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1. Introduction and notation. A real entire function φ(x) is said to be in the Laguerre-
Pólya class if φ(x) can be expressed in the form

φ(x) = cxne−αx
2+βx

∞∏
k=1

(
1 +

x

xk

)
e
− x
xk ,

where c, β, xk ∈ R, α ≥ 0, n is a nonnegative integer and
∑∞
k=1 1/x2

k < ∞. If φ(x) is in
the Laguerre-Pólya class, we shall write φ(x) ∈ L-P. A function φ(x) is said to be in L-P∗

if φ(x) can be expressed in the form φ(x) = p(x)ψ(x), where p(x) is a real polynomial and
ψ(x) ∈ L-P. In particular, functions in L-P∗ have only finitely many nonreal zeros.

Let D :=
d

dx
denote differentiation with respect to x. If

(1.1) φ(x) =
∞∑
k=0

αkx
k (αk ∈ R)

is a formal power series, we define the operator φ(D) by

(1.2) φ(D)f(x) =
∞∑
k=0

αkf
(k)(x),

whenever the right-hand side of (1.2) represents an analytic function in a neighborhood of
the origin. When φ(x) is an entire function, the operator φ(D) has been studied by several
authors (see, for example, [5, §11], [19, Chapter IX], [22] and [32]).

The conjecture of Pólya and Wiman, proved in [8], [9] and [17], states that if f(x) ∈
L-P∗, then Dmf(x) is in the Laguerre-Pólya class for all sufficiently large positive integers
m. In this paper, we analyze the more general situation when D is replaced by the operator
φ(D). In Section 2, we consider real power series with zero linear term (i.e., α1 = 0 in (1.1))
and α0α2 < 0, and show that if f(x) is any real polynomial, then [φ(D)]mf(x) ∈ L-P for all
sufficiently large positive integers m (Theorem 2.4). If the linear term in (1.1) is nonzero,
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then simple examples show (cf. Section 3) that this fails without much stronger restrictions
on φ. In this case, we show that if φ(x) ∈ L-P and f(x) ∈ L-P∗ (with some restriction of
the growth of φ or f) and if φ(x) has at least one real zero, then [φ(D)]mf(x) ∈ L-P for all
sufficiently large positive integers m (Theorem 3.3). A separate analysis of the operator
e−αD

2
, α > 0 (cf. Theorem 3.10, Corollary 3.11), shows that, not only does the previous

result hold, but that the zeros become simple. In fact, if f(x) ∈ L-P with order less than
two, then e−αD

2
f(x) has only real simple zeros. The question of simplicity of zeros is

pursued further in Section 4, where we generalize a result of Pólya [26]. We prove that if
φ(x) and f(x) are functions in the Laguerre-Pólya class of order less than two and φ has
an infinite number of zeros, and if there is a bound on the multiplicities of the zeros of f ,
then φ(D)f(x) has only simple real zeros (Theorem 4.6).

We next mention some terminology which will be used throughout this paper. If φ(x) =∑∞
k=0 γkx

k/k! is a real entire function, then the n-th Jensen polynomial associated with
φ(x) is defined by gn(x) =

∑n
k=0

(
n
k

)
γkx

k, n = 0, 1, 2, . . . . Moreover, for any polynomial
p(x) =

∑n
k=0 akx

k, an 6= 0, we define p∗(x) = xnp(1/x) =
∑n
k=0 an−kx

k. In particular, we
have φ(D)xn = g∗n(x) for each n, n = 0, 1, 2, . . . . The following proposition summarizes
two basic properties of φ(D).

Proposition 1.1. Let φ(x) =
∑∞
k=0 γkx

k/k! ∈ L-P. Let [φ(x)]m =
∑∞
k=0 γk,mx

k/k!
(m = 1, 2, 3, . . . ), where γk,1 = γk for each k. Let f(x) =

∑n
k=0 akx

k ∈ R[x] be a
polynomial of degree n. Then

(1) g∗k,m(x) = [φ(D)]mxk ∈ L-P (m = 1, 2, 3, . . . ; k = 1, 2, 3, . . . ).
(2) [φ(D)]mf(x) =

∑n
k=0 akg

∗
k,m(x).

Proof. Since φ ∈ L-P, we also have φm ∈ L-P and hence (1) follows from the Hermite-
Poulain Theorem [24, p. 4]. Since [φ(D)]m is a linear operator, part (2) is clear. �

We conclude this introduction by citing a few selected items from the extensive literature
dealing with the differential operator φ(D), where φ(x) ∈ L-P. In connection with the
study of the distribution of zeros of certain Fourier transforms, Pólya [27] characterized
the universal factors in terms of φ(D), where φ ∈ L-P. Subsequently, this work of Pólya was
extended by de Bruijn [5], who studied, in particular, the operators cos(λD) and e−λD

2
,

λ > 0. Benz [2] applied the operator 1/φ(D), φ ∈ L-P, to investigate the distribution of
zeros of certain exponential polynomials. The operators φ(D), φ ∈ L-P, play a central
role in Schoenberg’s celebrated work [31] on Pólya frequency functions and totally positive
functions. Hirschman and Widder [16] used φ(D), φ ∈ L-P, to develop the inversion
and representation theories of certain convolution transforms. More recently, Boas and
Prather [4] considered the final set problem for certain trigonometric polynomials when
differentiation D is replaced by φ(D).



DIFFERENTIAL OPERATORS OF INFINITE ORDER 3

2. Power series with zero linear term. We begin with some lemmas which help us
to establish the limiting behavior of [φ(D)]mf(x) as m tends to infinity.

Lemma 2.1. Let

h(x) =
∞∑
k=0

αk
k!
xk (αk ∈ R)

be any power series and let

hm(x) = [h(x)]m =
∞∑
k=0

βk
k!
xk (βk = βk(m), β0 = 1;m = 1, 2, 3, . . . ).

Then

βn =
1
n

n∑
j=1

(
n

j

)
[j(m+ 1)− n]αjβn−j (n = 1, 2, 3, . . . ).

Proof. This is a familiar formula for the power of a power series (cf. [14, p. 14]). �

We shall make use of the standard notations (2n − 1)!! = 1 · 3 · 5 · · · (2n − 1) and
(2n)!! = 2 · 4 · 6 · · · (2n). Following usual practice, we use the convention

(
k
i

)
= 0 if i > k.

Lemma 2.2. Let h(x) =
∑∞
k=0 αkx

k/k!, where α0 = 1 and α1 = 0, be a real power series.

For each m = 1, 2, 3, . . . , let hm(x) = [h(x)]m =
∑∞
k=0 βk(m)xk/k!, so that hm(x) is also

a power series with β0 = 1 and β1 = 0. Then

lim
m→∞

β2n(m)
mn

= (2n− 1)!!αn2 (n = 1, 2, 3, . . . )

and

lim
m→∞

β2n+1(m)
mn+ 1

2
= 0 (n = 0, 1, 2, . . . ).

