=0
x sin(2k+1)0 + (k+1) <1 - L)
m

+1
y (2 k+3 k(k+1)

a2 (m+2)(m+3>> sin(2k+2)0},

and, if n =2m + 1 is odd, the equality

Sms1(0) = (m+1)(m+2)(2m + 3)/6
1s attained only for the nonnegative sine polynomial
(1.7)

Som41(0) = i{ <1 — L) (1+2l<; — k(k+2) — k(k+1)(2k+1))

P m+1 m+2 (m+2)(2m+3)

x sin(2k+1)8 + 2(k+1)<1 __k ) (1 _ k2 )
m+1

m+2
k+1 .

We shall obtain a close form representation of the extremal polynomi-
als (1.6) and (1.7) in terms of the ultraspherical polynomials P,(LQ)(:C).
Recall that, for any A > —1/2, {PT(L)\)(LC)} are orthogonal in [—1,1]
with respect to the weight function (1 — 22)*~/2 and are normalized
by P,(LA)(I) = (2)\),/n! where (a), is the Pochhammer symbol. Sec-
tion 4.7 of Szegd’s book [13] provides comprehensive information on
the ultraspherical polynomials.

Theorem 2. For any positive integer m the polynomials (1.6) and
(1.7) are given by

(1.8)

12
S27n+2 (9) -

(m+1)(m+2)(m+3)

sin 0 [COS(G/Q)RS?) (cos ‘9)] ’



AN EXTREMAL NONNEGATIVE SINE POLYNOMIAL 763

and
(1.9)

_ 6 : 2 (2) 2
Samt10) = (o Dy Dy Emr3) O LPw (cosO)+ P (cos)]

Since 2(n + 2)P7(12) (r) = T,/ 5(x), where T),(x) denotes the nth
Chebyshev polynomial of the first kind, then we can represent Sa;,,+2(6)
and Sa;,+1(0) in the form

(1.10)

Saunsalt) = i i Ty S0 eos(O/ 2T cos 0)]?
and
(1.11)

Sam+1(6) = 2(m+1)3(mi2)3(2m+3)

x sin 0 [(m+1)T,,  5(cos8) + (m+2)T,. (cosb)] 2,

Then the well-known representation of the second derivative of the
Chebyshev polynomial

n

T (cos ) =
n ) sin® 0

{cosfsinnb + nsinb cosnb}

yields the following equivalent closed-form representations of the above
extremal sine polynomials:

3cos?(£)[(m+2)sinf cos ((m+2)8) —cos sin ((m+2)6)] 2

Soma(0) =
am+2(0) (m—+1)(m—+2)(m+3)sin’ 0
and
3 1
Som+1(0) =

2(m +1)(m+2)(2m + 3) sin®6
x [(m+2) cos ((m +2)0) + (m + 1) cos ((m + 1))
+ cot 0 (sin ((m + 2)8) + sin ((m + 1)9))]2.
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Set K,,(0) = (1/2m)sin05,,(8) and, for any function f(x) which is 27-
periodic and integrable in [—m, 7], define the trigonometric polynomial
K,(f;z)= K, (0)f(x—0)do.

Observe that K, () is a cosine polynomial of order n+1. In Section 4 we
shall prove that {K,,(6)} is a positive summability kernel and then the
following results on L,, pointwise and almost everywhere convergence
of K, (f;z) will immediately hold.

Theorem 3. For any p, 1 < p < oo, and for every 2mw-periodic
function f € Ly[—m, x|, the sequence K,(f;x) converges to f in
Ly[—n,n].

Theorem 4. Let f be a 2m-periodic function which is integrable in
[—m, 7). If, for x € [—7, 7|, the limit }llin%)(f(z +h)+ f(z — h)) exists,

then
K,(f;z)— (1/2) }llirr%) (fx+h)+ f(x—h)) as n diverges.

Theorem 5. Let [ be a 2m-periodic function which is integrable in
[—7, 7. Then K,(f;x) converges to f almost everywhere in [—m, 7).

It is worth mentioning that, while the sequences {k,(0)} of classical
summability kernels, namely, Fejér’s, de la Vallée Poussin’s and Jack-
son’s one, converge to infinity at the origin, in our case K, (0) vanishes
for any positive integer n.

