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0. Prime numbers, the Riemann hypothesis and Fourier

transforms

In the present paper we survey result on the zero distribution of classes of entire
functions defined as Fourier transforms of the form

(0.1) Fa,b(K; z) =

∫ b

a

K(t) exp izt dt, −∞ ≤ a < b ≤ ∞,

under the assumption that K(t) is integrable in (a, b).
The following two cases have been studied systematically in the literature:

(i) a = −∞, b = ∞ and (ii) −∞ < a < b < ∞. In the the case (i) the entire
function (0.1) takes the form

(0.2) E(K; z) =

∫ ∞

−∞

K(t) exp izt dt.
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Particular cases of (0.2) are

(0.3) U(K; z) =

∫ ∞

0

K(t) cos zt dt

and

(0.4) V(K; z) =

∫ ∞

0

K(t) sin zt dt,

which correspond to the assumptions that the function K(t) in (0.2) is either
even or odd.

The interest in the problem of characterizing those kernels K(t) for which
the corresponding Fourier transform has only real zeros is motivated by one of
the most fascinating results in the history of mathematics, The Prime Number
Theorem, and the most celebrated open problem, The Riemann Hypothesis.

The ancient Greeks were already interested in the numbers which do not
have proper divisors, the prime numbers. The sieve of Erathostenes provides an
algorithm for obtaining the primes and, in the third century BC, Euclid proved
the existence of infinitely many prime numbers. The latter proof is so simple
and beautiful that it might be used for a test if a child could have a talent for
maths; those who understand and appreciate it, certainly may develop a taste
for mathematics.

The most natural question arises of how many the prime numbers are among
all naturals. A result of Euler gives the first hint about the answer despite that
he himself does not declare explicitly any interest on the distribution of the
prime numbers. This fact is explained nicely in the introduction of Eduard’s
book [Edwards 1974] “Riemann’s Zeta Function”. In 1737 Euler proved that
the sum of the reciprocals of primes

∑
p 1/p, where the sum is extended over all

prime numbers, diverges and wrote that 1/2+1/3+1/5+1/7+· · ·= log(log∞),
most probably, having in mind that

∑

p<x

1

p
∼ log(log x) as x→ ∞,

where the sum is over the primes less than x. Since log(log x) =
∫ x

e dt/(t log t),
if we consider the measure dµ(t) = dt/ log t, the last function may be rewritten
in the form

log(log x) =

∫ x

e

1

t
dµ(t)

For any positive x, π(x) denotes, as usual, the number of primes less than
x. It is a step function which increases by one at the prime numbers. Then,
obviously

∑

p<x

1

p
=

∫ x

e

1

t
dπ(t).
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Thus, Euler’s theorem already suggests that π(x) ∼ x/ log x, or equivalently

(0.5) π(x) ∼ x

log x
, as x→ ∞,

.
According to Gauss, in 1792, at the age of fifteen, he observed that the

density of primes behaves like 1/ logx. He does not mention Euler’s formula
and it seems his belief was supported by numerical evidences. He provides a
table where compares π(x) with the function Li(x) =

∫ x

2 dt/ log t which behaves
in the same way as x/ log x at infinity. Thus, he claims that

(0.6) π(x) ∼
∫ x

2

dt

log t
, x→ ∞,

The figures below show the graphs of the functions Li(x), π(x) and x/ log x.
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Figure 1: The graphs of Li(x), π(x) and x/ log x in the range x ∈ [2, 500].

Surprisingly enough, Gauss had not published these observations and re-
ports them only in a letter written in 1849. Meanwhile, in 1800 Legendre
published similar observations. The first substantial contribution to this con-
jecture is due to Chebyshev. In 1952 he proved that, if the quantity π(x) log x/x
converges as x goes to infinity, its limit must be one. However, Chebyshev was
not able to prove the convergence of this quotient. He established the limits

0.921
x

log x
≤ π(x) ≤ 1.106

x

log x
as x→ ∞.

Each one of limit relation (1.13) and (1.14) is called asymptotic law of prime
numbers distribution or, briefly, asymptotic law (Prime Number Theorem as
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Figure 2: The graphs of Li(x), π(x) and x/ log x in the range x ∈ [2, 10000].

well as Primzahlsatz are also used). The fact that these hold is the cele-
brated Prime Number Theorem which was finally proved independently by
J. Hadamard and J. de la Vallée Poissin in 1896. Their proofs were
published in [Hadamard 1896] and [de la Vallée Poussin 1896] and are based
on ideas of Riemann described his short but fascinating paper Ueber die
Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsb. der
Königl. Preuss. Akad. der Wissen. zu Berlin aus dem Jahr 1859 (1860),
671–680.

In E. Bombieri’s survey Problem of the Millenium: the Riemann
Hypothesis, this memoir is qualified as “epoch-making” as well as “really
astonishing for the novelty of ideas included”. M. Drmota in Sieben Mille-
niums-Probleme, Internat. Math. Nachr., 184 (2000) 29–36, characterizes it
as ”innovative for the analytic number theory” thus repeating Jörg Brüdern,
Primzahlverteilung, Vorlesung im Wintersemester 1991/92, Mathematisches
Institut Göttingen. These “estimates” and many similar ones confirm the words
of E. Titchmarsh from the beginning of Chapter X of his The theory of
Riemann zeta-function, Oxford 1951: “The memoir, in which Riemann
considered the zeta-function became famous thanks to the great number of
ideas included in it. Many of them has been worked afterwards, and some of
them are not exhausted even till now”.

Riemann’s memoir is devoted to the function π(x) and, according to him,
he takes as a starting point Euler’s observation that

(0.7)
∏ 1

1− 1

ps

=
∑ 1

ns
,

where p ranges over all prime numbers and n over all natural numbers. He
denotes by ζ(s) the function of the complex variable s, which these two expres-
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sions define when they converge. Obviously, the expression

(0.8) ζ(s) =
∞∑

n=1

1

ns

defines a holomorphic function of the complex variable s = σ + it provided
σ > 1. An easy computation leads to an integral representation of ζ(s) by
means of the function π(x). Indeed, from (0.7) it follows that ζ(s) 6= 0 in the
half-plane ℜs > 1 and

log ζ(s) = −
∑

p

log

(
1− 1

ps

)

= −
∞∑

n=2

{π(n)− π(n− 1)} log
(
1− 1

ns

)

= −
∞∑

n=2

π(n)

{
log

(
1− 1

ns

)
− log

(
1− 1

(n+ 1)s

)}

=

∞∑

n=2

π(n)

∫ n+1

n

s dx

x(xs − 1)
,

which implies

log ζ(s) = s

∫ ∞

2

π(x) dx

x(xs − 1)
, s = σ + it, σ > 1.

There is a much deeper formula expressing π(x) in terms of the so-called
nontrivial zeros of the meromorphic function, obtained by the analytical con-
tinuation of the function ζ(s) to the whole complex plane. The discovery of this
formula is one of the main achievements of Riemann included in his memoir.
There are many ways to prove that ζ(s) can be analytically continued to the
left of the line ℜs = 1. Here we sketch the idea of Riemann. It is based on
the equalities

∫ ∞

0

exp(−πn2x)xs/2−1 dx =
Γ(s/2)

πs/2ns
, s = σ + it, σ > 0, n = 1, 2, 3, . . . ,

which follow from the well-known integral representation of Γ(s) in the half-
plane σ > 0,

Γ(s) =

∫ ∞

0

xs−1 exp(−x) dx.

If σ > 1, then

(0.9) π−s/2Γ(s/2)ζ(s) =

∫ ∞

0

ψ(x)xs/2−1 dx,
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where

(0.10) ψ(x) =

∞∑

n=1

exp(−πn2x), x > 0.

Riemann establishes (0.9) by some properties of the Jacobi theta function.
Let

(0.11) θ(x) =

∞∑

n=−∞

exp(−πn2x), x > 0.

It follows from the inequalities exp(−πn2x) ≤ exp(−πnx), x > 0, n ∈ N, that
ψ(x) = O(exp(−πx)) when x→ ∞. Since θ(x) = 2ψ(x) + 1, then θ(x) = O(1)
when x→ ∞. Moreover, ψ(x) = (1/2)(θ(x)− 1) and the functional relation

(0.12) θ(x) = x−1/2θ(1/x)

imply that ψ(x) = O(x−1/2) when x → 0. Since σ > 1, the integral on the
right-hand side of (0.9) is absolutely convergent. The series which defines the
function (0.10) is uniformly convergent on every compact subset of (0,∞).
Hence,

∫ ∞

0

ψ(x)xs/2−1 dx =

∫ ∞

0

(
∞∑

n=1

exp(−πn2x)

)
xs/2−1 dx

=

∞∑

n=1

∫ ∞

0

exp(−πn2x)x−s/2−1 dx = π−s/2Γ(s/2)ζ(s).

Further, after some computations, using (0.9) and

2ψ(x) + 1 = x−1/2(2ψ(x−1) + 1),

Riemann obtained the representation

(0.13) π−s/2Γ(
s

2
)ζ(s) =

1

s(s− 1)
+

∫ ∞

1

ψ(x)(xs/2−1+x(1−s)/2−1) dx, ℜs > 1.

The latter integral is uniformly convergent on every compact subset of the
complex plane. This means that the left-hand side of (0.13) admits an analytic
continuation in the whole complex plane except for the points 0 and 1. The
origin is a pole of Γ(s/2), while 1 is a simple pole of ζ(s) with residuum equal to
one. Recall that the other poles of Γ(s/2) are at the points −2,−4,−6, . . . and
all they are simple. Equality (0.13) shows that all they are regular points for
the already continuous function ζ(s). More precisely, these points are simple
zeros of ζ(s) and they are called trivial zeros. Moreover, ζ(s) does not vanish
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at other points in the half-plane ℜs < 0. Since ζ(s) 6= 0 when ℜs > 1, all other
possible zeros of ζ(s) are in the closed strip 0 ≤ ℜs ≤ 1 called the critical strip.
The zeros of ζ(s) in the critical strip are called non-trivial.

The right-hand side of (0.13) does not change if we replace s by 1− s. This
leads immediately to the relation

(0.14) π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1− s),

usually referred as a functional equation for ζ(s).
Let us set s = 1/2 + iz and define the function ξ(z) by the equality

(0.15) ξ(z) = s(s− 1)π−s/2Γ(s/2)ζ(s).

It is clear that ξ(z) is an entire function. It takes real values for real z and

(0.16) ξ(z) = ξ(−z),

which means that the functional equation for ζ(s) is equivalent to the fact that
ξ(z) is an even function. Thus, if ρ is a zero of ξ(z), then −ρ, ρ, and −ρ are
also zeros of ξ(z). Furthurmore, it is clear that all the possible zeros of ξ(z)
are in the strip |ℑz| ≤ 1/2.

Observe that (0.13) and (0.15) imply

ξ(z) =
1

2
−
(
z2 +

1

4

)∫ ∞

1

ψ(x)x−3/4 cos
(z
2
log x

)
dx.

Integrating by parts and using the equality 4ψ′(1) + ψ(1) = −1/2, Riemann

obtained

(0.17) ξ(z) = 4

∫ ∞

1

{
x3/2ψ′(x)

}′

x−1/4 cos
(z
2
log x

)
dx.

In his memoir Riemann claimed that the function ζ(s) has infinitely many
zeros in the critical strip and that the following “explicit” formula

π(x) = Li(x) +
∑

ρ∈N ,ℑρ>0

(Li(xρ) + Li(x1−ρ))(0.18)

+

∫ ∞

x

dt

(t2 − 1) log t
− log 2, x ≥ 2.

holds for the function π(x), where Li is the integral logarithm and N is the set
of zeros of ζ(s) in the critical strip. The relation (0.18) was established formally
by H. von Mangoldt in 1895, in the paper Zu Riemann’s Abhandlung
‘Uber die Anzahl der Primzahlen unter einer gegebenen Grösse’, J.
Reine Angew. Math. 114 (1895), 255–305.
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Based on the last representation, Riemann made some comments which
are astonishing indeed. He claims that the number of zeros of ξ(z) whose real
parts lie between 0 and T is about

T

2π
log

T

2π
− T

2π

Then he writes: “One finds in fact about this many real roots within these
bounds and it is likely that all the roots are real. One would of course like
to have a rigorous proof of this, but I have put aside the search for a proof
after some fleeting vain attempts because it is not necessary for the immediate
objective of my investigation.”

Riemann’s conjecture, that all the zeros of the function ξ(z) are real, is
equivalent to the conjecture that all the non-trivial zeros of the function ζ(s)
are on the line ℜs = 1/2. The last one is called The Rieman’s Hypothesis. In
spite of the efforts made in the last 150 years, it is neither proved nor disproved
and is considered as the most important open problem in mathematics.

One of the important relations between the zeros of the Riemann zeta-
functions and The Prime Number Theorem is the fact that the latter is equiva-
lent to the fact that ζ(1+ it) 6= 0 for every real t 6= 0, i.e, that the zeta function
does not vanish on the boundary of the critical strip. This was realized by
J. Hadamard and J. de la Vallée Poissin and served as a basis in their
proofs of The Prime Number Theorem.
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Figure 3: The graphs of π(x) log x/x and π(x)/Li(x) in the range x ∈ [2, 10000].