Proof. We will prove the theorem by induction on n. By Lemma 2.1 and the induction
hypothesis for n− 1, we have

β2n(m)
mn

=
1
mn

1
2n

2n∑
j=1

(
2n
j

)
[j(m+ 1)− 2n]αjβ2n−j

=
1
m

1
2n

(
2n
2

)
[2(m+ 1)− 2n]

α2β2n−2

mn−1
+ o(1) (m→∞)

=
1
m

[(2n− 1)(m+ 1− n)]α2((2n− 3)!!αn−1
2 + o(1)) + o(1) (m→∞)

= (2n− 1)!!αn2 + o(1) (m→∞).
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For the second limit,

β2n+1(m)
mn+ 1

2
=

1
mn+ 1

2

1
2n+ 1

2n+1∑
j=1

(
2n+ 1
j

)
[j(m+ 1)− (2n+ 1)]αjβ2n+1−j

=
1
m

1
2n+ 1

(
2n+ 1

2

)
[2(m+ 1)− (2n+ 1)]

α2β2n−1

mn− 1
2

+ o(1) (m→∞)

= o(1) (m→∞).

The limits follow. �

Lemma 2.3. Fix α > 0. For k = 1, 2, 3, . . . , the zeros of the polynomial

qk(t;α) = tk +
k∑
j=1

(
k

2j

)
(2j − 1)!!(−1)jαjtk−2j

are all real and simple.

Proof. Using (2j − 1)!! = (2j)!/(2jj!), we obtain

qk(t;α) =
k∑
j=0

(
k

2j

)
(2j)!
j!

(−α)j

2j
tk−2j

=
[k/2]∑
j=0

k!
(k − 2j)!j!

(−α)j

2j
tk−2j

=
(α

2

)k/2
Hk

(
t√
2α

)
,

where [x] denotes the greatest integer less than or equal to x and Hk(t) is the k-th Hermite
polynomial defined by Hk(t) = (−1)ket

2
Dke−t

2
(cf. [30, p. 189]). Since it is known that

Hk(t) has only real simple zeros [30, p. 193], the assertion of the lemma follows. �

Theorem 2.4. Let

(2.1) φ(x) =
∞∑
k=0

αk
xk

k!

be a real power series with α0 = 1, α1 = 0 and α2 < 0. Let f(x) =
∑n
k=0 akx

k ∈ R[x]
be a polynomial of degree at least one. Then there is a positive integer m0 such that
[φ(D)]mf(x) ∈ L-P for all m ≥ m0. In fact, m0 can be chosen so that all the zeros are
simple.

Proof. Let Gm(x) = [φ(D)]mf(x). We can write Gm(x) =
∑n
k=0 akg

∗
k,m(x), where the

polynomial g∗k,m(x) = xkgk,m(1/x) with gk,m(x) = [φ(D)]mxk. (If [φ(x)]m is an entire func-
tion in L-P, then g∗k,m(x) is k! times the k-th Appell polynomial associated with [φ(x)]m
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[7, p. 243].) Write [φ(x)]m =
∑∞
k=0 βk(m)xk/k!, noting that [φ(x)]m is again a power

series with β0 = 1 and β1 = 0. A calculation shows that g∗k,m(x) =
∑k
j=0

(
k
j

)
βj(m)xk−j .

But then by Lemma 2.2,

lim
m→∞

g∗k,m(x
√
m)

mk/2
= lim

m→∞

k∑
j=0

(
k

j

)
βj(m)
mj/2

xk−j

= xk +
[k/2]∑
j=1

(
k

2j

)
(2j − 1)!!αj2x

k−2j

Thus by Lemma 2.3, the polynomial

lim
m→∞

g∗k,m(x
√
m)

mk/2
=
(
−α2

2

)k/2
Hk

(
x√
−2α2

)
(k ≥ 1)

has only real simple zeros. Therefore,

(2.2)

Gm(x
√
m)

mn/2
=

n∑
k=0

ak
g∗k,m(x

√
m)

mn/2

= an

(
−α2

2

)n/2
Hn

(
x√
−2α2

)
+ o(1) (m→∞)

and consequently, it follows that for all m greater than or equal to some m0, Gm(x) has
only real simple zeros. �

While it is not particularly related to the goals of this paper, it is clear from equation
(2.2) what happens if α2 > 0. We state the analog of Theorem 2.4 when α2 > 0 as a
corollary.

Corollary 2.5. Let φ(x) =
∑∞

k=0 αkx
k/k! be a real power series with α0 = 1, α1 = 0 and

α2 > 0. Let f(x) =
∑n
k=0 akx

k ∈ R[x] be a polynomial of degree at least one. Then there
is a positive integer m0 such that for all m ≥ m0, the zeros of the polynomial [φ(D)]mf(x)
are simple and all lie on the imaginary axis.

Examples.
(1) If α0 = 0, Theorem 2.4 is trivial since [φ(D)]m will send a polynomial to 0 when

m is sufficiently large.
(2) Theorem 2.4 does not extend, in general, to transcendental entire functions f(x).

For example, let φ(x) = 1 − x2 + x3, so that φ is a polynomial with one real zero
satisfying the hypotheses of Theorem 2.4. Let f(x) = (x2 + 2)ex ∈ L-P∗. Then,
for m = 1, 2, . . . , we obtain [φ(D)]mf(x) = [x2 + 2mx + (m + 1)(m + 2)]ex, with
zeros −m± i

√
3m+ 2.
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Remark 2.6. In some special cases the operators φ(D) enjoy some particularly elegant
properties. For example, the operator sinh(λD), λ > 0, is useful in the study of certain
difference polynomials (cf. [13]). As another example, set φλ(D) = 2 sinh(λD)/(λD),
λ > 0. Then it is not difficult to show that for any real polynomial f(x),

φλ(D)f(x) =
∫ x+λ

x−λ
f(t) dt (λ > 0).

Now, it is known that if the zeros of f(t) lie in a vertical strip containing the origin, then
this strip also contains the zeros of φλ(D)f(x) [18, p.68]. By Corollary 2.5, we know that,
for all sufficiently large integers m, the zeros of [φλ(D)]mf(x) lie on the imaginary axis.
For this operator, it is possible to obtain more precise information about the location of
zeros of the polynomials φλ(D)f(x), since in this case, we can make use of the various
properties of the polynomials (cf. [30, p.214, formula (24)])

[φλ(D)]mxk =
k!

(k +m)!

m∑
j=0

(
m

j

)
(−1)j(x+ (m− 2j)λ)m+k,

k = 0, 1, 2, . . . , all of whose zeros lie on the imaginary axis.