2. Preliminary results. The above-mentioned Fejér-Riesz’s theo-
rem and a result of Szegé [13, p. 4] imply a representation of nonneg-
ative cosine polynomials.

Lemma 1. Let

cn(0) =ap+2 Z ay, cos kO
k=1
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be a cosine polynomial of order n which is nonnegative for every real
6. Then an algebraic polynomial R(z) = ZZ;O cp2® exists of degree
n with real coefficients, such that c,(0) = |R(e”)|%. Thus, the cosine
polynomial ¢, (0) of order n is nonnegative if and only if there exist real
numbers ci, k =0,1,... ,n, such that

n n—k
(2.12) ag = Zci and aj = Z ChyvCy fork=1,... n.
k=0 v=0

The following relation between nonnegative sine polynomials s, ()
and nonnegative cosine polynomials ¢,_1(0) is an immediate conse-
quence of the relation s, (0) = sinfc,_1(0) (see [11]).

Lemma 2. The sine polynomial of order n
$n(0) =D b sinkf
k=1

is nonnegative in [0, 7] if and only if the cosine polynomial of order
n—1

n—1
Cn-1(0) = ag + 2 Z ay, cos k6,
k=1
where
by =ap_1 —ax+1 fork=1,... , n—2,
(213) bn—l = Up—2,

bn = Qn-1,

18 monnegative.

These two lemmas imply a parametric representation for the coeffi-
cients of the nonnegative sine polynomials.

Lemma 3. The sine polynomial of order n

sn(0) = Z by, sin k0
k=1
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18 nonnegative if and only if there exist real numbers cq, ... ,ch_1 such
that

n—1 n—3
b = 2 -
1 — Cu Cvcu+23
v=0 v=0
n—k—2

n—k
(2.14) b = Z Chtv—1Cy — Z Chtv+1Cy, fork=2,....,n—2
v=0 v=0

bp—1 = cocpn—2 + ciCn_1,

bn = CoCp—1-

Set g = (k+1)/(2k). It can be verified that, if n is even, n = 2m+2,
then by is given by

(2.15)

m—1

b= {%H(C%—02k+2/(2qk+1))2+Qk+1(02k+1—02k+3/(2qk+1))2}
k=0

+ qm+1c§m + qm+1c§m+13
and, if n is odd, n = 2m + 1, then

(2.16)
m—1

b= {QkJrl(CQk_02k+2/(2q1c+1))2+Qk+1(c2k+1 _C2k+3/(2(Ik+1))2}
k=0

+ Qm(CQ'm—Q - c?’m/(QQ’m))Q + QmC§m_1 + Qm+103m-

3. Proof of Theorem 1. We need to maximize s,,(0) subject to
the conditions s,,(f) > 0 in [0,7] and by = 1. Apply Lemmas 1 and 2
to represent the derivative of the nonnegative sine polynomial s, () at
the origin in terms of the parameters c;. We obtain

n n—2
s (0) = Z kb, = Z klag_1 — agy1) + (n— Dayp_2 +nap_1
k=1 k=1

n—1 n—1 n—1 2
:a0+22ak226?+2 Z cjck:<ch> .
k=1 =0

0<j<k<n—1 k=0
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Set L
G(c) = G(co, ... ,en1) = <§ck> .

Then the extremal problem to be solved is
(3.17) max{G(c) : b1 (c) = 1},

where by = b1(c) = bi(co,...,cn—1) is defined by (2.15) or (2.16)
depending on the parity of n.

We employ the Lagrange multipliers approach (see [6, Section 9.1])
to solve this problem. The necessary conditions for ¢ = (cq, ... ,¢n—1)
to be a point of extremum for (3.17) are

(3.18) VG(e) = AVbi(c) and byi(c) =1,

where V denotes the gradient operator and A is the Lagrange multiplier.

It is obvious that every solution ¢ of (3.18) which corresponds to
A = 0 minimizes G(c). Indeed, in this case we have 27" " ¢; = 0 and
these are the only points where the nonnegative function G(c¢) vanishes.
It is worth mentioning that this observation means that a nonnegative
sine polynomial has a derivative which vanishes at the origin if and
only if its coefficients are given by (2.14) and the parameters satisfy

-1
Yoy i =0.