The asymptotics of the function π∗(x) = π(x) − Li(x) as x→ ∞ is still an
open problem. Riemann’s explicit formula shows that its behaviour is strongly
connected with the zero-distribution of ζ(s) in the critical strip. Indeed, all
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the results known till now confirm that the asymptotics of the function π∗(x)
depends on the absence of zeros of ζ(s) in subregions of the critical strip. It
is quite evident from the above figures that Li(x) approximates π(x) better
than x/ log x. Moreover, it seems Li(x) > π(x), so one might believe that
this inequality holds for all positive values of x. In fact Riemann himself,
in his memoir, mentions that π(x) ∼ Li(x) up to terms of order x1/2 and
gives a value which is slightly too large. In Figure 3 we show the graphs
of the the functions π(x) log x/x and π(x)/Li(x) in the range x ∈ [2, 10000],
where Riemann’s observations is quite clear. This means that the function
π(x)/Li(x) approaches one from below. However, Littlewood proves in Sur la
distribution des nombres premiers, C. R. Acad. Sci. Paris 158 (1914),
341–356, that the inequality Li(x) > π(x) fails. In fact Littlewwod proves that,
for every ε > 0, there exist values of x for which π(x) > Li(x) + x(1/2)−ε.

In 1899 J. de la Vallée Pousin showed that ζ(s) has no zeros in the
region defined by the inequality σ > 1 − A(log(|t| + 2))−1 and as a corollary
he obtained that π∗(x) = O(x exp(−a(log x)1/2)) as x → ∞. In 1922 J.E.

Litlewood proved that ζ(s) 6= 0 if σ > 1 − A log(log t)(log t)−1, for every
t ≥ t0 > 0 and thus concluded that π∗(x) = O(x exp(−a(log x log log x)1/2))
(here and below A and a denote positive constants different in different cases).
A sharpening of Littlewood’s results is given in 1936 by N.G. Tchudakov.
He proved that ζ(s) 6= 0 when σ > 1 − A(log t)−3/4(log log t)−3/4, provided t
is sufficiently large, and this helped him to establish the limit relation π∗(x) =
O(x exp(−a(log x)−4/7(log log x)−3/7)).

In 1958 I.M. Vinogradov andN.M. Korobov proved independently that
ζ(s) 6= 0 when σ > 1− A(log(|t| + 3))−1/3(log log(|t| + 3))−2/3. A corollary of
this result is that

π∗(x) = O(x exp(−a(log x)3/5)(log log x)−1/5)

as x → ∞. It seems the last asymptotic estimate is the best one known till
now.

In 1901 H. von Koch proves that if Riemann’s hypothesis is true, then
π∗(x) = O(x1/2 log x) as x → ∞. Moreover, if π∗(x) = O(xθ+ε) for some
fixed θ ∈ [1/2, 1) and arbitrary positive ε when x → ∞, then ζ(s) 6= 0 for
σ > θ. Since log x = O(xε) for every positive ε when x → ∞, it follows that
the validity of the estimate π∗(x) = O(x1/2 log x), x → ∞ implies that the
Riemann hypothesis is true. In 1976 L. Schoenfeld [Schoenfeld 1976] gives a
quantitative version of von Koch’s result proving that the Riemann hypothesis
is equivalent to |π(x) − Li(x)| ≤ x1/2 log x/(8π) for x > 2. The figures below
illustrate the result of von Koch and Schoenfeld.

Observe on Figure 4 how sharp Shoenfeld’s estimate is.
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Figure 4: The graphs of Li(x) − π(x) and x1/2 log x/(8π) in the range x ∈
[2, 10000].
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Figure 5: The graph of (Li(x)− π(x))/(x1/2 log x) in the range x ∈ [2, 10000].

Back to Riemann’s paper, recall that (0.17) is equivalent to

ξ(z) = 2

∫ ∞

1

Ψ(x) cos((z/2) logx) dx,

where

(0.19) Ψ(x) = {3ψ′(x) + 2xψ′′(x)}x1/4.

Then the change of x by exp 2u,−∞ < u <∞, yields

(0.20) ξ(z) = 2

∫ ∞

0

Φ(u) cos zu du,
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where

(0.21) Φ(u) = 2Ψ(exp 2u) exp 2u, −∞ < u <∞,

that is,

(0.22) Φ(u) = 2
∞∑

n=1

(2π2n4 exp(9u/2)− 3πn2 exp(5u/2)) exp(−πn2 exp 2u).

It is not quite evident that the function Φ(u) is even, but this is really the fact.
Indeed, by (0.19), (0.21) and the relation x = exp 2u, we obtain

Φ(−u) = 2{3ψ′(x−1) + x−1ψ′′(x−1)}x−5/4.

Further, the relation 2ψ(x)+1 = x−1/2{2ψ(x−1)+1}, 0 < x <∞, implies that

2{3ψ′(x−1) + x−1ψ′′(x−1)}x−5/4 = 2{sψ′(x) + xψ′′(x)}x5/4, 0 < x <∞,

i.e. Φ(−u) = Φ(u), 0 < u <∞. Then (0.20) can be written as

(0.23) ξ(z) =

∫ ∞

−∞

Φ(u) exp(izu) du,

or, equivalently,

(0.24) ξ(z) =

∫ ∞

0

Φ(t) cos zt dt,

where the kernel Φ(t) is defined by (0.22).
It is know that infinitely many zeros of the function ζ(s) are located on the

critical line ℜs = 1/2 which is equivalent to the existing of infinitely many real
zeros of Rieman’s ξ-function. The first proof of this fact was given by H. G.

Hardy, Sur les zéros de la fonction ξ(s) de Riemann, C. R. 153 (1914),
1012-1014. The Riemann hypothesis remains the most famous open problem
in mathematics. However, the above considerations show that function ξ(z) is
an entire function which can be represented by either a Fourier transform or a
cosine transform of the kernel Φ(t), 0 ≤ t <∞. Then a natural approach to the
hypothesis is to establish criteria for an entire function, or more specifically, a
Fourier transform of a kernel, to possess only real zeros and to apply them to
the Riemann ξ function. There is no doubt this was the main reason that so
many celebrated mathematicians have been interested in the zero distribution
of entire functions and, in particular, of Fourier transforms. Among them are
such distinguished masters of the Classical Analysis as A. Hurwitz, J.L.W.

V. Jensen, G. Pólya, H.G. Hardy, E. Tichmarsh, W. de Bruin, N.

Obrechkoff, L. Tchakaloff etc.
The purpose of this paper is to survey some old and new results concerning

entire Fourier transforms with only real zeros .
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In Section 1, entitled “The Laguerre-Pólya class”, we recall some of the first
ideas of Laguerre who introduced the class of entire functions of order at most
two with only real zeros. A fundamental paper of Schur and Pólya, as well as
further contributions, are discussed.

The paper of J.L.W.V. Jensen Recherches sur la théorie des équa-
tions, Acta Math., 36 (1912/1913), 181-195 is discussed in Section 2 “Jensen’s
dream”. We point out his contributions on the topic, especially the polynomi-
als he introduced and bearing his name and the result where he reduces the
problem of reality of the zeros of Riemann’s ξ-function to the reality of zeros
of corresponding sequences of algebraic polynomials as well as the idea to look
for necessary and sufficient conditions on a kernel K(t), defined for t ∈ [0,∞)
in order that its cosine transform possesses only real zeros.

An essential part of this survey is Section 3 entitled “The great contrib-
utor” which aims to review some of Pólya’s papers published during the
period from 1918 to 1927. We begin the section with a discussion on the
paper Über die Nullstellen gewisser ganzer Funktionen, Math. Z., 2
(1918), 352–383. It is, in our opinion, the first systematic study on the distri-
bution of zeros of entire functions defined by finite Fourier transforms of the
form (1.13). The paper Über trigonometrische Integrale mit nur reellen
Nullstellen, J. r. angew. Math., 158 (1927), 6–16, is considered as contain-
ing the most remarkable Pólya’s results concerning zeros of entire functions
of the form (0.2). An extended review on his paper Über die algebraish-
funktionentheoretischen Untersuchungen von J.L.W.V Jensen, Kgl.
Danske Vid. Sel. Math.-Fys. Medd., 7 (17) 1927, 3-33, is included because
there Pólya provides comprehensive information about Jensen’s scientific her-
itage on this topic.

The paper of E.C. Titchmarsh, The zeros of certain integral func-
tions, Proc. London Math. Soc., 25 (1926), 283-302, is discussed in Section 4
“A knight of the classical analysis”. It is the first contribution where the zero
distribution of entire Laplace transforms of the form (1.16) is studied.

The paper The roots of trigonometric integrals, Duke Math. J., 17
(1950), 197-226 of N.G. de Bruin is considered in Section 5 “The Dutch
master”. There one finds all essential generalizations of well-known Pólya’s

examples of entire Fourier transforms with only real zeros.

In Section 6 “The Bulgarian trace”, we survey the most significant results
of investigations of at least three generations of Bulgarian mathematicians. We
discuss results of L. Tschakaloff, N. Obrechkoff, L. Ilieff and of their
students and successors. It would be not so magnified to say that all they gave
specific approaches to the zero distribution of entire Fourier transforms and,
thus, justifying the term Bulgarian School in this field.

In Section 7 “The Hawaii school and the Hungarian connection” we survey
some joint papers of George Csordas with his colleague Thomas Craven

as well as with Richard Varga and István Vincze.
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Some recent results on the theme are discussed in the last Section 8 “Vari-
ations on classical themes”.

Comments and references

1. Euler’s identity (0.7), considered by him only when s is a real number,
is equivalent to the Fundamental Theorem of Arithmetic which states that
if p1 < p2 < p3 < . . . are the prime numbers, then every natural number
n ≥ 2 has a unique representation of the form n = pα1

1 pα2

2 pα3

3 . . . pαk

k , where αj ,
1 ≤ j ≤ k, are nonnegative integers.

2. The complex function

θ(z, τ) =

∞∑

n=−∞

exp(iπn2τ + 2iπnz), z ∈ C, ℑτ > 0,

is one of the theta-functions introduced by C.G.J. Jacobi in his paper Fun-
damenta nova theoriae functionum ellipticarum, Regiomonty, Sumtibus
Fratorum Borntraeger, 1829. The function θ(0, τ) is holomorphic in the upper
half-plane and satisfies there the relations θ(0, τ+2) = θ(0, τ) and θ(0,−1/τ) =
(−iτ)1/2θ(0, τ), where (−iτ)1/2 := exp((1/2) log(−iτ)). We refer to Chapter
21 of the classical book of E. T. Whittaker and G. N. Watson, A Course
of Modern Analysis, Cambridge University Press, Cambridge, 1902, and to
p. 17 of Joseph Lehner’s, Discontinuous Groups and Automorphic
Functions, Amer. Math. Soc., Providence, Rhode Island, 1964, where the
function θ(z, τ) is denoted by θ3(z|τ) and θ3(0|τ) is denoted by θ3(τ). It is
clear that the function θ(x), defined by (0.11) is just θ(0, ix), x > 0. Then, the
second of the above relations yields that θ(x) = x−1/2θ(1/x). A proof of the
last equality can be found also in H. Davenport, Multiplicative Number
Theory, Markham Publishing Company, Chicago, 1967.

3. The series on the right-hand sides of the equalities

η(s) =

∞∑

n=1

(−1)n

ns
, L(s) =

∞∑

n=0

(−1)n

(2n+ 1)s
,

as Dirichlet series are uniformly convergent on every compact subset of the
half-plane ℜs > 0. The holomorphic functions defined by them satisfy the
functional equations

(2s−1 − 1)η(1− s) = −(2s − 1)π−s cos
πs

2
Γ(s)η(s)

and
L(1− s) = 2sπ−s sin

πs

2
Γ(s)L(s).

The first of them is equivalent to the functional equation for ζ(s). The second
is contained in a paper of L. Euler published in 1749 and verified by him only
for some real values of s.
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In fact, the functions η(s) and L(s) are analytically continuable as entire
functions. Moreover, η(s) = (1−21−s)ζ(s) (see Chapter II, 2.2 in G.H. Hardy,
Divergent Series, Oxford Univ. Press, Oxford, 1949).

4. If 0 < x < 1, the li-function is defined by

li(x) =

∫ x

0

dt

log t
.

If x > 1, then

li(x) := lim
δ→+0

{∫ 1−δ

0

dt

log t
+

∫ x

1+δ

dt

log t

}
.

It is obvious then that, when x > 2, we have

li(x) = li(2) + Li(x).

It is well-known that

li(x) = γ + log(− log x) +

∞∑

n=1

(log x)n

n!n

for 0 < x < 1, where γ is Euler’s constant.
If z ∈ G = C \ {(−∞, 0] ∪ [1,∞)}, then by definition

li(z) =

∫ z

0

dw

logw

provided the path of integration is a rectifiable curve joining the points 0 and
z in G ∪ {0}. The equality

li(z) = γ + log(− log z) +

∞∑

n=1

(log z)n

n!n

holds for z ∈ G. It turns out that li(z) is a holomorphic extension of li(x),
0 < x < 1 in the region G.

1. The Laguerre-Pólya class

The first natural question which arises when one realizes the connection be-
tween the Riemann hypothesis and the representation of the ξ function as an
entire one, is to to characterize those functions whose zeros are all real. We
do not know if Laguerre was interested in the work of Riemann and his con-
jecture, but we certainly know that he was the first to study and obtain a
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representation in terms of Weierstrass infinite product of the entire func-
tions which are local uniform limits of sequences with either real zeros with
one and the same sign or of polynomials with real zeros only (see pp. 174–177
of Laguerre’s Oeuvres [Laguerre 1898]). Here, by local uniform convergence
we mean uniform convergence in every compact subset of C. G. Pólya, Über
die Annährung durch Polynome mit lauter reellen Wurzeln, Rend.
Circ. Math. Palermo, 36 (1913), 279-295, made the simple observation that
Laguerre’s representation remains true if we consider uniform convergence of
sequences of polynomials with real zeros in a fixed disk centered at the origin.
We refer to N. Obreshkoff, Zeros of polynomials, Bulgarian Academic
Monographs (7), Marin Drinov Academic Publishing House, Sofia, 2003, for
nice proofs of Laguerre’s theorems.

