ASYMPTOTICS OF ZEROS OF POLYNOMIALS ARISING FROM RATIONAL INTEGRALS

DIMITAR K. DIMITROV

ABSTRACT. We prove that the zeros of the polynomials $P_m(a)$ of degree m, defined by Borosh and Moll via

$$P_m(a) = \frac{2^{m+3/2}}{\pi} (a + 1)^{m+1/2} \int_0^\infty \frac{dx}{(x^4 + 2ax^2 + 1)^{m+1}},$$

approach the lemniscate $\{\zeta \in \mathbb{C} : |\zeta^2 - 1| = 1, \Re \zeta < 0\}$, as m diverges.

1. INTRODUCTION

Recently Moll, Borosh and their coauthors [1, 2, 3, 6] investigated thoroughly the rational integral

$$N(a, m) = \int_0^\infty \frac{dx}{(x^4 + 2ax^2 + 1)^{m+1}},$$

its dependence both on the parameters m and a, and established various interesting properties of $N(a, m)$. We refer to a recent personal account of Moll [6] about the motivation for the study of the integrals (1) and about some unexpected interplays. Among the other facts, they proved that, for every fixed $m \in \mathbb{N}$,

$$P_m(a) = \frac{2^{m+3/2}}{\pi} (a + 1)^{m+1/2} N(a, m)$$

is a polynomial in a of degree m. It was observed in [1] that the zeros of $P_m(a)$ possess a pretty regular asymptotic behaviour and nice pictures in support of this observation were furnished in [1, 6]. It was pointed out by Borosh and Moll in [1], that their numerical experiments suggest that the zeros go to a lemniscate but they were not able to predict its equation. We prove that the limit curve for the zeros of $P_m(a)$ is the left half of the lemniscate of Bernoulli

$$L = \{\zeta \in \mathbb{C} : |\zeta^2 - 1| = 1, \Re \zeta < 0\}.$$

The polar equation of L is

$$\rho^2 = 2 \cos 2\theta, \quad \theta \in (3\pi/4, 5\pi/4).$$

We also try to explain the lack of zeros around the part of L which is close to the origin, a fact which can be observed in the above mentioned pictures and in the Figure 1 below which shows the zeros of $P_{70}(a)$.

2000 Mathematics Subject Classification. Primary 30C15, 33C05.
Key words and phrases. Rational integral, polynomial, zeros, asymptotic behaviour, lemniscate.

Research supported by the Brazilian foundations CNPq, under Grant 300645/95-3, and FAPESP.
Theorem 1. If Z_m is the set of the zeros of $P_m(a)$, then
\[
\max_{a \in Z_m} \min \{|a - \zeta| : \zeta \in \mathbb{C}, |\zeta^2 - 1| = 1, \Re \zeta < 0\} \to 0 \text{ as } n \to \infty.
\]
Moreover, if $m \in \mathbb{N}$ is fixed, then
\[
|a + 1| \leq 1 - \frac{2 \left(\sqrt{m(m+1)(4m+1)} - m \right)}{(2m+1)^2}
\]
for every $a \in Z_m$.

The zeros of $P_{70}(z)$, together with the lemniscate L and the circumference
\[
C_m = \left\{ \zeta \in \mathbb{C} : |\zeta + 1| = 1 - \frac{2 \left(\sqrt{m(m+1)(4m+1)} - m \right)}{(2m+1)^2} \right\},
\]
for $m = 70$, can be seen in Figure 1.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The zeros of $P_{70}(a)$, the lemniscate L and the circumference C_{70}.}
\end{figure}

2. Proof of the theorem

We begin with a simple technical lemma which shows that the inverse polynomial of a hypergeometric polynomial is also hypergeometric. Recall that the hypergeometric function is defined by
\[
F(\alpha, \beta; \gamma; x) := _2F_1(\alpha, \beta; \gamma; x) = \sum_{k=0}^{\infty} \frac{(\alpha)_k (\beta)_k}{(\gamma)_k} \frac{x^k}{k!},
\]
where $(\alpha)_k$ denotes the Pochhammer symbol, $(\alpha)_k := \alpha (\alpha + 1) \cdots (\alpha + k - 1)$, for $k \in \mathbb{N}$, and $(\alpha)_0 := 1$.