Thus, for the points of maximum the Lagrange multiplier A is

nonzero. Define

n—1
Te(ro) = A1 Z ¢; if n even (odd),
j=1
and
o = car — (2qu41) " "Can2,
and

-1
Eokt1 = Cokt1 — (2k41)” Corts, k=0,...,m,

where we set comt2 = Cam4s = 0.
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Consider first the case n = 2m+ 2. The conditions VG(c) = AVb(c)
reduce to the parametric system of linear equations

@160 = 161 = 7¢
—&ok + 2qr4282k+2 = —&akt1 + 2qr1282k43 = 2re,
k=0,...,m—1

for the unknowns &, K = 0,...,2m + 1 and the parameter r.. The
explicit form of g yields

1 1
<1+(1+-~+1(1+1))> —k+1.
Qk+1 2qx 2qo 2q1

Then we obtain the solution &, k = 0,...,2m + 1, of the above linear
system explicitly in terms of r.:

! (HL(H +i(1+i)))r
k1 2qy, 2qs 2q1 ¢

=((k+1r., k=0,...,m.

Sor = Eokt1 =
q

Hence, for the parameters ¢, k =0, ... ,2m, we obtain
Cok = Copt1 = (k+1)(m—k+ 1)re, k=0,...,m.
Now the condition by (c) =1 gives

(3.19) r2 =3/((m+1)(m+2)(m+3)).

In the case when n = 2m + 1 similar observations yield

ok =(k+1)(m—k+1r,, k=0,...,m,
cok+1=(k+1)(m—Kr,, k=0,...,m—1,

and
(3.20) r2=6/((m+1)(m+2)(2m+ 3)).

Now the relations (2.14) and straightforward calculations imply the
explicit form of the coefficients by,.
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4. Proofs of Theorems 2, 3, 4 and 5.

Proof of Theorem 2. QObserve that the statement of Lemma 2 is
equivalent to the equality S, (0) = sin 0C),_1(6), where

n—1

Cpn-100) =ag+2 Z ay cos kO,
k=1

and the coefficients of C,,_1(0) are given by (2.12) for the parameters

co,... Cp_1 determined in the proof of Theorem 1. Then Lemma 1
and the explicit form of ¢ yield

(4.21) S (0) = 2 sin 0| Ry ()]

)

where r = r, or r = r, depending on the parity of n and

Romy1(z 1+z§:k+17n—k+nfk
k=0
and

m m—1
Rom (2 Z (E+1)(m—k+1)2"%+23  (k+1)(m—k)z>*
k=0 k=0

Following Fejér and Szeg6 [5], consider the Cesaro sums S7,(¢) of
order j of the geometric series,

0§14 2)e

k=0
Then
dS;,11(6)
Romi1(2) = (14 2) T‘szz
and

A8y, 41(0) ‘ ds,,(¢)

Rom(2) = dc e T2 dc L:zz'
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On the other hand, Turén [14] proved that, for any pair n, j of positive
integers,

(d/d¢)'S?, . (¢) = JI¢MPPITI((¢2 +¢71/2) /2),

where P,g)‘) denotes the ultraspherical polynomial. Applying this result
for j =1, we obtain

Romsa(2) = (14 2)2" PO (= + 271)/2)

and

Rom(2) = 2" { PP (2 +271)/2) + P21 (2 +27)/2))-
Substitute z = exp(if) in these representations and use (4.21) to
complete the proof. O

The next is a basic technical result.

Lemma 4. For every positive integer n and for any real 6, the
inequality

(4.22) sin?(0/2) K, (0) < c¢(1/n),

holds with an absolute constant c.

Proof. We provide three different proofs of the lemma depending on
the representation of the extremal sine polynomials. It suffices to prove
the above inequality for 6 € [0, 7].

The first proof uses representations (1.8) and (1.9) of S,,(0). First we

establish (4.22) in the case n = 2m + 2. Tt follows from the definition
of the kernel K,,(6) and from (1.8) that

(4.23)
1
sin?(6/2) Kop2(0) = > sin?(0/2) sin 052, 12(6)
o
2
= ;? sin(6/2) sin® 6[2 cos(8/2) P2 (cos §) ]
2
r(’

=_£ [sin2 0P (cos 9)}2.
2m
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Kogbetliantz [9] proved that, for any A > 0,
Al'(n+ )

24 in 0)* P (cos )] < ———
(4.24) (sin @) ‘ M (cos )| S PO (n+ 1)
An application of this result for A = 2 yields
6 m+1
.2

0/2)Kopmio(f) < — —— .
sin”(8/2) Kam+2(0) < (m+2)(m +3)
When n = 2m + 1, we need a little more effort. We have

for 0 <6 <.