G. Pólya and J. Schur published the very comprehensive paper Über
zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gle-
ichungen, J. r. angew. Math., 144, 2 (1914), 89–113, where they offer their
own proofs and introduced a new terminology. Nowadays this terminology has
changed slightly and we use the contemporary one.

According to G. Pólya and J. Schur, an entire function is called of I-st
type if it is a uniform limit of real polynomials with only real zeros of one
and the same sign, and it is said to be of II-nd type if it is uniform limit of
real polynomials with only real zeros. Then, Laguerre’s theorems can be
formulated as follows:

The entire function f(z) is of I-st type if and only if

(1.1) f(z) = azm exp(µz)

ω∏

k=1

(
1− z

ak

)
, 0 ≤ ω ≤ ∞,

where a, µ ∈ R, m is a non-negative integer, ak ∈ R, ak 6= 0 have the same sign
and the series

∑ω
k=1 a

−1
k is convergent.

The entire function f(z) is of II-nd type if and only if

(1.2) f(z) = bzn exp(−λz2 + µz)

ω∏

k=1

(
1− z

bk

)
exp

(
z

bk

)
, 0 ≤ ω ≤ ∞,

where b, µ ∈ R, n is a non-negative integer, λ ≥ 0, bk ∈ R, bk 6= 0, and the
series

∑ω
k=1 b

−2
k is convergent.

When ω = 0, then the products on the right-hand sides of (1.1) and (1.2)
are assumed to be equal to one.

Nowadays the functions of type II are said to belong to the Laguerre-Pólya
class and in this case we write f ∈ LP . Similarly, if either f(z) or f(−z) is of
type I, we write f ∈ LPI. In this paper we use an additional denotation. The
class of functions f ∈ LPI whose Maclaurin coefficients are all positive and its
zeros, except for the one at the origin, are negative, are denoted by f ∈ LPI+.
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Moreover, observe that if ω is a positive integer and the exponents do not
appear, the above functions reduce to polynomials. The polynomials p(z) with
real coefficients with only real zeros are called hyperbolic polynomials and we
write p ∈ H if it is so. Similarly, if p(z) has positive coefficients and only real
negative zeros, we denote this fact by p ∈ H+.

We point out that the above results of Laguerre say that LP and LPI+
are complements, in the sense of the local uniform convergence of H and H+,
respectively.

Pólya and Schur provided the following important criterion for a con-
vergent power series to define an entire function of I-st or of II-nd type (see
[Pólya Schur 1914, p. 110]):

A power series

(1.3) f(z) = γ0 +
γ1
1!
z +

γ2
2!
z2 + . . .

is an entire function of II-nd, respectively I-st type, if and only if the algebraic
equations

(1.4) γ0z
n +

(
n

1

)
γ1z

n−1 +

(
n

2

)
γ2z

n−2 + · · ·+ γn = 0, n = 0, 1, 2, . . .

have only real zeros respectively only real zeros with one and the same sign.
It is worth mentioning that this result was established by Jensen and we

shall discuss this in the section devoted to his work.
Pólya and Schur defined two types of sequences and established their tight

relation to the above classes of entire functions. A sequence of real numbers
{γk}∞k=0 is called by a multiplier sequence of I-st (II-nd) type if, for every
polynomial

∑n
k=0 akz

k, which belongs to H (H+), the composite polynomial∑n
k=0 γkakz

k is hyperbolic. They proved the following result:
The sequence {γk}∞k=0 is of I-st (II-nd) type if and only if the entire function

(1.3) is of I-st (II-nd) type.
They called this an transcendental criterion for a sequence of real number

to be of I-st (II-nd) type. Another criterion, called algebraic, is an immediate
corollary of the transcendental one:

The sequence {γk}∞k=0 is of I-st (II-nd) type if and only if the polynomials
on the left-hand sides of the equations (1.4) are of I-st (II-nd) type.

As we shall see, this latter result was proved first by Jensen. Observe that,
in the contemporary terms, a polynomial p(z) is of second type if and only if
it is hyperbolic while it is if the first type if either p(z) or ±p(−z) belongs to
H+.

On p. 90 of [Pólya Schur 1914] the authors point out that the first examples
of multiplier sequences are due to E. Laguerre (Oeuvres, I, 31-35, 199-206).
More precisely, the sequences

1,
1

ω
,

1

ω(ω + 1)
,

1

ω(ω + 1)(ω + 2)
, . . . , ω > 0,
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1, q, q4, q9, . . . , |q| ≤ 1,

are of I-st type, while

cosλ, cos(λ+ θ), cos(λ+ 2θ), . . . , λ, θ ∈ R

is of II-nd type.

It is obvious that each sequence of I-st type is also of II-nd type, but the
converse is not true. Indeed, as it is noted on the same p. 90, if θ is not an
integral multiple of π, then the third of the above sequences is not of I-st type.

Despite that the main objective of this paper is to survey results on functions
in the subclass of LP which are Fourier transforms of certain kernels, we shall
recall briefly some other contributions which provide general necessary and/or
sufficient conditions for a function to belong to the Laguerre-Pólya class. Let
us begin with the simplest necessary conditions. Suppose the entire function
(1.3) is in the LP class. This means that the sequence {γk}∞k=0 is either of I-st
or of II-nd type. Since the polynomial xk−1 + 2xk + xk+1, k = 1, 2, 3, . . . has
only real roots and its non-zero root is negative, the polynomial γk−1x

k−1 +
2γkx

k + γk+1x
k+1 has only real zeros for every k ∈ N. Hence,

(1.5) γ2k ≥ γk−1γk+1, k = 1, 2, 3, . . .

Thus, A necessary condition that the power series (1.3) to defines an entire
function belonging to the class LP is that the inequalities (1.5) hold.

These inequalities are usually called the Turán inequalities though they
appear first in [Pólya Schur 1914]. We shall discuss later the contributions of
Turán, Szegő and Pólya as well as the history of the Turán inequalities for the
coefficients of the Riemann ξ function.

Laguerre proved that if the entire function (1.3) is in LPI, then the
inequality

(1.6) (f (n)(x))2 ≥ f (n−1)(x)fn+1(x), x ∈ R

holds for every n ∈ N. It is clear that (1.6) reduces to (1.5) if we set x = 0,
that is, for entire functions of the class LPI, Turán’s inequality (1.5) is a
consequence of Laguerre’s inequality (1.6).

It is proved in the paper of J.L.W.V. Jensen, Recherches sur la théorie
des équations, Acta Math., 36 (1912/1913), 181–195, that if f ∈ LP , then

(1.7)

2m∑

j=0

(−1)j+m

(
2m

j

)
f (j)(x)f (2m−j)(x) ≥ 0, x ∈ R.

Jensen’s result was rediscovered and extended by Patrik, Extension of in-
equalities of the Laguerre and Turán type, Pacific J. Math. 44 (1973),
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675–682, who proved that that if f ∈ LP , then the inequality of Laguerre
type

2k∑

j=0

(−1)j+k

(2k)!
f (n+j)(x)f (n+2k−j)(x) ≥ 0

holds for x ∈ R, n ≥ 1 and k ≥ 1. An immediate corollary is an inequal-
ity of Pólya-Schur type for each system of real functions having generating
function in the LP class. However, it is worth mentioning that the above in-
equalities of Jensen and Patrik follow immediately from some nice results for
hyperbolic polynomials, obtained by G. Nikolov and R. Uluchev in their paper
[Nikolov Uluchev 2004]. They prove that, if f(x) is a hyperbolic polynomial of
degree n and 0 ≤ 2m ≤ n, then

(1.8)

2m∑

j=0

(−1)j+m

(
2m

j

)
(n− j)!(n− 2m− j)!

(n−m)!(n− 2m)!
f (j)(x)f (2m−j)(x) ≥ 0

for every x ∈ R. It is easily seen that if we let n to go to infinity in (1.8) we ob-
tain Jensen’s inequalities (1.7). Nikolov and Uluchev provide two independent
proofs of (1.8). The second one is based on an interesting result of Obrechkoff,
obtained in his last published paper [Obrechkoff 1963]. If f1(z) is a polynomial
of degree p and f2(z) is a polynomial of degree q and m is a natural number
not exceeding p and q, Obrechkoff considers the polynomial

gm(z) =

m∑

j=0

(−1)j
(
p− j

m− j

)(
q −m+ j

j

)
f
(j)
1 (z)f

(m−j)
2 (z)

Though the degree of gm(z) it seems to be p + q − m, it does not exceed
p + q − 2m. The Obrechkoff’s result states that if the zeros of f1(z) belong
to the circular domain K1 and those of f2(z) are in the circular domain K2,
where K1 and K2 do not have common points, then the polynomial gm(z) has
exactly p−m zeros on in K1, exactly q−m zeros in K2, and there are no zeros
of gm(z) outside K1 and K2.

An interesting result is given in the paper ofThomas Craven andGeorge

Csordas, Jensen polynomials and the Turán and Laguerre inequali-
ties, Pacific J. Math. 136, No 2 (1989) 241–260. Let

(1.9) f(z) =

∞∑

k=0

γk
k!
zk,

be a real entire function. Denote by gn,p(z), n, p = 0, 1, 2, . . . the Jensen

polynomials of the p-th derivative of f(z),

gn,p(z) = gn,p(f ; z) =
n∑

k=0

(
n

k

)
γp+kz

k.
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It is clear that gn,p(f ; z) = gn,0(f
(p); z). Then the authors prove:

Theorem 2.3 Suppose that γk > 0, k = 0, 1, 2, . . . . Then the following are
equivalent:

(1.10) Tk := γ2k − γk−1γk+1 ≥ 0

for k = 1, 2, 3, . . . ,

(1.11) ∆n,p(t) := g2n,p(t)− gn−1,p(t)gn+1,p(t) ≥ 0

for all t ≥ 0 and n = 1, 2, 3 . . . , p = 0, 1, 2, . . . ,

(1.12) Lp(f(t)) := (f (p+1)(t))2 − f (p)(t)f (p+2)(t) ≥ 0

for all t ≥ 0 and p = 0, 1, 2, . . .
The following necessary and sufficient conditions the real entire function

(1.9) to be in the Laguerre-Pólya class are established in Theorem 2.7 of
[Craven Csordas 1989]: If γ0 6= 0 and γk−1γk+1 < 0 whenever γk = 0, k ∈ N,
then f ∈ LP if and only if ∆n(t) := ∆n,0(t) > 0 for t ∈ R \ {0} and n ∈ N.

An important characterization of the functions in the Laguerre-Pólya class
LP+ is a result due to Aisen, Edrei, Schoenberg and Witney. Recall that a
matrix is said to be totally positive if all its minors are nonnegative. The main
result in [Aissen Edrei Schoenberg Whitney 1951] reads as follows:

Let the series

ϕ(z) =
∞∑

k=0

akz
k, ak ≥ 0,

represents an entire function. Then it has only real zeros if and only if the
infinite upper triangular matrix




a0 a1 a2 · · · an
. . .

a0 a1 · · · an−1
. . .

a0 · · · . . .

. . .
...

0 a0
. . .

. . .




is totaly positive.
Briefly, ϕ ∈ LPI+ if and only if the matrix is totally positive.
Now, it is evident that the truth of the Riemann Hypothesis is equivalent

to the statement that either the entire function ξ(z), defined by (0.24) is in the
class LP , or the entire function ξ(z1/2) is in LPI. That is why, there was a
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strong hope that a proper characterization of the functions in the Laguerre-

Pólya class would lead to a proof of Riemann’s Hypothesis. Despite that
many important and nice necessary and/or sufficient conditions for a function
to belong to LP were obtained, the results turned out to be so involved that
it was impossible to apply them to Riemann’s ξ-function. Thus, the great
expectations were not justified and the research on this interesting topic was
slowly abandoned around the middle of the last century.

Recall that

Fa,b(K; z) =

∫ b

a

K(t) exp izt dt, −∞ ≤ a < b ≤ ∞,

E(K; z) =

∫ ∞

−∞

K(t) exp izt dt,

U(K; z) =

∫ ∞

0

K(t) cos zt dt

and

V(K; z) =

∫ ∞

0

K(t) sin zt dt,

If−∞ < a < b <∞, then setting t −→ t+ (a+ b)/2, we obtain Fa,b(K; z) =
exp(i(a+ b)zt/2)Eσ(κ; z), where σ = (b − a)/2, κ(t) = K(t+ (a+ b)/2) and

(1.13) Eσ(κ; z) = F−σ,σ(κ; t) =

∫ σ

−σ

κ(t) exp(izt) dt

Particular cases of (1.13) are

(1.14) Uσ(κ; z) =

∫ σ

0

κ(t) cos zt dt

and

(1.15) Vσ(κ; z) =

∫ σ

0

κ(t) sin zt dt

corresponding again to the cases when κ(t) is either even or odd in (−σ, σ).
Another straightforward observation is that the study of zero-distribution

of the entire functions of the form

Fa,∞(K; z) =

∫ ∞

a

K(t) exp(izt) dt, −∞ < a <∞

and

F−∞,b(K; z) =

∫ b

−∞

K(t) exp(izt) dt, −∞ < b <∞
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can be reduced, by a simple linear changes of the variables t and z to that of
the entire functions of the form

F0,∞(κ; z) =

∫ ∞

0

κ(t) exp(izt) dt.