There are several open problems dealing with the distribution of zeros of certain differ-
ence polynomials. We conclude this section with the following open question of Barnard
[1]. Let pN (x) =

∏N
k=−N (x−k). Then is it true that for all λ > 0 and for all n = 0, 1, 2, . . . ,

the zeros of the polynomial [sinh(λD)]npN (x) lie on the coordinate axes? When n = 1, this
was established by Stolarsky [34]. In [1], Barnard also raises the following more general
question: Characterize (all) the polynomials f(x) for which all the zeros of the polynomial
[sinh(λD)]nf(x) lie on the coordinate axes for all λ > 0 and n = 0, 1, 2, . . . .

3. Entire functions in the Laguerre-Pólya class. When the linear term is present
in the series (2.1) of Theorem 2.4 (i.e. α1 6= 0), the limits used in the proof of Theorem
2.4 no longer apply. It turns out that the collection of power series which work must be
greatly restricted (see the example below). On the other hand, we shall be able to extend
Theorem 2.4 (except for the simplicity of zeros) to almost all functions f(x) in L-P∗.

Example. Let φ(x) =
∑∞
k=0 αkx

k/k! be a real power series with α0 = 1. When we com-
pute [φ(D)]m(x2+bx+c), we see that the zeros of the resulting quadratic have discriminant
equal to b2−4c+4m(α2

1−α2). Thus for large m, we have nonreal zeros unless α2
1−α2 ≥ 0.

This is the first of the Turán inequalities, satisfied by any φ(x) ∈ L-P [7]. We shall make
heavy use of the special form of the functions φ in L-P in establishing our results.

In the sequel, we shall be concerned with functions φ(x) =
∑
akx

k and f which, in
general, are both transcendental entire functions. Therefore, it will be necessary for us
to address the question of when the expression φ(D)f(x) =

∑
akf

(k)(x) converges and



DIFFERENTIAL OPERATORS OF INFINITE ORDER 7

represents an entire function. To this end, we shall first establish some preliminary lemmas.
Lemma 3.1 is a known result (cf. [19, Theorem 8, p. 360]) which we include here for the
reader’s convenience as some of the inequalities in the proof will be used below. (For
related results, see also [5, §11.7], [23] and [32].)

Lemma 3.1. Let φ(x) = eα1x
2
φ1(x) and f(x) = eα2x

2
f1(x), where αi ∈ R for i = 1, 2, be

entire functions where φ1 and f1 have genus at most one. If |α1α2| < 1/4, then φ(D)f(x)
is an entire function of order at most 2.

Proof. Set φ(x) =
∑∞
k=0 akx

k. Since φ is an entire function, not exceeding the normal
type |α1| of order 2, it follows that (cf. [5, Chapter 2] or [32, Lemma 5, p. 41])

(3.1) 0 ≤ lim
n→∞

((n!)−1/2|an|)1/n ≤ lim
n→∞

n1/2 n
√
|an| ≤ (2|α1|)1/2,

where we have used the elementary inequality nne−n ≤ n!. Next, using Cauchy’s integral
formula, we find that for any R > 0 and n = 0, 1, 2, . . . , |f (n)(z)| ≤ n!

RnM(R + |z|, f),
where M(r, f) = max|z|=r |f(z)| denotes the maximum modulus function. Now fix ε > 0

and r > 0. Then, by setting R =
√

n
2(|α2|+ε) above, a calculation shows that, for all n

sufficiently large and for |z| ≤ r,

|f (n)(z)| ≤ n!
nn/2

2n/2en(|α2|+ ε)n/2e(|α2|+ε)r2
.

This inequality together with (3.1) yield, for |z| ≤ r,

(3.2) lim
n→∞

n

√
|anf (n)(z)| ≤ (4|α1α2|)1/2 = c < 1,

and consequently,
∑∞
n=0 |anf (n)(z)| ≤ K

∑∞
n=0 c

n < ∞, for some constant K. Thus it
follows that the series

∑
anf

(n)(z) converges uniformly on compact subsets of C, whence
φ(D)f is an entire function. Moreover, it follows that the order of φ(D)f is at most 2. �

Remark. The assumption that |α1α2| < 1/4 is necessary in the preceding lemma. To
see this, we consider the following example of Pólya [25, p.243] (see also [35, p. 431]
and [32, p. 106]). Let φ(x) = e−α1x

2
and f(x) = e−α2x

2
, where α1, α2 > 0. Then a

calculation shows that the series [φ(D)f(x)]x=0 =
∑∞
k=0

(2k)!
(k!)2

(α1α2)k converges if and

only if 0 < α1α2 < 1/4. Indeed,
∑∞
k=0

(
2k
k

)
xk = 1/

√
1− 4x.

The Hermite-Poulain theorem, a generalization of Rolle’s theorem, (cf. [24, p. 4] or
[25]) does not extend to arbitrary real entire functions of order 2 having only real zeros.
(Consider, for example, f(x) = (x+ 1)ex

2/2; then f ′(x) = (1 + x+ x2)ex
2/2, so that f ′(x)

does not have only real zeros.) However, the following lemma, to be used in the sequel,
shows that under some additional hypotheses, the Hermite-Poulain theorem remains valid
for the class L-P∗.
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Lemma 3.2. Let φ(x) = e−α1x
2
φ1(x) and f(x) = e−α2x

2
f1(x), where α1, α2 ≥ 0, 0 ≤

α1α2 <
1
4 and φ1 and f1 are real entire functions of genus 0 or 1. If φ ∈ L-P and f ∈ L-P∗,

then φ(D)f ∈ L-P∗. Moreover, Zc(φ(D)f) ≤ Zc(f), where Zc(f) denotes the number of
nonreal zeros of f , counting multiplicities.

Proof. We first observe that L-P∗ is closed under differentiation. Indeed, set f(x) =
p(x)ψ(x), where ψ ∈ L-P and p(x) is a real polynomial with Zc(p) = 2d. Since ψ ∈ L-P,
there exists a sequence of polynomials {ψn}, ψn ∈ L-P, such that ψn → ψ (n → ∞)
uniformly on compact subsets of C (cf. [19, Chapter VIII]). Let fn(x) = p(x)ψn(x).
Then fn(x) → f(x) and f ′n(x) → f ′(x) uniformly on compact subsets of C as n → ∞.
Hence it follows from Rolle’s theorem that Zc(f ′(x)) ≤ Zc(f(x)) = 2d. Furthermore, if
we write f ′(x) = e−α3x

2
f2(x), where f2 is a real entire function of genus 0 or 1 in L-P∗,

then an argument similar to the one used by Pólya and Schur [28, p. 109] shows that
α3 ≥ α2. (In fact, it is known [15, p. 107, footnote] that α3 = α2.) Thus f ′ ∈ L-P∗. Since
D(eγxf(x)) = eγx(D+γ)f(x) for γ ∈ R, the argument above also shows that for f ∈ L-P∗,
we have Zc((D + γ)f(x)) ≤ Zc(f(x)) and that (D + γ)f ∈ L-P∗. More generally, we have
that if qn(x) is any real polynomial having only real zeros, then for any f ∈ L-P∗,

(3.3) Zc(qn(D)f) ≤ Zc(f)

and qn(D)f ∈ L-P∗.