7”2
sin®(0/2) Ko 1(6) = 52 sin*(6) sin 2(0/2)[P2 (cos6) + P2 | (cos0)].

The recurrence relation for the ultraspherical polynomials (see (4.7.17)
n [13]) implies

(2) (2) (2) m+2 5@ @)
Py @)+ Py (x) = (142) Py (2) + — = (2P (w) — Ppla(2))
and formulae (4.7.14) and (4.7.28) in [13] yield

1 d d

P(Q) —P(2) i _P(l) (1) (1)

z TTL—l(’r) m—Q(x) 9 €T dr™ ™ (CL‘) d:c 'm 1(.1') 2 m ( )

Therefore,

sin2(9/2)K2m+1(9)
r2 2) m+2 ?
= 2—Osin2(9) sin?(0/2) {2005 9/2)P( 1(cos ) + TPS)(COSQ)} .
™

Then we use (4.24) for A = 1 and for A\ = 2 to obtain
Sin2 (0/2)[(27”4_1(0)
2

" { cos?(6/2) [ sin® HP,Efll(COS 9)]2

IN

o
m+ 2

sin 0 [ sin® 9|P7(n211(cos 9)|] [sin9|P,(nl)(cos 9)|]

+ @ sin®(0/2) [ sin 0PV (cos 0)] ? }

IN

2 0 50
;—°{4mzcos 5 + 2m(m 4 2)sinf + (m + 2)?sin 2}
™

= g—; |2m cos(0/2) + (m + 2) sin(9/2)|2

1 6 (5m? + 4m + 4)?
21 (m+1)(m +2)(2m + 3) 4m? '

IN
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Here the latter inequality follows from the fact that the maximal
value in [0, 7] of the function 2mcos(6/2) + (m + 2)sin(6/2), which
is positive in [0, 7], is attained at the point 6y for which 2msin(6y/2) =
(m + 2) cos(6/2). This completes the first proof of the lemma.

The second proof is based on the representations (1.10) and (1.11)
of S,(0) in terms of the Chebyshev polynomials. It is essentially
equivalent to the first one. We only sketch the proof for n = 2m + 2
because, for n = 2m + 1, it is similar. The representation (4.23) and

the relation between P} (x) and T}, ,(x) yield

2

Te [sin® 0T, , 5 (cos 9)}

sin®(0/2) Kam+2(0) = 8m(m + 2)2

Then the second order differential equation for the Chebyshev polyno-
mials

(1= a®)Thp(@) = 2Ty o (2) — (M + 2) Tpya(2)
and the inequalities |Ty,42(z)| < 1 and [T}, 5(z)] < (m + 2)? for
x € [—1,1] imply

2
.. 2 Te 4
<— e +2)%
sin®(0/2) Kopm42(0) S0 %)? 4(m+2)

The third proof is straightforward, and it was the one we obtained
before discovering the nice relation between the extremal polynomials
Sy (0) and ultraspherical and Chebyshev polynomials.

The coefficients (3 in the representation

n+2

sin?(0/2) K. Z B, cos k6

are given by

fo=3/(m+2),

Bop = —12k/((m+1)(m+2)(m+3)), k=1,...,m+1,
Bok+1 =0, k=0,..., m+1,
Bomta = 3(m +1)/((m +2)(m + 3)),
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when n = 2m + 2, and by

Bo =6/(2m + 3),
Bor = —12k/((m+ 1)(m+2)(2m +3)), k=1,...,m+1,
Bokt1 = —6(2k+1)/((m+1)(m+2)(2m+3)), k=0,...,m,
Bam+s = 6(m +1)/((m +2)(2m + 3)),

when n = 2m + 1. It is easy to see that the sum of the modulus of
these coefficients is less than ¢/n where ¢ is an absolute constant. More
precisely, we have

: 3
‘sm2(9/2)K2m+2(9)| < o

W, |Sln2(9/2)K2m+1(9)| S 27‘(‘ 3

(m+2)’

As it has already been mentioned, Lemma 4 implies the truth of
Theorems 3, 4 and 5.
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