Another object of this survey, closely related to the principal one, is the
zero distribution of entire functions defined by Laplace-type transforms of
the form

(1.16) La,b(K; z) =

∫ b

a

K(t) exp zt dt, −∞ ≤ a < b ≤ ∞.

Since Fa,b(K; z) = La,b(K; iz), then any information about the zeros of a
function of the form (1.16) can be carried immediately to a result about the
zeros of the corresponding function of the form (0.1). Of course, the study of the
entire functions (1.16) offers some technical advantages, while the investigation
of the location of the zeros of the entire functions (0.1) requires rather specific
tools. Again, if −∞ < a < b < ∞, a linear change of the variable t reduces
the study of zero distribution of the entire function (1.16) to that of the entire
function Lσ(κ; z) = L0,σ(κ; z), 0 < σ <∞.

Another approach to the zero distribution of entire Fourier transforms,
that would have helped attackingRieman’s hypothesis, arose in the twenties of
the last century and it is exactly the idea for looking for necessary and sufficient
conditions for a Fourier transform of a kernel to belong to LP . Though this
idea is rather clear, it seems that the first who emphasized the importance
of this problem was G. Pólya. His short paper On the zeros of certain
trigonometric integrals, J. London Math. Soc, 1(1926), 98–99, begins as
follows:

“What properties of the Function F (u) are sufficient to secure that the
integral

(1) 2

∫ ∞

0

F (u) cos zu du = G(z)

has only real zeros? The origin of this rather artificial question is the Riemann
hypothesis concerning the Zeta-function. If we put

(2) F (u) =

∞∑

n=1

(4π2n4e
9

2
u − 6πn2e

5

2
u)e−πn2e2u ,

G(z) becomes Riemann’s function ξ(z)”.
We hasten to remark that Φ(t) = 2F (t), where Φ(t) is defined by (0.24)

and F (t) is given in (2).
G. Pólya, as well as many other mathematicians, provided such sufficient

conditions. Unfortunately, the problem of verifying these conditions for the
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function Φ(t) remained intractable. Nevertheless, there are many interesting
and challenging problems concerning zeros of Fourier transforms, so that the
interest on the topic has revived and there are various recent publications on
the topic.

Comments and references

Nowadays it becomes customary the inequalities (1.5) as well as their nu-
merous generalizations and extensions to be called Turán’s inequalities as well
as inequalities of Turán type. Nevertheless, it seems that they appear still in
the work of Newton and have been obtained in different ways for hyperbolic
polynomials and entire functions in LP by many mathematicians. For exam-
ple, they follow immediately from Laguerre’s inequalities and appear in an
explicit form in the the paper of Pólya and Schur.

The inequalities

(1.17) (Pn(x))
2 ≥ Pn−1(x)Pn+1(x), −1 ≤ x ≤ 1, n = 1, 2, 3, . . . ,

where {Pn(x)}∞n=0 are Legendre’s polynomials, were established byP. Turán’s

somewhere in the middle of the forties of the twentieth century but he published
his proof later, in an appendix of his paper On the zeros of the polyno-
mials of Legendre, Čas. pest. mat. fys. 75 (1950), 112–122. The first
who called the attention to (1.17) was G. Szegő, On an inequality of P.
Turán concerning Legendre polynomials, Bul. Amer. Math. Soc. 54
(1948) 401–405. The third proof of this inequality, given is Szego’s paper, is
attributed to Pólya and is based on the generating function

exp(xz)J0(z
√
1− x2) =

∞∑

n=0

Pn(x)

n!
zn, −1 ≤ x ≤ 1, z ∈ C.

Since the entire function on the left is in LP , inequality (1.17) follows from the
fact that the Maclaurin coefficients γk of every entire function from LP satisfy
the Turán inequalities γ2k − γk−1γk+1 ≥ 0, k ∈ N. Analogues of (1.17) hold for
the ultraspherical, Laguerre and Hermite polynomials.

The method of generating functions for obtaining extensions of (1.17) was
applied in [Skowgard 1954] and [Dimitrov 1998].

2. Jensen’s dream

The paper of J.L.W.V. Jensen, Recherches sur la théorie des équations,
Acta Math. 36 (1912/1913), 181-195, contains the results he reported at The
Second Congress of Scandinavian Mathematicians, held in Kopenhagen in 1911.
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Jensen’s idea, proposed in this paper, is to reduce the study of zero distribu-
tion of an entire function to that of a sequence of polynomials generated by the
function itself.

Let

f(z) = a0 + a1z + a2z
2 + · · ·+ akz

k + . . .

be an entire function. Jensen introduced the polynomials

An(f ; z) = f(D)zn =

n∑

k=0

n(n− 1)(n− 2) . . . (n− k + 1)akz
n−k(2.1)

=

n∑

k=0

n!

(n− k)!
akz

n−k, n = 0, 1, 2, . . . ,

where

f(D) =

∞∑

k=0

akD
k

is the differential operator defined by the function f .
Nowadays the polynomials

(2.2) gn(f ; z) = znAn(f ; 1/z) =
n∑

k=0

n!

(n− k)!
akz

k, n = 0, 1, 2, . . .

are called the Jensen polynomials while An(f ; z) are called the Appell poly-
nomials, associated with the function f . Observe that, if

ϕ(z) =
∞∑

j=0

γj
zj

j!
,

then

gn(ϕ; z) =

n∑

k=0

(
n

j

)
γj z

j

and

An(ϕ; z) =

n∑

k=0

(
n

j

)
γj z

n−j.

Very important sequences of polynomials are the generalized, or shifted, Jensen
and Appell polynomials and we define them here though Jensen himself does
not do it in his paper. If ϕ is defined as above and n, k ∈ N, then

gn,k(ϕ; z) =
n∑

k=0

(
n

j

)
γk+j z

j
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and

An,k(ϕ; z) =

n∑

k=0

(
n

j

)
γk+j z

n−j.

As Jensen points out, it is an easy exercise on the basis of Cauchy’s inequal-
ities for Taylor’s coefficients of a holomorphic function to prove that

(2.3) lim
n→∞

gn(f ; z/n) = f(z)

uniformly on every bounded subset of C.
Let νn be the number of the non-real zeros of gn(z). If νn ≤ ν, ν ∈ N0 when

n is sufficiently large, then (2.3) and a classical theorem due to A. Hurwitz

lead to the conclusion that f has at most ν non-real zeros. In particular, if
there is n0 ∈ N such that gn(z) have only real zeros for all n > n0, then f has
only real zeros.

An interesting property of Appell’s polynomials is the relation

(2.4) A′
n(f ; z) = nAn−1(f ; z), n = 1, 2, 3. . . . .

It is worth mentioning that the term Appell polynomials is used for sequences
of polynomials, such that the sequence is invariant under differentiation, that
is, when the polynomials satisfy A′

n(z) = CnAn−1(z), where Cn are nonzero
constants. Very important sequence of Appell polynomials are those composed
by the Hermite and Bernoulli polynomials.

Suppose that f is a real entire function, i.e. all the coefficients of the power
series in (2.1) are real. If An(f ; z) has only real zeros for some n ≥ 1, then (2.4)
and Rolle’s theorem yield that the same holds for the roots of polynomials
Ak(f ; z), k = 1, 2, 3, . . . , n − 1. Moreover, if the non-zero roots of An(f ; z)
are of one and the same sign, then the non-zero roots of all Ak(f ; z), k =
1, 2, 3, . . . , n− 1, are also of the same sign.

Further, the problem whether all Jensen’s polynomials of an entire func-
tion may have only real zeros is discussed. Before quoting the corresponding
assertion let us consider some examples:

1) Let P (z) =
∑n

k=0 akz
k be a real polynomial having only real zeros.

Then, by a Theorem of E. Malo, Note sur les équationes algébriques
dont touts les racines sont réelles, J. Math. Spec. 4 (1895), 7-10, the
polynomial

PM (z) =
n∑

k=0

ak
k!
zk

has only real zeros too. Thus, its reverse

P ∗
M (z) =

n∑

k=0

an−k

(n− k)!
zk
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is also hyperbolic. Applying Malo’s result to it, we conclude that the polyno-
mials

n∑

k=0

(
n

k

)
an−kz

k and

n∑

k=0

(
n

k

)
akz

k

possess only real zeros. Similar arguments, combining Malo’s result and Rolle’s
theorem to a hyperbolic polynomial P (z) or to its reverse polynomial, yield that
all Appell and Jensen polynomials associated with P (z) are also hyperbolic.

2) As we have already mentioned, if ϕ(z) is an entire function whose Maclau-
rin expansion is

(2.5) ϕ(z) =

∞∑

k=0

γk
k!
zk,

where and γk = f (k)(0), k = 0, 1, 2, . . . , then its Jensen polynomials are

(2.6) gn(f ; z) =
n∑

k=0

(
n

k

)
γkz

k, n = 0, 1, 2, . . . .

In particular, for the function f(z) = exp(µz), gn(f ; z) = (1 + µz)n and
An(f ; z) = (z + µ)n, n ∈ N0. Thus, if µ is a nonzero real number, then
all the Jensen and Appell polynomials of the function exp(µz) have only real
zeros.

3) Let now f(z) = exp(−λz2), λ ∈ R, then

gn(f ; z) = n!

[n/2]∑

k=0

(−1)kλkz2k

k!(n− 2k)!
= n!λn/2

[n/2]∑

k=0

(−1)k(λ−1/2z)n−2k

k!(n− 2k)!
.

If Hn(z) is the n-th Hermite polynomial (see (5.5.4) in G. Szegő’s clas-
sical book [Szegő 1975], then

Hn(z) = n!

[n/2]∑

k=0

(−1)k(2z)n−2k

k!(n− 2k)!
, n = 0, 1, 2, . . . .

Hence, gn(f ; z) = λn/2Hn(λ
−1/2z/2) for every n ∈ N. It is clear that if λ

is positive, then gn(f ; z) has only real zeros for every n = 1, 2, 3, . . . . If λ is
negative, then λ−1/2 = i(−λ)−1/2, hence, g2n(f ; z) has no real zero for every
n ∈ N and the only real zero of g2n+1(f ; z), n ∈ N0 is at the origin.

4). The Bessel function of the first kind Jα(z) with parameter α > −1
has the series expansion

(2.7) Jα(z) =
(z
2

)α ∞∑

k=0

(−1)k
(
z
2

)2k

k!Γ(k + α+ 1)
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in the region C \ (−∞, 0)]. Therefore, the series

Bα(z) = z−α/2Jα(2z
1/2) =

∞∑

k=0

(−1)kzk

k!Γ(k + α+ 1)

represents an entire function. Then

gn(Bα; z) =
n∑

k=0

(−1)kn(n− 1)(n− 2) . . . (n− k + 1)zk

k!Γ(k + α+ 1)

=
Γ(n+ 1)

Γ(n+ α+ 1)

n∑

k=0

(−1k)Γ(n+ α+ 1)zk

k!(n− k)!Γ(k + α+ 1)

=
Γ(n+ 1)

Γ(n+ α+ 1)

n∑

k=0

(−1)k

k!

(
n+ α

n− k

)
zk,

that is,

gn(Bα; z) =
Γ(n+ 1)

Γ(n+ α+ 1)
L(α)
n (z), n = 0, 1, 2, . . . ,

where {Lα
n(z)}∞n=0 are Laguerre’s polynomials (see (5.1.6) in G. Szegö’s

book). These polynomials have only real and positive zeros provided α >
−1 and the same holds for the polynomials gn(Bα; z), n = 0, 1, 2, . . . . Since
limn→∞ gn(Bα; z/n) = Bα(z) uniformly on every compact subset of C, then
Bα(z) has also only real and positive zeros. As a corollary we obtain the well-
known fact that the Bessel function Jα(z) has only real zeros when α > −1.

On page 187 of the paper Jensen formulates a statement which he called
the “théorème fondamental”, which says:

A real entire function F (z) of order less than two has at most 2ν non-real
zeros if and only if the same holds for the polynomials F (D)zp, p = 1, 2, 3, . . . .

Further, as an application of his fundamental theorem, Jensen proved a
generalization of a classical composition theorem due to Schur and Malo.
See the above observations concerning their results about polynomials. Jensen
showed that if F (z) and G(z) are real entire functions of order less than two
and such that F (z) has only real zeros and either G(z) or G(−z) has only real
and positive zeros, then the entire function

∞∑

n=0

F (n)(0)

n!

G(n)(0)

n!
zn

has only real zeros.
In the short preface of the paper Jensen promises to publish five memoirs

containing the results of his studies in “région intermédiair” of complex analysis
and algebra. The titles of these memoirs were found in the written heritage of
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Jensen and the last one was supposed to be “V. Sur une classe de fonctions de
genre un et en particuller sur une fonction de Riemann”. Unfortunately, they
have never been published. However, on pages 188 and 189 of [Jensen 1912]
the author provides a kind of a summary of the memoir he had planned. The
fifth part was supposed to deal with entire functions of the form

(2.8) F (z) =

∫ ∞

0

Ψ(t) cos zt dt

where the function Ψ is assumed to be in the the space C∞ and, moreover, that
for every ν = 0, 1, 2, . . . , limt→∞ Ψ(ν)(t) cos zt = 0 uniformly with respect to
z on every bounded subset of C. As Jensen pointed out, the importance of
this class is due to the fact that Rieman’s ξ-function has a representation of
the form (2.9). Applying his fundamental theorem to the entire function (2.9),
Jensen obtained the following result:

The entire function F (z) has only real zeros if and only if the polynomials

F (D)zp =

∫ ∞

0

Ψ(t)

[p/2]∑

ν=0

(−1)ν
(
p

2ν

)
zp−2νt2ν dt

=
1

2

∫ ∞

0

Ψ(t){(z + it)p + (z − it)p} dt, p = 1, 2, 3, . . .

have only real zeros.
It seems that the above result was the reason Jensen to wrote that he

reduced ”le problème de Riemann de transcendant qu’il était à un probléme
algébrique”.