Finally, to prove φ(D)f ∈ L-P∗, we first note that since 0 ≤ α1α2 <
1
4 , φ(D)f is an

entire function by Lemma 3.1. Set φ(x) =
∑∞
n=0 anx

n and let φν(x) =
∑ν
n=0

(
ν
n

)
n!anxn

denote the ν-th Jensen polynomial associated with φ. Then it is known (cf. [19, Chapter
VIII] or [28]) that

(3.4) φν

(x
ν

)
∈ L-P

for each ν, and φν(x/ν)→ φ(x) (ν →∞) uniformly on compact subsets of C. If we can
prove that φν(D/ν)f(x)→ φ(D)f(x) (ν →∞) uniformly on compact subsets of C, then
it follows from (3.3), (3.4) and Hurwitz’ theorem, that φ(D)f ∈ L-P∗ and Zc(φ(D)f) ≤
Zc(f). To this end, let r > 0 and ε > 0 be given. Then by (3.2), there is a positive integer
m0 such that, for |z| ≤ r and some constant K > 0,

(i) |an||f (n)(z)| ≤ Kcn for all n ≥ m0, 0 ≤ c < 1.

Hence, there is a positive integer m1 > m0 such that for all m ≥ m1,

(ii) K

∞∑
n=m+1

cn = K
cm+1

1− c <
ε

3
.

Also, there is a positive integer N > m1 such that for |z| ≤ r and ν > N ,

(iii)

∣∣∣∣∣
m1∑
n=2

(
1− 1

ν

)
· · ·
(

1− n− 1
ν

)
anf

(n)(z)−
m1∑
n=2

anf
(n)(z)

∣∣∣∣∣ < ε

3
.
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Therefore, for ν > N and |z| ≤ r, we have by (i), (ii) and (iii),∣∣∣∣φν (Dν
)
f(z)− φ(D)f(z)

∣∣∣∣ =
∣∣∣∣ m1∑
n=2

(
1− 1

ν

)
· · ·
(

1− n− 1
ν

)
anf

(n)(z)−
m1∑
n=2

anf
(n)(z)

+
ν∑

n=m1+1

(
1− 1

ν

)
· · ·
(

1− n− 1
ν

)
anf

(n)(z)−
∞∑

n=m1+1

anf
(n)(z)

∣∣∣∣
<
ε

3
+
ε

3
+
ε

3
= ε.

�

We can now prove a second part of our generalization of the Pólya-Wiman result.

Theorem 3.3. Let φ(x) = e−α1x
2
φ1(x) and f(x) = e−α2x

2
f1(x), where α1, α2 ≥ 0,

α1α2 = 0 and φ1 and f1 are real entire functions of genus 0 or 1. If φ ∈ L-P, f ∈ L-P∗

and φ(x) has at least one real zero, then there is a positive integer m0 such that for all
m ≥ m0, we have [φ(D)]mf(x) ∈ L-P.

Proof. By Lemmas 3.1 and 3.2, [φ(D)]mf(x) is defined and lies in L-P∗ for each positive
integer m. We can write φ(x) = ce−αx

2+βxxn
∏∞
k=1(1 − x/xk)ex/xk , where c, β, xk ∈ R,

n is a nonnegative integer, α1 ≥ 0 and
∑∞
k=1 1/x2

k < ∞. A computation shows that
ex1x(D+x1)mf(x) = Dmex1xf(x). We know from the Pólya-Wiman result (cf. [8], [9], [17])
that there exists an m such that Dmex1xf(x) lies in L-P, whence so does (D + x1)mf(x).
By Lemma 3.2, we see that [φ(D)]mf(x) = [e−αD

2+βD
∏∞
k=2(1 + D/xk)e−D/xk ]m[(D +

x1)mf(x)] is also in L-P. �

We are left with the question as to what happens when φ has no zeros. If φ(x) = eβx,
then [φ(D)]mf(x) = f(x + mβ), so the imaginary parts of the zeros do not change. On
the other hand, if φ(x) = e−αx

2
, we can use very different methods to again prove our

theorem. In fact, we shall obtain the stronger result that the zeros are not only real, but
also simple. The simplicity cannot be true in general, as it fails for φ(x) = x when applied
to entire functions with zeros of arbitrarily high multiplicity. Nevertheless, we shall see in
Section 4 that simplicity of zeros is a common occurrence.

Lemma 3.4 [5, Lemma 3]. Let ψ(z) ∈ L-P of order less than 2. Then there exists a
sequence of polynomials {ψn(z)}∞n=1, with only real zeros, such that

(1) ψn(z)→ ψ(z) uniformly on compact subsets of C, and
(2) for any η > 0, there exists a positive constant C(η), independent of n, such that

for all z ∈ C,

|ψn(z)| ≤ C(η)eη|z|
2

and |ψ(z)| ≤ C(η)eη|z|
2
.
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Remark 3.5.

(1) It is easily seen that Lemma 3.4 remains true for ψ in L-P∗.
(2) If we set ψ(z) = eβzzm

∏∞
k=1(1 − z/xk)ez/xk ∈ L-P, where β, xk ∈ R for all k,∑∞

k=1 1/x2
k < ∞, and m is a nonnegative integer, then the polynomials ψn(z) in

Lemma 3.4 can be defined as

ψn(z) =
(

1 +
βz

n

)n
zm

n∏
k=1

(
1− z

xk

)(
1 +

z

nxk

)n
(n = 1, 2, . . . )

(3) The proof of our next lemma requires the following integral representation of certain
functions of the form etD

2
f(x) [32, p. 84]. If f is an entire function of order less

than 2 and 0 6= t ∈ R, then

etD
2
f(x) =

∞∑
k=0

tk

k!
f (2k)(x)

=
1√
π

∫ ∞
−∞

e−s
2
f(x+ 2s

√
t) ds

is also an entire function of order less than 2.

We will next combine Theorem 3.3 with the aforementioned extension of Lemma 3.4 to
L-P∗.

Lemma 3.6. Let ψ(z) and ψn(z) be defined as in the previous remark and assume that
the order of ψ is less than 2. Let f(z) = p(z)ψ(z) and let fn(z) = p(z)ψn(z). Then for

each fixed t ∈ R, t 6= 0, we have etD
2
fn(z) → etD

2
f(z) (n → ∞) uniformly on compact

subsets of C.