Lemma 1. If $n \in \mathbb{N}$, $\beta, \gamma \in \mathbb{C}$, with $\beta, \gamma \neq 0, -1, -2, \ldots, -n$, then
\[
F(-n, \beta; \gamma; z) = \frac{(\beta)_n}{(\gamma)_n} (-z)^n F(-n, 1 - \gamma - n; 1 - \beta - n; 1/z).
\]
Proof. Calculating the coefficient d_k of z^k on the right-hand side of (2), we obtain
\[
d_k = (-1)^n \frac{n!}{(\gamma)_n} \frac{(-n)_{n-k}(1 - \gamma - n)_{n-k}}{(1 - \beta - n)_{n-k}} \frac{1}{(n-k)!}
\]
\[
= \frac{(-1)^k n!}{(\gamma)_k} n(n-1) \cdots (n-k+1)
\]
\[
= \frac{(\beta)_k}{(\gamma)_k} (-n)_k \frac{1}{k!}
\]
and the latter coincides with the coefficient of z^k on the left-hand side of (2). □

We shall need the following version of the classical Eneström-Kakeya theorem (see Exercise 2 on p. 137 in [5]):

Theorem A. All the zeros of the polynomial $f(z) = c_0 + c_1 z + \cdots + c_n z^n$, having positive coefficients c_j, lie in the ring
\[
\min_{0 \leq k \leq n-1} \left(\frac{c_k}{c_{k+1}} \right) \leq |z| \leq \max_{0 \leq k \leq n-1} \left(\frac{c_k}{c_{k+1}} \right).
\]

Proof of Theorem 1. It was proved in [2, 3] that $P_m(a)$ is a hypergeometric polynomial,
\[
P_m(a) = \binom{2m}{m} \text{F}(-m, m + 1; 1/2 - m; (a+1)/2).
\]
On using this representation and applying identity (2) for $n = m$, $\beta = m + 1$, $\gamma = 1/2 - m$ and $z = (a+1)/2$, we obtain
\[
P_m(a) = (-1)^m \binom{2m}{m} \binom{m + 1}{1/2 - m} \left(\frac{a+1}{2} \right)^m \text{F}(-m, 1/2; -2m; \frac{2}{a+1}).
\]
On the other hand, Driver and Möller [4] proved that, for any real positive b, the zeros of the polynomials
\[
w^n \text{F}(-n, b; -2n; 1/w)
\]
approach the Cassini curve
\[
|(2w - 1)^2 - 1| = 1
\]
as n diverges. Their result and the representation (3) immediately imply that the zeros of $P_m(a)$ tend to the lemniscate $|\zeta^2 - 1| = 1$ as m goes to infinity. In order to prove that these zeros remain in the disc D_m surrounded by the circumference C_m, we apply Theorem A. The coefficients c_k in the expansion
\[
\text{F}(-m, m + 1; 1/2 - m; (a+1)/2) = \sum_{k=0}^m c_k (a+1)^k
\]
are positive. Moreover
\[
\Delta(k) := \frac{c_k}{c_{k+1}} = \frac{(k+1)(2m-2k-1)}{(m-k)(m+k+1)}.
\]
Straightforward calculations show that,
\[
\Delta'(\kappa) = \frac{(2m-1)\kappa^2 - 2(2m^2 + 1)\kappa + 2m^3 - m^2 - m - 1}{(m-\kappa)^2(m+\kappa+1)^2},
\]
and $\Delta'(\kappa) = 0$ only for

$$\kappa_{1,2} = \frac{2m^2 + 1 \pm \sqrt{m(m+1)(4m+1)}}{2n-1},$$

where $0 < \kappa_1 < m-1 < \kappa_2$. It is easy to see that κ_1 is a point of local and also of global maximum of $\Delta(\kappa)$ when κ varies in $[0, m-1]$. Then, by Theorem A we conclude that the zeros of $P_m(a)$ lie in the disc $|a + 1| \leq \Delta(\kappa_1)$, where

$$\Delta(\kappa_1) = 1 - \frac{2 \left(\sqrt{m(m+1)(4m+1)} - m \right)}{(2m+1)^2}.$$

This completes the proof of the theorem.