At the end of the first part of [Jensen 1912], the author formulates a propo-
sition which can be regarded as a composition theorem:

Suppose that F (z) = a0 + a1z+ a2z
2 + . . . is a real entire function of order

less than two and having 2ν non real zeros, H(z) is a real entire function of
order less than two, having q real and positive zeros, K(z) is a real entire
function of order less than one having only real and negative zeros. Then the
entire function

a0H(0) + a1
H(1)

K(0)
z + a2

H(2)

K(0)K(1)
z2 + a3

H(3)

K(0)K(1)K(2)
z3 + . . .

has 2ν + q non-real zeros.
In the second part of his paper Jensen givee necessary and sufficient con-

ditions for a real entire function F (z) of order not greater than one to have
only real zeros. For such a function he uses the Weierstrass representation

F (z) = zµ exp(c0 + c1z)
∏

α

(
1− z

α

)
exp

( z
α

)
,
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where µ is a nonnegative integer and c0, c1 are real numbers. Since F is real,
|F (x+ iy)|2 = F (x+ iy)F (x+ iy) = F (x+ iy)F (x− iy) is an even function of
y. Let

∑∞

k=0A2ky
2k be the series expansion of |F (x+ iy)|2 as a function of y.

Then

(2.9) (2k)!A2k =

(
2k

k

)
(F (k)(x))2 + 2

k∑

ν=1

(−1)νF (k−ν)(x)F (k+ν)(x).

The first conclusion which Jensen makes is that the assumption that F (z) has
only real zeros implies that A2k, k ∈ N0, considered as functions of x, must
be nonnegative for each x ∈ R. He proves that the converse is also true, i.e.
the non-negativity of A2k, k ∈ N0, is sufficient to secure that F (z) possesses
only real zeros and this is his first result for the class of real entire functions of
order not greater that one. But as Jensen notes “these necessary and sufficient
conditions, obtained in such simple manner, are often rather difficult to apply
in practice”. That is why, he replaces the infinitely many conditions A2k ≥ 0,
k ∈ N0 by a single one, which reads as

(2.10)
∂2

∂y2
|F (x+ iy)|2 ≥ 0, x, y ∈ R

and this is the second of his results concerning the class of entire functions he
considers.

In a footnote on p. 191, it is pointed out that, as a corollary of (2.8) and
the assumption that F (z) has only real zeros, it follows that the inequality
(F ′(x))2 − F (x)F ′′(x) ≥ 0 holds for each x ∈ R, which is a well-known result
of Laguerre.

Comments and references

1. The operator of differentiation is used in the study of zero distribution of
algebraic polynomials long before Jensen, e.g. by Rolle, Gauss, Hermite,

Poulin and Laguerre. But it is really an idea of Jensen to use it for defining
the polynomials bearing now his name. Most probably Pólya and Schur were
not familiar with Jensen’s paper when writing [Pólya Schur 1914]. If they
were, they would certainly had formulated their criterion in terms of Jensen
polynomials.

2. One of the versions of the theorem of J. Schur and Malo says that if∑n
k=0 akz

k is a hyperbolic polynomial, then the same hold for the polynomial∑n
k=0 akz

k/k! and this was used to prove that (2.6) has also only real zeros.
Proofs of the theorems of Schur and Malo can be found on pages 146 and
147 in N. Obrechkoff’s book Zeros of Polynomials, Bulgarian Academic
Monographs (7), Marin Drinov Academic Publishing House, Sofia (2003).
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3. The great contributor

There is no doubt that G. Pólya is the mathematician with the most contri-
bution to the systematic study of the distribution of the zeros of entire Fourier
transforms. One of his early papers on the subject is Über die Nullstellen
gewisser ganzer Funktionen, Math. Z. 2(1918), 352–383, where the author
studies the zero distribution of the entire functions

(3.1) U(f ; z) =

∫ 1

0

f(t) cos zt dt

and

(3.2) V (f ; z) =

∫ 1

0

f(t) sin zt dt.

Observe that all cosine and sine transforms of the form (1.14) and (1.15), with
0 < σ < ∞, can be reduced, by a simple change of the variables t and z to
the latter ones. In the preface Pólya provides the following examples of entire
functions having integral representations of the form (3.1) and (3.2) with only
real zeros:

(3.3)
2

π

∫ 1

0

cos zt√
1− t2

dt = J0(z),

(3.4)

∫ 1

0

t sin zt dt =
cos z

z2
(tan z − z)

and

(3.5)
2

π

∫ 1

0

t sin zt√
1− t2

dt = J1(z),

where Jν(z) denotes, as usual, the Bessel function of order ν. It is pointed
out that each of the intervals ((2k− 1)π/2, kπ), k = 1, 2, 3, . . . contains exactly
one zero of (3.3), while the intervals (kπ, (2k + 1)π/2), k = 1, 2, 3, . . . contain
only one zero of (3.4) each. The author is motivated by these facts to develop
methods for studying kernels f(t), such that the entire functions (3.1) and (3.2)
possess only real zeros and shows that the regular distribution of the positive
zeros of the entire functions (3.3) and (3.4) is typical for the real positive zeros
of a wide class of functions of the form (3.1) and (3.2).

The first author’s approach is described in the first three sections of the
paper under consideration. The idea is very nice and very clear and we shall
describe it briefly. It is based on an approximation of the above integrals by
quadrature formulae and on two classical results. The first one, the so-called
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Eneström-Kakeya theorem, concerns zeros of polynomials. It was proved
first by Eneström, Härledning af en allmän formel för antalet pen-
sionärer, som vid en godtycklig tidpunkt förefinnas inom en sluten
pensionskassa, Öfversigt af Svenska Vetenskaps-Akademiens Förhandlingar,
(Stockholm) 50 (1893), 405–415, and rediscovered by S. Kakeya, On the
limits of the roots of an algebraic equation with positive coefficients,
The Tôhoku Math. J. 2 (1912), 140–142, and states that if {ak}nk=0 are real
numbers with 0 < a0 < a1 < a2 < · · · < an, then the zeros of the polynomial

(3.6) p(z) =

n∑

k=0

akz
k

are in the unit disk D = {z : |z| < 1}.
The second result is the trigonometric version of the Hermite-Biehler

theorem. It states that if the zeros of the algebraic polynomial with complex
coefficients

p(z) =

n∑

k=0

akz
k

belong to D and if we set z = cos θ + i sin θ and separate the real and the
imaginary parts, f(z) = A(θ) + iB(θ), then the trigonometric polynomials
A(θ) and B(θ) have only real zeros and they interlace.

These two results already imply that when the coefficients of the trigono-
metric polynomials

A(θ) =
n∑

k=0

ak cos kθ and B(θ) =
n∑

k=1

ak sinkθ

are real and form an increasing sequence, then their zeros are real and interlace.
Then one approximates the integrals defined by (3.1) and (3.2) by a Riemann
sum, which may a considered as a quadrature formula, to obtain

∫ 1

0

f(t) cos zt dt ≈ 1

n+ 1

n∑

k=0

f(k/(n+ 1)) cos(kz/(n+ 1))

and ∫ 1

0

f(t) sin zt dt ≈ 1

n+ 1

n∑

k=1

f(k/(n+ 1)) sin(kz/(n+ 1)).

The functions on the right-hand sides of the latter formulae converge locally
uniformly to the corresponding integrals. They have only real zeros if and only
if the trigonometric polynomials

Cn(θ) =
n∑

k=0

f(k/(n+ 1)) cos kz and Sn(θ) =
n∑

k=1

f(k/(n+ 1)) sin kz
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do and this holds by the previous observations if f(t) is an increasing function
in [0, 1]. Then, the Hurwitz theorem for the zeros of local uniform limits of
entire functions guarantees that the functions U(f, z) and V (f, z) have only
real and interlacing zeros. We illustrate this nice idea with a simple example.
If f(t) = 1/

√
1− t2, then

(3.7)
2

π

∫ 1

0

cos zt√
1− t2

dt = J0(z).

and
2

π

∫ 1

0

sin zt√
1− t2

dt = H0(z).

where J0(z) and H0(z) are the Bessel and the Struve functions. We demon-
strate how the idea goes, considering the corresponding steps, constructing the
complex polynomials, the trigonometric ones and their zeros. Despite that the
function f(t) is not defined at t = 1, it is integrable and we can apply the above
scheme. Having in mind that we divide the interval into n+1 subintervals and
consider proper Riemann sums to approximate the integral, we consider the
polynomial

p(z) =

n∑

k=0

f(k/(n+ 1)) zk =

n∑

k=0

n+ 1√
(n+ 1)2 − k2

zk.

By the Eneström-Kakeya theorem its zeros are in D and this can be seen
in the figure. In fact, the zeros are rather regularly distributed.

Then the trigonometric polynomials

Cn(θ) =

n∑

k=0

n+ 1√
(n+ 1)2 − k2

cos kz and Sn(θ) =

n∑

k=1

n+ 1√
(n+ 1)2 − k2

sinkz

have only real and interlacing zeros.

Thus, the zeros of the Bessel function J0(z) and the Struve functions H0(z)
have only real and interlacing zeros and it is quite clear from their graphs shown
on Figure 8.

Now we are back to Pólya’s paper. In order to formulate and prove the
main result of Section 1, entitled Analogon des Kakeyaschen Satzes, he
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Figure 6: The zeros of p(z) for n = 20.

introduces the class P [0,1) of real functions f(t) defined for t ∈ [0, 1) and such
that:

1. f(t) is positive, i.e. f(t) > 0 for every t ∈ [0, 1);
2. f(t) is increasing, i.e. if t′ < t′′ ∈ [0, 1), then f(t′) ≤ f(t′′);

3. There exists
∫ 1

0 f(t) dt := limδ→+0

∫ 1−δ

0 f(t) dt.
A function f ∈ P [0,1) is said to be in the exceptional case if f([0, 1)) is a

finite set and for each c in this set, f−1(c) is a subinterval of [0, 1) with rational
endpoints. In other words, f(t) is a step function with jumps at rational
points, or equivalently, a finite linear combination of characteristic functions of
subintervals of [0, 1) with rational endpoints. The function f ∈ P [0,1) is in the
general case, if it is not in the exceptional case.

The main result in Section 1 is the following assertion:
If the function f ∈ P [0,1) is in the general case, then all the zeros of the

entire function

(3.8) F (z) =

∫ 1

0

f(t) exp zt dt

are in the left half-plane. If f(t) is in the exceptional case, then the zeros of
(3.8) are in the closed left half-plane and, moreover, infinitely many of them are
on the imaginary axes. Conversely, if the function (3.8) has a pure imaginary
zero, then f(t) is in the exceptional case.

In Section 2, Trigonometrische Polynome mit nur reellen Null-
stellen, Pólya considers the trigonometric polynomials

(3.9) u(z) = a0 + a1 cos z + a2 cos 2z + · · ·+ an cosnz
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Figure 7: The graphs of Cn(θ) and Sn(θ) for n = 20.
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Figure 8: The graphs of J0(z) and H0(z).

and

(3.10) v(z) = a1 sin z + a2 sin 2z + · · ·+ an sinnz,

where {ak}nk=0 are real numbers, an > 0 and all the zeros of the polynomial
(3.6) are in the unit disk. Under these conditions he proves that the trigono-
metric polynomials λu(z)−µv(z) and µu(z)+λv(z) have only real, simple and
mutually interlacing zeros when λ, µ ∈ R and λ2 + µ2 6= 0. In particular, this
holds for u(z) and v(z). The proof is furnished by a classical method usually
called argument principle.

Section 3, entitled Trigonometrische Integrale mit nur reellen Null-
stellen is the central one in Pólya’s paper under consideration. The main
results concerning the entire functions U(f ; z) and V (f ; z) can be summarized
in the following assertion:
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If f ∈ P [0,1) is in the general case, then the functions U(f ; z) and V (f ; z)
or, more generally, the functions λU(f ; z)− µV (f ; z) and µU(f ; z) + λV (f ; z),
with λ, µ ∈ R, λ2 + µ2 6= 0, have only real, simple and mutually interlacing
zeros.

If f is in the exceptional case, then the functions U(f ; z) and V (f ; z) have
only real zeros, infinitely many of which are common. Each such zero is of
multiplicity two for V (f ; z) and a simple zero of U(f ; z). The last function has
no multiple zeros at all.

As Pólya points out, the assumption that the entire functions U(f ; z) and
V (f ; z) have a common real zero when f is in the general case, leads to a
contradiction since, if U(f ;x0) = V (f ;x0) = 0, then ix0 would be a zero of the
function (3.8) which is impossible.

Further, Pólya proves that the entire functions (3.1) and (3.2) obey the
inequality

(3.11) U(f ;x)V ′(f ;x)− U ′(f ;x)V (f ;x) > 0

for every x ∈ R when f ∈ P [0,1) is in the general case. Inequality (3.11) yields
both the absence of common zeros and the interlacing of the zeros of U(f ;x)
and V (f ;x). Indeed, an easy computation yields that

(λU(f ;x) − µV (f ;x))(µU ′(f ;x) + λV ′(f ;x))

−(λU ′(f ;x)− µV ′(f ;x))(µU(f ;x) + λV (f ;x))

= (λ2 + µ2)(U(f ;x)V ′(f ;x)− U ′(f ;x)V (f ;x)).