Proof. Fix t0 ∈ R, t0 6= 0 and a compact subset S ⊂ C. Let r > 0 be sufficiently large so
that the closed disk { z | |z| < r } contains S. Let ε > 0. Then it follows from Remark
3.5(1) that, for 0 < η < (16|t0|)−1, there is a constant C(η), independent of n, such that
for all w ∈ C, we have |fn(w)| ≤ C(η)eη|w|

2
and |f(w)| ≤ C(η)eη|w|

2
. Next, we choose R0

so large that |z + 2s
√
t0|2 ≤ 8|t0|s2 for all s ≥ R0 and

2C(η)√
π

∫ ∞
R

e−s
2/2 ds <

ε

4

for all R ≥ R0, where we have used the fact (cf. [20, p.201]) that
∫∞
R
e−s

2
ds ≤ e−R

2

2R for
R > 0. Let B̄ = {w | |w| ≤ r + 2R0

√
|t0| }. Since by assumption, fn → f uniformly on

compact subsets of C, there is a positive integer N such that |fn(w) − f(w)| < ε/2 for
all n ≥ N and w ∈ B̄. Hence, for |z| ≤ r, using the preceding estimates along with the
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integral representation in Remark 3.5(3), we have for all n ≥ N ,

|et0D2
fn(z)− et0D2

f(z)| ≤ 1√
π

∫ R0

−R0

e−s
2 |fn(z + 2s

√
t0)− f(z + 2s

√
t0)| ds

+
1√
π

∫ −R0

−∞
e−s

2
|fn(z + 2s

√
t0)− f(z + 2s

√
t0)| ds

+
1√
π

∫ ∞
R0

e−s
2
(|fn(z + 2s

√
t0)|+ |f(z + 2s

√
t0)|) ds

≤ ε

2
+

4√
π
C(η)

∫ ∞
R0

e−s
2/2 ds

≤ ε.

�

The next two lemmas allow us to show that the choice of m in Theorem 3.3 is indepen-
dent of multiplication of f by a (real) linear factor.

Lemma 3.7. Let f and φ be real entire functions. If φ(D)f(x) is entire, then for any
α ∈ R, we have φ(D)(x+ α)f(x) = (x+ α)φ(D)f(x) + φ′(D)f(x).

Proof. First consider the case φ(x) = xn for some nonnegative integer n. Then Dn(x +
α)f(x) = (x + α)Dnf(x) + nDn−1f(x). Using this and the Taylor expansion of φ, the
desired result follows. �

Lemma 3.8. Let h(x) ∈ L-P. Then h1(x) = (x + α)h(x) − βh′(x) ∈ L-P for all α ∈ R
and β ≥ 0.

Proof. Since it is known that the Laguerre-Pólya class is closed under differentiation (cf.
[24]), we find that −βD(e−(x+α)2/2βh(x)) = e−(x+α)2/2β[(x + α)h(x) − βh′(x)], whence
h1(x) ∈ L-P. �

We shall denote the order of a function f by ρ(f) (see [3]).

Lemma 3.9. Let f(x) = p(x)ψ(x) ∈ L-P∗, where p(x) ∈ R[x] and ψ(x) ∈ L-P, and the

order ρ(f) < 2. Then there is a positive integer m0 such that e−mD
2
f(x) ∈ L-P for all

m ≥ m0.

Proof. By Theorem 2.4, there is a positive integer m0 such that e−mD
2
p(x) ∈ L-P for

all m ≥ m0. If α ∈ R, then by Lemma 3.7, e−mD
2
(x + α)p(x) = (x + α)e−mD

2
p(x) −

2mDe−mD
2
p(x) = (x+α)hm(x)−2mh′m(x), where hm(x) = e−mD

2
p(x). Hence by Lemma
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3.8, we conclude that for all m ≥ m0, α ∈ R, the function e−mD
2
(x + α)p(x) ∈ L-P.

Now using Lemma 3.8 again and an easy induction argument shows that if q(x) is a real
polynomial having only real zeros, then

(3.5) e−mD
2
q(x)p(x) ∈ L-P,

for all m ≥ m0.

Since ψ(x) ∈ L-P of order less than 2, it follows from Lemma 3.4 that there is a sequence
of real polynomials {ψn(x)}∞n=1, where ψn has only real zeros, such that ψn → ψ (n →
∞) uniformly on compact subsets of C. Let fn(x) = p(x)ψn(x) (n = 1, 2, . . . ). Then
fn → f (n → ∞) uniformly on compact subsets of C. By (3.5) above, for any positive
integer m, e−mD

2
fn → e−mD

2
f (n → ∞) uniformly on compact subsets of C. Thus,

using these facts and Hurwitz’ theorem, we conclude that e−mD
2
f(x) ∈ L-P. �

Theorem 3.10. Let f ∈ L-P and suppose the order ρ(f) < 2. Let u(x, t) = e−tD
2
f(x)

for all t > 0. Then, for each fixed t > 0, we have u(x, t) ∈ L-P and the zeros of u(x, t) are
all simple.

Proof. Fix t0 > 0. Then by Remark 3.5(3) , u(x, t0) is a real entire function of order less
than 2. By the Hermite–Poulain theorem (see, for example, [25]) u(x, t0) ∈ L-P. Thus,
it suffices to show that the zeros of u(x, t0) are all simple. First suppose that for some
x0 ∈ R,

(3.6) u(x0, t0) = ux(x0, t0) = 0,

but uxx(x0, t0) 6= 0. Fix 0 < ε < t0. By assumption, we have u(x, t0− ε) ∈ L-P. Now, it is
known (cf. [33] or [10]) that any function F (x) ∈ L-P satisfies the Laguerre inequalities:

(3.7) Lk(F (x)) = (F (k)(x))2 − F (k−1)(x)F (k+1)(x) ≥ 0,

for k = 1, 2, 3, . . . and all x ∈ R. To obtain the desired contradiction, consider

u(x, t0 − ε) = u(x, t0) + εuxx(x, t0) +O(ε2) (ε→ 0)

ux(x, t0 − ε) = ux(x, t0) + εuxxx(x, t0) +O(ε2) (ε→ 0)
and

uxx(x, t0 − ε) = uxx(x, t0) + εuxxxx(x, t0) +O(ε2) (ε→ 0) .

Using equation (3.6), a calculation shows that L1(u(x0, t0)) = −ε(uxx(x0, t0))2 + O(ε2).
But then, for all ε sufficiently small, this expression is negative, whence u(x, t0) /∈ L-P, a
contradiction.

Finally, suppose that for some t0 > 0, x0 is a zero of u(x, t0) of multiplicity k ≥ 2; that

is,
∂ju(x0, t0)

∂xj
= 0, for j = 0, 1, . . . , k, but

∂k+1u(x0, t0)
∂xk+1

6= 0. Let v(x, t0) =
∂k−1u(x, t0)
∂xk−1

.