3. Remarks and open questions

While the proof of the convergence of the zeros of $P_m(a)$ to L is a matter of simple transformation of Driver and Möller’s result, the lack of zeros close to the origin seems to be an interesting phenomenon. Except for the fact that Z_m is a subset of D_m, one may obtain other regions which do not contain zeros of P_m.

An application of a generalization of Descartes’ rule of signs, due to Obrechkoff [7] (see Theorem 41.3 in [5]), implies

$$|\arg(a + 1)| \geq \pi/m \text{ for every } a \in Z_m.$$

In other words, the zeros of $P_m(a)$ are outside the infinite sector with vertex -1 which contains the ray $(-1, \infty)$, with angle $2\pi/m$.

Another method which is applicable to our case is the so-called Parabola theorem of Saff and Varga [8]. It guarantees that the zeros of certain polynomials that satisfy a three-term recurrence relation belong to a parabola region. It can be shown that the polynomials

$$q_k(z) = \frac{(1/2 - m)_k}{(-1/2 - 2m)_k} F(-k, m+1, 1/2 - m, 1 + z)$$

satisfy the recurrence relation

$$q_k(z) = \left(\frac{z}{b_k} + 1 \right) q_{k-1}(z) - \frac{z}{c_k} q_{k-2}(z), \quad k = 1, \ldots, m,$$

where

$$b_k = \frac{2m - k + 3/2}{m + k} \quad \text{and} \quad c_k = \frac{(2n - k + 3/2)(2n - k + 5/2)}{(k-1)(n - k + 3/2)}.$$

Then if $a \in Z_m$, with $a = \xi + i\eta$, the parabola theorem yields

$$\eta^2 > \frac{2(4m+1)}{2m-1} \left(\xi + \frac{3}{4m-2} \right).$$

Let us apply the left-hand side estimate in Theorem A to the Maclaurin expansion

$$P_m(a) = \sum_{k=0}^{m} d_k(m)a^k.$$

In [1] Borosh and Moll obtained the representation

$$d_k(m) = 2^{-2m} \sum_{j=k}^{m} 2^j \binom{2m - 2j}{m - j} \binom{m + j}{k}.$$
for the coefficients of this expansion and proved that the first half of the sequence \(\{d_k(m)\}_{k=0}^m \) is increasing and the second one is decreasing. Numerical experiments show that, for every fixed \(m \), the minimum of \(d_k(m)/d_{k+1}(m) \) is attained for \(k = 0 \) and the values of \(d_0(m)/d_1(m) \) behave like \(1/m \) as \(m \) diverges.

Summarizing, these application of the results of Obrechkoff, of Saff and Varga and the Eneström-Kakeya theorem guarantee the lack of zeros in very “tiny” regions around the origin. More precisely, the circumference \(C_m \) cuts a larger portion of the lemniscate \(L \) around the origin in comparison with the cuts with the above mentioned sector, parabola and circumference of radius \(1/m \) around the origin. The author finds that a promising way of determining the precise behaviour of the closest to the origin zero of \(P_m(a) \) is the relation between \(Z_m \) and the zeros of the polynomials \(H_n(b, u) \), defined by (4.4) in [4]. There, on p. 86, Driver and Möller formulated a challenging conjecture about the location of the zeros of \(H_n(b, u) \). If true, and once it is established, the statement of that conjecture will provide precise information about the location of the zeros of \(P_m(a) \).

We finish with an observation motivated by another result of Driver and Möller. Proposition 5.2 in [4] states that the zeros of the polynomials (4) lie outside the Cassini curve (5) for all \(n \in \mathbb{N} \), provided \(b \geq 1 \). In our case \(b = 1/2 \), so we can not conclude that the zeros of \(P_m(a) \) lie outside \(L \) though numerical experiments show that they do.

References

Departamento de Ciências de Computação e Estatística, IBILCE, Universidade Estadual Paulista, 15054-000 São José do Rio Preto, SP, Brazil.

E-mail address: dimitrov@dcce.ibilce.unesp.br