In Section 4, Nachträge und Beispiele zu 1, Pólya considers holomor-
phic functions of the form (3.7) or, more generally, of the form

(3.12)

∫ b

a

f(t) exp zt dt, −∞ ≤ a < b ≤ ∞.

assuming that the real function f is positive, continuous, piecewise differen-
tiable and its logarithmic derivative is limited as follows:

α ≤ −f
′(t)

f(t)
≤ β, −∞ ≤ α < β ≤ ∞.

Under these requirements, it is proved that:
If the logarithmic derivative of f is not identically constant, then all the

zeros of the function (3.12) are in the strip α < x < β, where x = ℜz.
In fact, a proof of the above assertion is given when −∞ < a < b <∞ and

−∞ < α < β <∞. Other cases are illustrated by means of suitable examples.
The entire function

∫ ∞

1

tz−1 exp(−t) dt =
∫ ∞

0

exp(− exp t) exp(zt) dt
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is of the above form with f(t) = exp(− exp t), so that (− log f(t))′ = − exp t,
that is α = 1 and β = ∞. Hence, by the latter result, its zeros are located
in the half-plane x > 1. Moreover, it is shown that the upper bound of the
real parts of its zeros is ∞. Next Pólya considers functions f(t), defined for
t ∈ (0, a) for which

γ = sup
t∈(0,a)

∣∣∣∣
f ′(t)

f(t)

∣∣∣∣ ,

exists and proves that:
If γ > 0, then the zeros of the entire function

Ua(F ; z) =

∫ a

0

f(t) cos zt dt

are in the strip −γ < y < γ.
In fact, this statement is a consequence of that for the functions of the form

(3.12). Indeed, setting f(−t) = f(t) for t ∈ (−a, 0), it follows immediately that

Ua(f ; iz) =
1

2

∫ a

−a

f(t) exp zt dt.

The example considered by Pólya is the function

(3.13)

∫ a

0

exp(−t) cos zt dt = exp(−a)(z sinaz − cos az) + 1

1 + z2
, z ∈ C \ {i,−i},

for which γ = 1. The zeros of this function are always in the strip −1 < y < 1.
It is pointed out that it has finitely many imaginary, i.e. non-real zeros and that,
in general, the absolute values of the imaginary parts of these zeros increase
when a increases and the zeros tend to the lines y = ±1 as a→ ∞.

In the case γ = 0, i.e. when f is a constant function, say f(t) = c, t ∈ (0, a),
the entire function ∫ a

0

c cos zt dt = c
sin az

z

has only real zeros.
The theorem in Section 5, entitled Über einen Satz von Hurwitz, is the

following:
Let f(t) be a real and even function defined and integrable in Riemann’s

sense (proper or improper) in (−1, 1), and let

(3.14) f(t) ∼ a0
2

+ a1 cosπt+ a2 cos 2πt+ . . . .

If (−1)kak > 0 for k = 0, 1, 2, . . . , then the entire function (3.1) has only real
and simple zeros. Moreover, each of the intervals

(3.15) . . . , (−2π,−π), (−π, 0), (0, π), (π, 2π), . . .
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contains exactly one of its zeros.
Since (3.13) is equivalent to

ak =

∫ 1

−1

f(t) cos kπt dt = 2U(f ; kπ), k = 0, 1, 2, . . . ,

it follows that

(3.16) (−1)k ak U(f ; kπ) > 0, k = 0, 1, 2, . . . .

Hence, the function (3.1) has at least one zero in each of the intervals
(3.15). As Pólya points out, Hurwitz’s proof that there is only one zero of
this function in each of these intervals is based on the representation of the
meromorphic function U(f ; z)/ sin z as a sum of elementary fractions

(3.17)
U(f ; z)

sin z
=
U(f ; 0)

z
+

∞∑

k=1

(−1)kU(f ; kπ)

(
1

z − kπ
+

1

z + kπ

)
,

z 6= kπ, k = 0,±1,±2, . . . .

Pólya proves the validity of (3.16) supposing that the integrals
∫ 1

0 f(t) dt

and
∫ 1

0 |f(t)| dt exist. He shows first that the series on the right-hand side of
(3.17) is uniformly convergent on every compact subset of C not containing any
of the points kπ, k ∈ Z and, afterwards, that the entire function

(3.18) ϕ(z) =
U(f ; z)

sin z
− U(f ; 0)

z
−

∞∑

k=1

2(−1)kU(f ; kπ)z

z2 − k2π2

is bounded in C. This leads to the conclusion that in fact the function ϕ(z) is
a constant. Since it is an odd function, it is identically zero.

Further, it is pointed out that (3.17) is equivalent to the equality

U(f ; z)

sin z
= lim

n→∞

n∑

k=−n

(−1)kU(f ; kπ)

z − kπ
,

which holds uniformly on every compact subset C which does not contain any
of the points kπ, k ∈ Z. Because of the inequalities (3.16), the rational function

Rn(z) =

n∑

k=−n

(−1)kU(f ; kπ)

z − kπ

has only real zeros and, moreover, each interval (kπ, (k + 1)π), k = −n,−n+
1, . . . ,−1, 0, 1 . . . , n−1 contains exactly one of its zeros. Hence, by the theorem
of Hurwitz, the meromorphic function U(f ; z)/ sin z has only real and simple
zeros and each interval (kπ, (k + 1)π), k ∈ Z, contains exactly one of its zeros.
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In Section 6, entitiled Die Trennung der Nullstellen, Hurwitz’s ap-
proach is applied to the entire functions U(f ; z) and V (f ; z). The first two of
the corresponding results are the following:

I. If f ∈ P [0,1), then the function U(f ; z) has only real zeros. More pre-
cisely, it has no zeros in the interval (0, π/2), but it has exactly one zeros in
each of the intervals ((2k − 1)π/2, (2k + 1)π/2), k = 1, 2, 3, . . . .

II. If f ∈ P [0,1) is in the general case, then the only zero of V (f ; z) in the
interval (−π, π) is at the origin, and the intervals (kπ, (k+1)π), k = 1, 2, 3, . . .
contain exactly one zero of V (f ; z).

The proofs are based on the expansions

U(f ; z)

z cos z
=

U(f ; 0)

z

+

∞∑

k=1

(−1)kU(f ; (2k−1)π
2 )

(2k − 1)π/2

(
1

z − (2k − 1)π/2
+

1

z + (2k − 1)π/2

)
,(3.19)

z 6= 0, (2k + 1)
π

2
, k = 0,±1,±2, . . .

and

(3.20)
V (f ; z)

z sin z
=
V ′(f ; 0)

z
+

∞∑

k=1

(−1)kV (f ; kπ)

kπ

(
1

z − kπ
+

1

z + kπ

)
,

z 6= kπ, k = 0,±1,±2, . . .

respectively, and on the inequalities U(f ; 0) > 0 and

(−1)kU(f ; (2k − 1)π/2) > 0, V ′(f ; 0) > 0, (−1)kV (f ; kπ) > 0, k ∈ N,

which follow from the requirements in I. and II.
The following assertions are consequences of the previous ones:
III. Let the function f(t), defined in the interval (0, 1), be increasing, convex

and, let lim
t→+0

f(t) = 0. Then the entire function V (f ; z) has only real zeros.

It has no zeros in the interval (0, π), but each one of the intervals (kπ, (2k +
1)π/2), k = 1, 2, 3, . . . contains only one of its positive zeros.

The entire functions
∫ 1

0

t sin zt dt =
cos z

z
(tan z − z)

and
2

π

∫ 1

0

t sin zt√
1− t2

dt = J1(z)

are illustrative examples of III. It is pointed out that the positive zeros of the
first one tend asymptotically to the right endpoints of the intervals (kπ, (2k +



38 Zeros of entire Fourier transforms

1)π/2), k ∈ N, but the zeros of the second function tend to the midpoints of
these interval.

IV. Let the function f(t), 0 ≤ t < 1, be increasing, convex and let its right
derivative be not in the exceptional case. Then the entire function U(f ; z) has
only one zero in each of the intervals ((2k − 1)π/2, kπ), k ∈ N, and has no
imaginary zeros.

An example of a function satisfying the requirements of the last statement
is the Bessel function J0(z), defined by (3.7), see also (2.7).

V. Let the function f(t), 0 ≤ t < 1 be positive, decreasing and, if f ′(t) is
its right derivative, let −f ′(t) be in the general case. Then the entire function
U(f ; z) has only real zeros. More precisely, U(f ;x) > 0 when −π ≤ x ≤ π and
U(f ; z) has only one zero in each of the intervals (kπ, (k + 1)π), k ∈ N.

VI. Let f(t), 0 < t < 1, be increasing, convex and suppose that f(α) = 0

for some α ∈ (0, 1). If
∫ 1

0 f(t) dt > 0, then the entire function U(f ; z) has only

real zeros. If
∫ 1

0 f(t) dt < 0, then it has only two non-real zeros.
In fact, since U(f ; z) is an even entire function, its non-real zeros must be

purely imaginary. For example, the entire function

J0(z)− c
sin z

z
=

∫ 1

0

(
2

π
√
1− t2

− c

)
cos zt dt

has no imaginary zeros when c < 1, and only two such zeros if c > 1.
Entire functions of the form (0.2) and (0.3), in the case when a = ∞, are

considered at the end of Section 6. It is proved that if the function f(t), 0 ≤
t <∞, is positive and decreasing, then the entire function

∫∞

0 f(t) sin zt dt has
no positive zeros and, hence, it has no real zeros except those at the origin. In
addition, if f(t) is convex, then the entire function

∫∞

0
f(t) cos zt dt has no real

zeros too. Pólya observed that the first of these assertions follows from the
inequality

∫ ∞

0

f(t) sinxt dt =

∫ π/2

0

(
∞∑

k=0

(−1)kf

(
t+

kπ

x

))
sinxt dt > 0, x > 0

and the second is a corollary of the first one because

x

∫ ∞

0

f(t) cosxt dt =

∫ ∞

0

(−f ′(t)) sin xt dt,

where f ′(t) is the right derivative of f(t).
Another paper of Pólya on the zero distribution of entire functions defined

by Fourier transforms is On the zeros of an integral function represented
by Fourier’s integral, Messenger of Math., 52 (1923), 185–188, where he
mentions: “We do not possess a general method for discussing the reality of
zeros of an integral function represented by Fourier’s integral (such a method
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would be available for Riemann’s ξ-function.) I present here a special case
where the discussion is not quite trivial, but may be carried out with the help
of known results”. The author studies the location of zeros of the function

(3.21) Fα(z) =

∫ ∞

0

exp(−tα) cos zt dt

when the parameter α takes real positive values.
It is pointed out that if 0 < α < 1, then the improper integral in (3.21)

exists only if z is real. If α = 1, then it is uniformly convergent in each strip
of the form −λ ≤ y ≤ λ, where y = ℑz and 0 < λ < 1, and its analytic
continuation in the complex plane is the meromorphic function 1/(1 + z2).

If α > 1, then (3.21) is an entire function and its Maclaurin expansion is

Fα(z) =
1

α

∞∑

n=0

(−1)n
Γ
(
2n+1
α

)

Γ(2n+ 1)
z2n.

It follows from this representation that the order of Fα(z) is α/(α − 1). In
particular,

F2(z) =

√
π

2
exp(−z2/4).

The main result in the paper provides a complete characterization of the
zeros of the functions Fα(z), defined by (3.21) and reads as follows:

(I) If α = 2, then there are no zeros at all.
(II) If α = 2, 4, 6, . . . , then Fα(z) possesses an infinite number of real zeros

and no complex zeros.
(III) If α > 1 is not an even integer, then Fα(z) has an infinite number of

complex zeros and a finite number, not less than 2 [α/2], real zeros.
The proof is based on an assertion which is, as it is pointed out by Pólya,

a particular case of Laguerre’s theorem:
If Φ(z) is an integral function of order less than 2 which takes real values

along the real axis and possesses only real negative zeros, then the zeros of the
integral function

(3.22) Φ(0) +
Φ(1)

1!
z +

Φ(2)

2!
z2 + · · ·+ Φ(n)

n!
zn + . . .

are also real and negative.
Pólya applies it to the entire function

(3.23) Φ(z) =
Γ((2z + 1)/(2k)) Γ(z + 1)

Γ(2z + 1)

and takes into account that

∞∑

n=0

Γ((2n+ 1)/(2k)) Γ(n+ 1)

Γ(2n+ 1)

zn

n!
= 2k F2k(i

√
z).
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At the end of the paper Pólya gives an example of an entire function of the
form (3.21) with only real zeros. It is

∫ ∞

0

exp(−t2k + at2) cos zt dz,

where a ≥ 0 and k is an integer, not less than 2.
Pólya’s short paper On the zeros of certain trigonometric integrals,

J. London Math. Soc., 1 (1926), 98–99, is devoted to the Riemann hypothesis.
It begins with the following comment: “What properties of the function F (u)
are sufficient to secure that the integral

(3.24) 2

∫ ∞

0

F (u) cos zu du = G(z)

has only real zeros? The origin of this rather artificial question is the Riemann

hypothesis concerning the Zeta-function. If we put

(3.25) F (u) =
∞∑

n=1

(
4π2n4 exp

9

2
u− 6πn2 exp

5

2
u

)
exp(−πn2 exp 2u),

G(z) becomes Riemann’s function ξ(z)”.
Further, the author claims that in a few cases the entire function G(z) has

only real zeros:
(i) F (u) = (1− u2n)α−1, 0 ≤ u < 1, α > 0, F (u) = 0, 1 ≤ u <∞,
(ii) F (u) = exp(−u2n − αu4n), α > 0,
(iii) F (u) = exp(−2α coshu), α > 0,
(iv) F (u) = 8π2 exp(− cosh 2u) cosh 9

2u,
(v) F (u) = (8π2 cosh 9

2u− 12π cosh 5
2u) exp(−2π cosh 2u).