Then v(x0, t0) = vx(x0, t0) = 0, but vxx(x0, t0) 6= 0. Hence, as in the first part of the
proof, we conclude that v(x, t0) /∈ L-P. Since the Laguerre-Pólya class is closed under
differentiation, this is the desired contradiction, completing the proof of the theorem. �
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Corollary 3.11. Let f ∈ L-P∗ with ρ(f) < 2 and let α > 0. Then [e−αD
2
]mf(x) ∈ L-P

with only simple zeros for all sufficiently large m.

Proof. Combine Lemma 3.9 with Theorem 3.10. �

Remark 3.12. In the special case when f(x) is the Riemann ξ-function, it was shown in
[11, Corollary 1] that e−αD

2
f(x) has only simple real zeros for all α > 1/2. (See also [5],

where the operators cosαD and e−αD
2
, α > 0, are applied to entire functions which can

be represented by the Fourier transform of certain special kernels.)

4. Simplicity of zeros. In connection with his study of the distribution of zeros of the
Riemann ξ-function, Pólya has shown (cf. [26, Hilfsatz III]) that if q(x) is a polynomial
possessing only real zeros and if φ(x) is a transcendental function in L-P, where φ(x) is not
of the form p(x)eαx, where p(x) is a polynomial, then the polynomial φ(D)q(x) has only
simple real zeros. It seems natural to ask if this result can be extended to the situation
where q(x) is a transcendental entire function in the Laguerre-Pólya class. We are able
to prove this whenever the canonical product in the representation of φ has genus zero or
there is a bound on the multiplicities of the zeros of q(x).

We begin with an analysis of the zeros of the functions φ(D)xn = g∗n(x) for φ ∈ L-P.
For convenience, we write the theorem in terms of gn(x) = xng∗n(1/x). As noted above,
Pólya has proved part (1) of the proposition. We provide a substantially different and
unified proof of all the cases involved. This theorem also corrects and extends the results
of [12].

Proposition 4.1 (Simplicity of the zeros of Jensen polynomials). Let φ(x) =∑∞
k=0 γkx

k/k! ∈ L-P with φ(0) 6= 0.

(1) If φ(x) is not of the form p(x)eβx, where p(x) is a polynomial and β 6= 0, then
the zeros of the Jensen polynomials gn(x), (n ≥ 1), associated with φ(x) are all
real and simple; consecutive zeros of gn of the same sign are separated by a zero of
gn−1. In particular, if φ(x) ∈ L-P and all zeros have the same sign, then the zeros
of gn and gn−1 are interlacing.

(2) If φ(x) = p(x)eβx, where p(x) is a polynomial and β 6= 0, then the zeros of gn(x)
are simple for n ≤ deg p. For n > deg p, (βx+ 1)n−deg p is a factor of gn(x).

Proof. In order to cover two cases at once, let m be the degree of φ if φ is a polynomial,
and let m be infinity otherwise. For any function φ ∈ L-P, we have γ2

n− γn−1γn+1 ≥ 0 for
each n ≥ 1. For n ≤ m <∞, φ(x) 6= ceβx implies that, in fact,

(4.1) γ2
n − γn−1γn+1 > 0

by [CC1, Proposition 4.5].
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(1) Since we shall be working with Sturm’s theorem (see, for example, [24, p. 91],
we adopt the usual notation of V (a) for the number of sign changes in a sequence of
polynomials p0(x), p1(x), . . . , pn(x) evaluated at a. We shall also write V (+∞) for the
number of sign changes when a is larger than all the zeros of all the polynomials in this
sequence, and V (−∞) for the number of sign changes when a is less than all the zeros.

We apply inequality (4.1) to

(4.2) F (z) = ezφ(xz) =
∞∑
n=0

gn(x)
zn

n!
,

where, for each fixed x ∈ R, the function F (z) is in L-P. This yields ∆n(x) = g2
n(x) −

gn−1(x)gn+1(x) ≥ 0 for all n and x. If x 6= 0, then F (z) is not of the form ceβz, so
∆n(x) > 0 for all n. If we now write hn(x) = 1

n!
xngn(x−1), x 6= 0, and δn(x) = h2

n(x) −
hn−1(x)hn+1(x), a computation shows that h′n(x) = hn−1(x) and x2n∆n(x−1) = (n −
1)!(n + 1)!δn(x). Therefore δn(x) > 0 for all n ≥ 1 and all nonzero real x; from (4.1),
the inequality δn(0) > 0 also holds for n ≤ m. From this we see that, for n ≤ m,
if hn(c) = 0, then hn−1(c) and hn+1(c) have opposite signs, whence the polynomials
h0(x), h1(x), . . . , hn(x) form a Sturm sequence for hn(x). Since all hk(x), k = 1, 2, . . . ,
have the same leading coefficient a0, the numbers of sign changes are V (−∞) = k and
V (+∞) = 0, so that hk(x) has k real zeros. The zeros are all simple since h′k(x) = hk−1(x)
and hk and hk−1 have no common zeros as shown above.

If φ(z) is a polynomial, we must treat x = 0 more carefully to handle the case n > m.
Each polynomial hn(x), for n > m has a factor of xn−m. We define the new polynomials
qn(x) = hn(x) for n ≤ m and qn(x) = hn(x)/xn−m for n > m. Then qn(0) = a0/n! 6= 0
and

n

n+ 1
q2
n(x)− qn−1(x)qn+1(x) =

δn(x)
x2n−2m

> 0

for x 6= 0, so that if qn(c) = 0 then qn−1(c) and qn+1(c) have opposite signs. This sequence
satisfies a generalized version of Sturm’s theorem [24, §19], whence by [24, Satz 19.2], the
number of real zeros of qn(x) is at least equal to the difference in the number of sign
changes V (−∞)− V (+∞) = n in the sequence q0(x), q1(x), . . . , qn(x). Thus the zeros of
qn(x) are all real. Again they are simple since they are the same as the nonzero roots of
hn(x), which are simple as noted above. These zeros of qn(x) are the reciprocals of the
zeros of gn(x), so gn(x) also has simple real zeros.

An easy computation shows that ngn(x) = ngn−1(x) + xg′n(x), from which we see
that if s < t are consecutive zeros of gn(x) of the same sign, then n2gn−1(s)gn−1(t) =
stg′n(s)g′n(t) < 0, whence gn−1(x) has a zero in the interval (s, t).

(2) If φ(x) = p(x)eβx, where p(x) is a polynomial and β 6= 0, then, following part (1),
F (z) of (4.2) becomes a polynomial for x = −β−1. Thus ∆n(x) > 0 only for n ≤ m = deg p,
and simplicity is proved as above in this case. Now let n > m and write p(x) =

∑m
k=0 γkx

k.
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Then a computation shows that

gn(x) = (βx+ 1)n−m
m∑
k=0

γk
n!

(n− k)!
xk(βx+ 1)m−k,

completing the proof of the theorem. �

Next we turn our attention to a generalization of Pólya’s result [26, Hilfsatz III]. The-
orem 3.10 handles the case where φ has a factor of e−tx

2
, t > 0, in its representation.

Consequently, it suffices to consider functions φ of order less than two. We begin with a
slight extension of the Hermite-Poulain theorem (cf. [25] or [24]).

Lemma 4.2. Let m be a positive integer. Set ψm(x) = eγx
∏m
k=1(x+αk), where γ, αk ∈ R

for k = 1, . . . , m. Let f(x) ∈ L-P and, for each m = 1, 2, . . . , let hm(x) = ψm(D)f(x). If y0

is a zero of hm(x) of multiplicity at least two, then y0 + γ is a zero of f(x) of multiplicity
at least m + 2; that is, if hm(y0) = h′m(y0) = 0, then f(y0 + γ) = f ′(y0 + γ) = · · · =
f (m+1)(y0 + γ) = 0.

Proof. Since eγDf(x) = f(x + γ), we may assume without loss of generality that γ = 0.
Furthermore. we may assume that f(x) is not of the form ceβx, for some constant c,
since in that case, hm(x) = cψm(β)eβx, which has no zeros unless it is identically zero.
Since hm(x) = ψ(D)f(x) = (e−αmxDeαmx) · · · (e−α1xDeα1x)f(x) and the Laguerre-Pólya
class is closed under differentiation, it follows that hm(x) ∈ L-P. Recall from the proof
of Theorem 3.10 that f(x), being in L-P, must satisfy the Laguerre inequalities (3.7).
Moreover, by examining D f ′

f (x), it is easily seen (cf. [10]) that if f(x) is not of the form
ceβx, then L1(f(y0)) = 0 if and only if y0 is a multiple zero of f ; i.e. f(y0) = f ′(y0) = 0.

We first consider the case when m = 1, so that h1(x) = α1f(x) + f ′(x). Then from
h1(y0) = h′1(y0) = 0, we deduce that L1(f(y0)) = 0 and consequently that f(y0) = f ′(y0) =
0. Since h′1(y0) = 0, we also have that f ′′(y0) = 0, and thus the lemma holds for m = 1. For
m > 1, we write hm(x) = (αm+D)hm−1(x), and suppose that hm(y0) = h′m(y0) = 0. Then
a repeated application of the argument above shows that hm(y0) = h′m(y0) = hm−1(y0) =
h′m−1(y0) = · · · = f(y0) = f ′(y0) = 0. These, together with

h1(y0) = α1f(y0) + f ′(y0) = 0

h2(y0) = α2h1(y0) + h′1(y0)

= α1α2f(y0) + (α1 + α2)f ′(y0) + f ′′(y0) = 0
...

hm(y0) = αmhm−1(y0) + h′m−1(y0) = 0,

imply the desired conclusion. �
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Remark 4.3. In the usual formulation of the Hermite-Poulain theorem (cf. [19, p. 337],
[24, p. 4] or [25]), it is assumed that the function f in Lemma 4.2 is a polynomial. If f
is a polynomial in L-P, then the conclusion that any multiple zero of hm(D)f(x) is also a
multiple zero of f follows from standard counting arguments (cf. [24, p. 5]).

In order to prove our main result in this section when both φ and f are transcendental
functions in the Laguerre-Pólya class, we require the following lemmas (cf. [17, Lemma 1]
in the special case when φ(x) = x).

Lemma 4.4. Let

φ(x) = cxmeβx
∞∏
k=1

(
1 +

x

xk

)
e
− x
xk ,

where c, β, xk ∈ R for k = 1, 2, . . . , m is a nonnegative integer and
∑∞
k=1 1/x2

k < ∞.

Suppose that φ has an infinite number of zeros. Let φn(x) =
∏n
k=1(1 + x/xk)e−x/xk for

each n = 1, 2, . . . . Then for any f ∈ L-P and for any A > 0, there exists a positive integer
N such that φn(D)f(x) has only simple zeros in the interval In = (−A

√
n,A
√
n) for all

n ≥ N .

Proof. Assume that the conclusion is false. Then, for some A > 0, there exists a strictly
increasing sequence {nj}∞j=1 of positive integers such that for each j, φnj (D)f(x) has a
zero yj in the interval Inj , where the multiplicity of yj is at least two. But then, by Lemma
4.2, tj = yj −

∑nj
k=1 1/xk is a zero of f(x) of multiplicity at least nj + 2. Moreover, by

passing to a subsequence of {tj}∞j=1, if necessary, we may assume that ti 6= tj for i 6= j.
We next claim that

(4.3)
n∑
k=1

1
|xk|

= O(
√
n) (n→∞).

To see this, let τ denote the exponent of convergence (see, for example, [22, p. 285]) of
the zeros {xk}∞k=1 of φ(x). Then it is known that τ = limk→∞

ln k
ln |xk| (cf. [22, Theorem

10.2]). Since φ ∈ L-P, we have τ ≤ 2 and it follows that there is a positive integer k0 such
that 1/|xk| ≤ 1/

√
k for all k ≥ k0, from which an elementary integral estimate yields (4.3).

Consequently, there is a constant B > 0 independent of n such that
∑n
k=1 1/|xk| ≤ B

√
n.

Finally, to establish the desired contradiction, consider the nonzero roots a1, a2, . . . of
f(x), where

∑∞
j=1 1/a2

j <∞. Then we have

∞ >
∞∑
j=1

1
a2
j

>
∞∑
j=1

nj + 2
t2j

>
∞∑
j=1

nj + 2
(A+B)2nj

=∞,

our desired contradiction completing the proof. �
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Lemma 4.5. Let

φ(x) =
∞∏
k=1

(
1 +

x

xk

)
e
− x
xk ,

where xk ∈ R for k = 1, 2, . . . and
∑∞
k=1 1/x2

k <∞. For n = 0, 1, . . . , set

(4.4) Rn(x) =
∞∏

j=n+1

(1 + x/xj)e−x/xj =
∞∑
k=0

ak,nx
k.

If f ∈ L-P and f has order less than two, then as n → ∞, the sequence {Rn(D)f}
converges uniformly to f on compact subsets of C.

Proof. First we note that by Lemma 3.2, we have Rn(D)f ∈ L-P for each n = 0, 1, . . . .
To estimate the Taylor coefficients in (4.4), we find, by Cauchy’s inequality, that for each
positive integer n,

(4.5) |k!ak,n| = |R(k)
n (0)| ≤ k!

sk
M(s, Rn)

for any s > 0, k = 0, 1, . . . , where M(s, Rn) = max|z|=s |Rn(z)|. Since
∑∞

j=1 1/x2
j < ∞,

there is a positive integer n0 such that
∑∞
j=n+1 1/x2

j < (6e)−1 for all n ≥ n0. Thus, using
the familiar estimate for the logarithm of the modulus of the (Weierstrass) primary factors
(see, for example, [19, p.11]) we have, for n = 1, 2, . . . and |z| = s > 0, the estimate
log |Rn(z)| ≤ 6es2

∑∞
j=n+1 1/x2

j . Hence, it follows that M(s, Rn) ≤ es
2

for all s > 0 and
for all n ≥ n0. Setting s =

√
k, this inequality together with (4.5), yield the estimate

(4.6) |ak,n| ≤
ek

kk/2
for all n ≥ n0, k ≥ 1.