Pólya mentions that the case (i) is a well-known theorem that the zeros of
Bessel’s function Jα−1/2(z) are all real provided α is a real positive number.
Further he writes: “Observe that the function of case (iv) differs little, and
that of case (v) differs yet less, from the leading term of the series (3.25),
corresponding to n = 1, as u tends to ∞”. No proofs of the of the reality
of zero of the Fourier transforms of the functions in (i) - (v) are given in the
paper.

Pólya mentions that the existence of an infinity of real zeros is generally
easier to establish than the non-existence of complex zeros and that the method
of Hardy leads to the following very convenient criterion:

Suppose that F (u) is an even function, analytic and real for real values of
u, and such that limu→∞ F (n)(u)u2 = 0 for n = 0, 1, 2, . . . . If the function
G(z) has only a finite number of real zeros, then there is an integer N such
that |F (n)(it)| is a steadily increasing function of t if n > N and 0 < t < T, iT
being the singular point of F (u) which is next to the origin [T = ∞ if F (u) is
an integral function].
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Then Pólya states that the above criterion, applied to the cases (ii), (iii),
(iv) and (v) yields that the corresponding function G(z) has an infinity of real
zeros. In order to apply this criterion to ξ(z), he uses the function

(3.26) θ̃(x) = 4
√
x

∞∑

n=−∞

exp(−n2πx), x > 0,

which is a slight modification of Jacobi’s function θ(0, ix) used by Riemann

in his memoir on the prime numbers. By means of (3.26) the function (3.25)
can be presented in the following more convenient form:

F (u) = θ̃′′(x)− (1/4)θ̃(x), x = exp(2u).

Then the functional relation θ̃(1/x) = θ̃(x) yields that F (−u) = F (u) and
F (n)(it) → 0 as t → π/4− 0, for n = 0, 1, 2, . . . and these imply the existence
of an infinitely many real zeros of ξ(z). This provides a slightly different proof
of the existence of infinitely many zeros of ζ(s) on the critical line, a fact which
was first proved by Hardy.

In his paper Bemerkung über die Darstellung der Riemanschen ξ-
Funktion, Acta Math., 48 (1926), 305–317, Pólya discusses the question
about the location of the zeros of a cosine transform, where, instead of consid-
ering the representation

(3.27) ξ(z) = 2

∫ ∞

0

Φ(u) cos zudu

of Riemann’s ξ-function, where

Φ(u) = 2π exp
5u

2

∞∑

n=1

n2(2πn2 exp(2u)− 3) exp(−πn2 exp(2u)), u ∈ R,

one replaces the kernel Φ(u) by other kernels which are asymptotically close to
it. The author assumes as an evident fact that

(3.28) Φ(u) ∼ 4π2 exp

(
9u

2
− π exp(2u)

)

as u→ ∞ without clarifying why he considers the above function close to Φ(u).
Moreover, since Φ(u) is an even function, he claims also that if u→ ±∞, then

(3.29) Φ(u) ∼ 4π2

(
exp

9u

2
+ exp

(
−9u

2

))
exp(−π(exp(2u) + exp(−2u))).

Further, Pólya points out that if the function Φ(u) in (3.27) is replaced
by the function in the right-hand side of (3.28), then the corresponding entire
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Fourier transform would have infinitely many non-real zeros. On the other
hand, he stated that the entire function

ξ∗(z) = 8π2

∫ ∞

0

(
exp

9u

2
+ exp

(
−9u

2

))
exp(−2π cosh(2u)) cos zu du,

called ”verfälschte ξ- Funktion”, has only real zeros.
The last assertion is the main result in the paper and it says that the entire

function

G(z; a) =
∫ ∞

−∞

exp(−a(expu+ exp(−u))) exp(zu) du, a > 0,

has only real zeros. Further, the reality of the zeros of ξ∗(z) is established by
the aid of the representation

(3.30) ξ∗(z) = 2π2

{
G
(
iz

2
− 9

4
;π

)
+ G

(
iz

2
+

9

4
;π

)}
,

as well as of the following statement mentioned at the end of the paper:
Let a be a positive constant and G(z) be an entire function of order 0 or 1,

whose values are real for real z, with no imaginary zeros and at least one real
zero. Then the function

(3.31) G(z − ia) +G(z + ia)

has only real zeros.
The problems considered in Pólya’s paper Über trigonometrische In-

tegrale mit nur reellen Nullstellen, J. r. angew. Math. 158 (1927), 6-16,
concern entire functions of the form

(3.32)

∫ ∞

−∞

F (t) exp(izt) dt

provided the complex function F (t) satisfies the following conditions:
10F (−t) = F (t) for each t ∈ R.
20F is locally integrable.
30 There exist positive constants A and α such that

(3.33) |F (t)| ≤ A exp(−|t|2+α)

when |t| is large enough. The last condition implies that (3.31) is indeed an
entire function of the complex variable z. Moreover, it follows from 10 that it
is real. Again the problem under what conditions on the kernel F (t) the entire
function defined by (3.31) possesses only real zeros is discussed. In order to
formulate and prove the first of his results, Pólya introduces the notion of
universal factor preserving the reality of the zeros. This is a complex function



Dimitar K. Dimitrov and Peter K. Rusev 43

ϕ(t), t ∈ R, with the property that, for any entire function (3.31) with only
real zeros, the Fourier transform

(3.34)

∫ ∞

−∞

ϕ(t)F (t) exp(izt) dt

also has all its zeros real. Pólya obtained a complete characterization of the
functions ϕ with the above property. In fact, he proved that:

A real-analytic function ϕ(t), t ∈ R, is an universal factor preserving the
reality of the zeros if and only if its holomorphic extension ϕ(z) in C is such
that ϕ(iz) is an entire function of II-nd type.

Suppose that the real function f(t), 0 ≤ t < ∞ is absolutely locally inte-
grable and let there exist positive constants B and β such that

(3.35) |f(t)| ≤ B exp(−t1/2+β)

for all sufficiently large t. Suppose, in addition, that f has a holomorphic
extension in a neighbourhood of the origin. Then Pólya proves that:

The complex function

(3.36) H(z) =

∫ ∞

0

f(t)tz−1 dt,

which is holomorphic in the half-plane ℜz > 0, admits an analytic continuation
as a meromorphic function in C. If this function does not have zeros in the
region C \ (−∞, 0] and q is a positive integer, then the entire function

(3.37)

∫ ∞

−∞

f(t2q) exp(izt) dt

has only real zeros.
Then Pólya applies this statement to provide another proof of his earlier

result that the entire function

w(a; z) =

∫ ∞

−∞

exp(−a cosh t) exp(izt) dt

has only real zeros. As he points out, a method developed by A. Hurwitz and
improved later by E. Hille, is used. It is shown first that w(a; z) as a function
of the real variable a satisfies the differential equation

(aw′(a; z))′ =

(
a− z2

a

)
w(a; z).

Further, using the fact that the entire function cos az, a ∈ R, is of II-nd type
and applying the first of the already formulated assertions, Pólya concludes
that the entire function

∫ ∞

−∞

cosh(at) exp(−a cosh t) exp(izt) dt
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has only real zeros, as well as that if A > B, a > b > 0, then so does the entire
function

∫ ∞

−∞

(A coshat− B cosh bt) exp(−a cosh t) exp(izt) dt.

The meromorphic functions Γ(z)Γ(a)/Γ(z + a), a > 0, and Γ(z) have no zeros
in the region C \ (−∞, 0]. If ℜz > 0, then

∫ 1

0

tz−1(1 − t)a−1 dt =
Γ(z)Γ(a)

Γ(z + a)
,

∫ ∞

0

tz−1 exp(−t) dt = Γ(z),

which yields that the entire functions

∫ 1

−1

(1− t2q)a−1 exp(izt) dt

and ∫ ∞

−∞

exp(−t2q) exp(izt) dt = 2

∫ ∞

0

exp(−t2q) cos zt dt

have only real zeros. Moreover, if P (z) is an algebraic polynomial with only real
and negative zeros and l, q are positive integers, then the the entire function

∫ 1

1

(1 − t2q)l−1P (t2q) exp(izt) dt

possesses only real zeros too. Then, choosing P (t) = (1 + t)l+k−1, Pólya

concludes that so does the entire function
∫ ∞

−∞

exp(−at4q + bt2q + ct2) exp(izt) dt, a > 0, b ∈ R, c ≥ 0,

thus providing a new proof of this fact.
The last of Pólya’s papers, where he discusses the zero distribution of

entire functions defined by Fourier Transforms is Über die algebraisch-
funktionentheoretischen Untersuchungen von J.L.W.V. Jensen, Kgl.
Danske Vid. Sel. Math.-Fys. Medd. 7 (17) 1927, 3–33. It is a kind of a survey
on Jensen’s written heritage.

The essential part of the paper is Kapitel I. entitled Über die Realität
der Nullstellen gewisser trigonometrischer Integrale, where the author
studies the class of entire functions

(3.38) F (z) = exp(−λz2)H(z),

where H(z) is an entire function of order less than 2, and λ is a non-negative
real number, and more precisely, functions of the form

(3.39) F (z) = 2

∫ ∞

0

Ψ(t) cos zt dt,
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where the kernel Ψ(t) is supposed to obey the following requirements:
1) Ψ(t) is real, nonnegative and not identically equal to zero.
2) Ψ(t) is infinitely many times differentiable.
3) limt→∞ t−1 log |Ψ(n)(t)| = −∞ for each n = 0, 1, 2, . . . .
4) F (z) is of order less than 2.
As Pólya observes, 3) with n = 0 ensures that F (z) is not an algebraic

polynomials, i.e. it is a transcendental entire function. It takes real values if and
only if z = x is real and, moreover, F (−z) = F (z), i.e. it is an even function.
An example of a function of the form (3.38) is the Riemann ξ-function. More
precisely,

(3.40) ξ
(z
2

)
= 2

∫ ∞

0

Φ(t) cos zt dt,

where

Φ(t) = ω′′(t)− ω(t),

ω(t) = (1/4)(1 + 2ψ(exp(4t))) exp t, −∞ < t <∞,

and ψ(x), 0 < x <∞, is the function defined by (0.10). Hence,

(3.41) Φ(t) = 4
∞∑

n=1

(2n4π2 exp(9t)− 3n2π exp(5t)) exp(−πn2 exp(4t)).

Replacing t by u/2 and z by 2z, (3.40) becomes the integral representation
(1.18).

Further, Pólya recalls some properties of the function (3.41):
I. For each ε > 0 and every n ∈ N,

(3.42) lim
t→∞

Φ(n)(t) exp((π − ε) exp(4t)) = 0;

II. Φ(t) is an even function;
III. Φ(t) > 0 for each t ∈ R;
IV. If t→ ±∞, then

(3.43) Φ(t) ∼ 8π2(exp(9t) + exp(−9t)) exp(−π(exp(4t) + exp(−4t))).

Pólya calls the last property curious since if Φ̃(t) is the right-hand side of
(3.43), then the entire function

∫ ∞

0

Φ̃(t) cos zt dt

has only real zeros. These properties of Φ(t) were already known and, in a
footnote on p. 11, Pólya claims that (3.42) was verified on p. 188, 189 of
Jensen’s paper in Acta Math., and II, III were in his heritage.
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It is also known that the function Φ(t) admits a holomorphic extension in
the strip |ℑt| < π/8. This is a simple corollary of the fact that the function (1.4)
has a holomorphic extension in the half-plane ℜz > 0. Moreover, |ℑt| < π/8
is the widest strip where Φ(t) is holomorphic and it is a consequence of the
following fact:

V. For each fixed n, Φ(n)(t) tends to zero if ℜt = 0 and t→ iπ/8.
In other words, iπ/8 is a singular point for Φ(t) considered as a function of

the complex variable t in the strip |ℑt| < π/8. Since Φ(t) is even in this strip,
the same holds for the point −iπ/8.

Further, Pólya formulates the following result about the zero distribution
of the entire functions (3.38) that he found in Jensen’s heritage (foot-note on
p. 14):

I. If Ψ′′(t) ≤ 0 for t ≥ 0, then F (z) has no real zeros.
II. If F (z) has infinitely many zeros in a strip of the form −k ≤ ℑz ≤ k,

where k is a positive constant, then Ψ′(0) = Ψ′′′(0) = Ψ(5)(0) = · · · = 0.
III. If F (z) has only real zeros and

F (z) = b0 −
b1
1!
z2 +

b2
2!
z4 + . . .

is its Maclaurin expansion, then the real numbers b0, b1, b2, . . . have one and
the same sign.

Then Pólya emphasizes that the simplest necessary conditions for reality
of the zeros, namely

(3.44) b2n − bn−1bn+1 ≥ 0, n = 1, 2, 3, . . .

have not been verified for Riemann’s ξ-function. Observe that the above
inequalities are corollaries of the inequalities (1.5) applied to the entire function
F (z1/2).