Next, we fix r > 0 and 0 < ε < (8e2)−1. Then, as in the proof of Lemma 3.1 (with α2 = 0),
a calculation shows that there is a positive integer k0 such that for |z| ≤ r,

|f (k)(z)| ≤ k!
kk/2

2k/2ekεk/2eεr
2

for all k ≥ k0.

Using this together with (4.6) and the elementary estimate k! ≤ (k + 2)kke−k, we obtain
for |z| ≤ r and for all n ≥ n0,

(4.7) lim
k→∞

k

√
|ak,nf (k)(z)| ≤ lim

k→∞

[
(k + 2)1/k

√
2e
√
εeεr

2/k
]

=
√

2e
√
ε ≤ 1

2
.

Using (4.7), we can find a positive integer m0 such that for |z| ≤ r and n ≥ n0,

(4.8)
∞∑

k=m0+1

|ak,nf (k)(z)| < ε

3
.
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Also, it follows from the uniform convergence (on compact subsets of C) of the canonical
product in (4.4), that limn→∞ a0,n = 1 and limn→∞ ak,n = 0 for k ≥ 1. Therefore, there
is a positive integer n1 ≥ n0 such that for |z| ≤ r, we have |a0,n − 1||f(z)| < ε/3 and∑m0
k=1 |ak,nf (k)(z)| < ε/3 for all n ≥ n1. Finally, combining these two estimates with (4.8),

we conclude that |Rn(D)f(z)− f(z)| < ε for |z| ≤ r and for all n ≥ n1. �

Remark. An examination of the foregoing proof shows that Lemma 4.5 remains valid if
f ∈ L-P and f has order two but its (normal) type is sufficiently small.

Theorem 4.6. Let φ(x) and f(x) be in L-P with orders less than 2 and suppose that φ
has an infinite number of zeros. If there is a bound on the multiplicities of the zeros of f ,
then φ(D)f(x) has only simple real zeros.

Proof. The conditions on φ imply that it has a canonical representation of the form φ(x) =
cxmeβx

∏∞
k=1(1 + x/xk)e−x/xk , where c, β, xk ∈ R for k = 1, 2, . . . , m is a nonnegative

integer and
∑∞
k=1 1/x2

k <∞. It is easy to see that we may assume that c = 1, m = 0 and
β = 0. As we noted in the previous section, φ(D)f(x) ∈ L-P (see Lemma 3.2); thus to
prove the theorem, it will suffice to show that for any fixed A > 0, the function φ(D)f(x)
has only simple zeros in the interval IA = (−A,A).

Set θn(x) =
∏n
k=1(1 + x/xk)e−x/xk and Rn =

∏∞
k=n+1(1 + x/xk)e−x/xk for each n =

1, 2, . . . . As in the proof of Lemma 4.4, we can find a positive number B such that∑n
k=1 1/|xk| ≤ B

√
n for all n = 1, 2, . . . . By Lemma 4.4, there is a positive integer N such

that θn(D)f(x) has only simple zeros in the interval Jn = (−(A+B)
√
n, (A+B)

√
n) for

all n ≥ N . Fix N1 ≥ N so large that

(4.9) A+B ≥
(

A√
N1

+B

√
p+N1 − 2

N1

)
,

where p is the maximum multiplicity of any zero of f . The sequence {Rn(D)f(x)}
converges to f(x) uniformly on compact subsets of C by Lemma 4.5. It then follows
from Hurwitz’ theorem that there is a positive integer N2 ≥ N1 + 1 such that the
entire function RN2(D)[θN1(D)f(x)] has only simple zeros in the interval JN1 . With
the choices of N1 and N2 made above, set FN1,N2(x) = RN2(D)[θN1(D)f(x)], so that
φ(D)f(x) = ψ(D)FN1,N2(x), where ψ(x) =

∏N2
k=N1+1(1 + x/xk)e−x/xk .

Now suppose that φ(D)f(x) has a zero y0 in (−A,A), where the multiplicity of y0 is
at least two. Then by Lemma 4.2, t0 = y0 −

∑N2
k=N1+1 1/xk is a zero of FN1,N2(x) of

multiplicity at least N2 − N1 + 2 ≥ 3. By our assumption on the multiplicities of the
zeros of f(x), we must have N2 ≤ p+N1 − 2. From (4.9) and our choice of B, we obtain
|t0| ≤ |y0| +

∑N2
k=N1+1 1/|xk| ≤ A + B

√
N2 ≤ A + B

√
p+N1 − 2 ≤ (A + B)

√
N1. Hence

t0 is in the interval JN1 . But this contradicts our choice of N1 and N2 so that FN1,N2(x)
has only simple zeros in JN1 . It follows that φ(D)f(x) can have only simple zeros in the
(arbitrary) interval (−A,A). �
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If the canonical product in the representation of φ has genus zero in Theorem 4.6, then
the method of proof of this theorem, mutatis mutandis, also shows that we can dispense
with the restriction on the multiplicities of the zeros of f(x). The precise statement is as
follows:

Theorem 4.7. Let φ(x) and f(x) be in L-P with orders less than 2 and suppose that φ
has an infinite number of zeros. If the canonical product in the representation of φ has
genus zero, then φ(D)f(x) has only simple real zeros.

Open Problems 4.8.
(1) We do not know whether or not the assumption (in Theorem 4.6) that there is a

bound on the multiplicities of the zeros of f is necessary. Thus, in connection with
Theorems 4.6 and 4.7, the following problem remains open: If φ, f ∈ L-P and if φ
has order less than two, then is it true that φ(D)f(x) has only simple real zeros?

(2) In [5], de Bruijn proved, in particular, that if f is a real entire function of order
less than two and if all the zeros of f lie in the strip S(∆) = { z ∈ C | |=z| ≤
∆ } (∆ ≥ 0), then the zeros of cos(λD)f(x) (λ ≥ 0) satisfy |=z| ≤

√
∆2 − λ2,

if ∆ > λ and =z = 0, if 0 ≤ ∆ ≤ λ. This result may be viewed as an analog of
Jensen’s theorem [21, §7] on the location of the nonreal zeros of the derivative of
a polynomial. Is there also an analog of Jensen’s theorem for φ(λD)f(x), where φ
is a more general function in the Laguerre-Pólya class?
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