Then Pólya provides some criteria for reality of the zeros of the entire
functions (3.39) that he found in Jensen’s heritage:

I. The zeros of F (z) are real if and only if
∫ ∞

−∞

∫ ∞

−∞

Ψ(α)Ψ(β) exp(i(α+ β)(x + y))(α − β)2 dα dβ ≥ 0

for each real x and y.
II. The zeros of F (z) are real if and only if

∫ ∞

−∞

∫ ∞

−∞

Ψ(α)Ψ(β) exp(i(α+ β)x)(α − β)2n dα dβ ≥ 0

for every x ∈ R and n = 0, 1, 2, . . . .
III. The zeros of F (z) are real if and only if

∫ ∞

−∞

∫ ∞

−∞

Ψ(α)Ψ(β)(x + iα)n(x+ iβ)n(α− β)2 dα dβ > 0
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for every x ∈ R and n = 0, 1, 2, . . . .
Further, it is pointed out that in order to prove the criteria I, II and III,

they have to be formulated in a more convenient and somewhat general form.
Let F (z) be a real entire function of raised genus 1. i.e. of the form 3.38.
Then, necessary and sufficient conditions for its zeros to be real, are given by
the following assertions:

I′. ∂2

∂y2 |F (x+ iy)|2 ≥ 0 for all real x, y ∈ R.

II′. For each fixed x all the coefficients of the Maclaurin expansion of
|F (x+ iy)|, as functions of y to be non-negative.

Suppose that F (z) is not of the form exp(αz)P (z), where α is a constant
and P (z) is an algebraic polynomial. Let

F (z) = a0 +
a1
1!
z +

a2
2!
z2 + . . .

and denote

An(F ; z) = a0z
n +

(
n

1

)
a1z +

(
n

2

)
a2z

2 + · · ·+ an, n = 0, 1, 2, . . . .

Then Pólya proposes the following criterion:
III′. The function F (z) has only real zeros if and only if

(3.45) A2
n(F ;x) −An−1(F ;x)An+1(F ;x) > 0

for all real x and n ∈ N. It is clear that An(F ; z) = F (D)zn is the n-th Appell
polynomial, associated with F (z).

Pólya mentions that Jensen’s proofs of the criterions I′ and II′, given in
Acta Math. are rather elementary indeed, while the proof of III’ is preceded by
five auxiliary statements and requires a lot of efforts. Something more about
these statements is said in the second foot-note on p. 19.

Suppose that Ψ(t), −∞ < t < ∞, is a real and even function having
a holomorphic extension in C and that limt→∞ t2Ψ(n)(t) = 0 for each n =
0, 1, 2, . . . . The following assertion can be used as a criterion for existence of
infinitely many real zeros of a holomorphic functions F (z) of the form (3.38):

I. Let c0 − c1t
2 + c2t

4 − . . . be the Maclaurin expansion of Ψ(t). If the
function F (z) has only p real zeros and all they are with odd multiplicity, then
among the numbers of the sequence

(3.46) c0, c1, c2, . . .

there are no more than p equal to zero and, moreover, this sequence has at
most p sign changes.

II. Suppose that F (z) has finitely many real zeros. Then, there exists T ,
0 < T ≤ ∞, such that the function Ψ(t) has no singular points in the disk
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|t| < T . Moreover, there is a positive integer N , such that, if n > N is fixed,
then |Ψ(n)(t)| increases when 0 < t < T and t tends to T .

An immediate corollary of the first statement is that if the sequence (3.45)
has infinitely many sign changes, then the function F (z) possesses infinitely
many real zeros. At the end of his survey on Jensen’s heritage Pólya gives
the following interesting example of an entire function of the form (3.38):

Ψ(a; t) = exp(−t2/2)(exp t+ exp(−t) + 2a
√
e),

where a is a positive constant. It is easy to verify that this function satisfies the
conditions I-III . Moreover, Ψ(t) ∼ exp(−t2/2)(exp t+ exp(−t)) when t → ∞.
The corresponding entire function

F (a; z) =

∫ ∞

0

Ψ(a; t) cos zt dt

has only real zeros when 0 < a ≤ 1 and no real zeros if a > 1.

Comments and references

1. It is clear that lim
t→1−0

f(t) = a(f) exists for every function f(t) ∈ P [0,1)

and that 0 < a(f) ≤ ∞. Denote by P∗[0,1) the set of function f ∈ P [0,1)
for which a(f) < ∞, i.e. P∗[1,0) is the set of bounded functions in P [0,1). In
fact, Pólya has proved that if f ∈ P∗[0, 1), then the entire functions U(f ; z)
and V (f ; z) have only real zeros. He applies the results from Section 2 in
[Pólya 1918] to the trigonometric polynomials

(3.47) Ũn(f ; z) =
1

n

n−1∑

k=0

f

(
k

n

)
exp

k

n2
cos z

k

n
,

(3.48) Ṽn(f ; z) =
1

n

n−1∑

k=0

f

(
k

n

)
exp

k

n2
sin z

k

n

and concludes that they have only real and mutually interlacing zeros. Since

lim
n→∞

Ũn(f ; z) =

∫ 1

0

f(t) cos zt dt

and

lim
n→∞

Ṽn(f ; z) =

∫ 1

0

f(t) sin zt dt

uniformly on every compact subset of C, Hurwitz’s theorem yields that the
entire functions U(f ; z) and V (f ; z) have only real zeros.

In order to prove that U(f ; z) and V (f ; z) have the same property when
f ∈ P [0,1) but a(f) = ∞, define the functions fδ(t), 0 < δ < 1, assuming
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that fδ(t) = f(t) for t ∈ [0, δ) and fδ(t) = f(δ) for t ∈ [δ, 1). Further, since
a(fδ) = f(δ) < ∞, then fδ(t) ∈ P∗[0, 1). Hence, the entire functions U(fδ; z)
and V (fδ; z) have only real zeros for each δ ∈ (0, 1). It remains to observe
that lim

δ→1−0
U(fδ; z) = U(f ; z) and lim

δ→1−0
V (fδ; z) = V (f ; z) uniformly on every

compact subset of C.
2. The reality of the zeros of the entire functions U(f ; z) and V (f ; z) as

well as their simplicity and mutual interlacement when f ∈ P [0,1) can be
established by making use of Hermite-Biehler’s theorem for entire functions
of exponential type having non-negative defect (B.J. Levin, Distribution of
zeros of entire functions, AMS, Providence, Rhode Island, 1964, Chapter
4.).

Recall that the defect of an entire function F of exponential type is the real
number

dF =
1

2

(
hF

(
−π
2

)
− hF

(π
2

))
,

where

hF (θ) = lim sup
r→∞

log |F (r exp iθ)|
r

is the indicator function of F .
Suppose that all the zeros of F are in the closed upper half-plane and that

its defect is positive. If F (z) = U(z) + iV (z) is the representation of F by
means of its real and imaginary parts, then Hermite-Biehler’s theorem says
that U(z) = R(z)U∗(z) and V (z) = R(z)V ∗(x), where the entire functions
R(z), U(z) and V (z) have only real zeros and the zeros of U∗(z) and V ∗(z) are
simple and mutually interlacing. Moreover, if F (z) has no zeros on the real
axis, then R(z) is a constant.

It is clear that the entire function

(3.49) E(f ; z) = U(f ; z) + iV (f ; z) =

∫ 1

0

f(t) exp(izt) dt.

is of exponential type even if f(t) is integrable in Lebesgues’ sense. Moreover,
if f ∈ P [0,1), then its zeros are in the closed upper half-plane. Indeed, by the
Eneström-Kakeya theorem the zeros of the polynomials

(3.50) P̃n(fδ; z) =

n−1∑

k=0

fδ

(
k

n

)
exp

k

n2
zk, 0 < δ < 1,

are in the unit disk and, hence, the zeros of the entire functions P̃n(fδ; exp iz),
n = 1, 2, 3, . . . are in the upper half-plane. Since

E(fδ; z) = lim
n→∞

n−1P̃n

(
fδ; exp

iz

n

)
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and E(f ; z) = lim
δ→1−0

E(fδ; z) uniformly on each compact subset of C, it follows

that the zeros of E(f ; z) are in the closed upper half-plane. Moreover, if f(t)
is in the general case, then the zeros of E(f ; z) are in the upper half-plane. It
remains to show that the defect of the function E(f ; z) is positive. In fact it is
equal to 1/2. This is a corollary of a property of entire functions of exponential
type of the form (0.1) provided −∞ < a < b <∞, i.e. of the functions

(3.51) Fa,b(f ; z) =

∫ b

a

f(t) exp(izt) dt, −∞ < a < b <∞.

We have:
Suppose that the real function f(t), a < t < b is absolutely integrable

and that there exist δ ∈ (0, (b − a)/2) and λ > 0 such that f(t) ≥ λ for
t ∈ (a, a+ δ) ∪ (b − δ, b). Then,

(3.52) dFa,b
=
a+ b

2
·

If a = −σ, b = σ, 0 < σ <∞, then (1.13) yields

|Eσ(f ; z)| ≤
(∫ σ

−σ

|f(t)| dt
)
exp(σ|z|).

It is clear that the type of Eσ(f ; z) is not greater than σ. Then hEσ(θ) ≤ σ for
0 ≤ θ < 2π and, in particular, hEσ (−π/2) ≤ σ and hEσ(π/2) ≤ σ. Therefore,

r exp(−σr)Eσ(f ;−ir)

= r exp(−σr)
(∫ σ−δ

−σ

f(t) exp(rt) dt +

∫ σ

σ−δ

f(t) exp(rt) dt

)

≥ λ− λ exp(−δr)− r exp(−δr)
∫ σ

−σ

|f(t) dt.

The last inequality implies that hEσ(−π/2) ≥ σ. Hence, hEσ(−π/2) = σ.
Since

Eσ(f ; z) =

∫ σ

−σ

f(−t) exp(−izt) dt,

it follows that hEσ (π/2) = σ too. The change of t by t+ (a+ b)/2 yields

(3.53) Fa,b(f ; z) = exp (i((a+ b)/2)z)Eσ(fa,b; z),

where σ = (b− a)/2 and fa,b(t) = f(t+ (a+ b)/2). Then, (3.52) is a corollary
of (3.53).

Hermite-Biehler’s theorem can be applied to the entire functions

λU(f ; z)− µV (f ; z) and µU(f ; z) + λV (f ; z)
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when λ, µ are real and λ2 + µ2 6= 0. Indeed,

λU(f ; z)− µV (f ; z) + i(µU(f ; z) + λV (f ; z)) = (λ+ iµ)(U(f ; z) + iV (f ; z)).

3. Let us define f(1) = a(f) for a function f ∈ P∗[0, 1). Then, instead of
(3.49), the polynomials

(3.54) Pn(f ; z) =

n∑

k=0

f

(
k

n

)
zk, k = 0, 1, 2, . . .

can be used to prove that the zeros of the entire function E(f ; z) are in the
closed upper half-plane.

4. Another approach to the zero distribution of the entire functions (3.1)
and (3.2) is used in Section 5.3 in the paper of Haseo Ki and Young-one

Kim, On the number of nonreal zeros of real entire functions and the
Fourier-Pólya conjecture, Duke Math. J., 104 (2000), 45-73. Under the
assumption that the function f ∈ P [0, 1) is in the general case, the authors
prove that the inequalities

(cosx+ x sinx)U(x) + x cos xU ′(x) > 0,

(sinx− x cosx)V (x) + x sinxV ′(x) > 0

hold for each x > 0. They imply the inequalities (−1)nU(π/2 + nπ) > 0,
n = 0, 1, 2, . . . and (−1)n+1V (nπ) > 0, n − 1, 2, 3, . . . . The final result that
the entire functions (3.1) and (3.2) have no nonreal zeros is obtained as an
application of Theorem 4.3 on p. 63. It states that a real entire function of the
form exp(−αz2)f(z), α ≥ 0 has no critical points provided the entire function
f(z) is of growth (2, 0). Moreover, if {bj}ωj=1, 0 ≤ ω ≤ ∞ are its real zeros

different from zero, then
∑ω

j=0 b
−2
j <∞.

5. The zero distribution of entire finctions Fα(z) has already been treated
earlier. Pólya points out that, following the method employed by G.H.

Hardy (C.R., 6 April, 1914) to prove that Riemann’s ξ(t) has infinite number
of real zeros, F. Bernstein, Über das Fourierintegral

∫∞

0 exp(−x4) cosxt dt
Math. Ann, 59 (1919), 265-268, proved the same thing for F4(z), F6(z), F8(z), . . . .

6. The entire functions of the form (3.21) are studied in the paper of Joe
Kamimoto, Haseo Ki and Young-one Kim, On the multiplicity of the
zeros of Laguerre-Pólya functions, Proc. Amer. Math. Soc., 128 (1999),
189-194. It is proved that not only this function, but all its derivatives have
only real and simple zeros. This result is applied to the completeness in the
space L(Rn) of the translations of a function of the form

p(x1, x2, x3, . . . , xn) exp




n∑

j=1

x
2mj

j


 ,
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where p is an algebraic polynomials and mj , j ∈ N are positive integers.
7. A classical theorem of Laguerre says that if f(z) =

∑n
k=0 akz

k is a real
polynomial and ϕ(z) is a real polynomial with only real zeros located outside
the interval [0, n], then the polynomial

(3.55)

n∑

k=0

akϕ(k)z
k

has at least so many real zeros as the polynomial f(z). In particular, if f(z)
has only real zeros, then so does (3.45). Moreover, it has so many positive,
equal to zero and negative zeros as the polynomial f(z). In particular, if f(z)
has only real zeros of one and the same sign, then the same holds for the
polynomial (3.45). The last assertion was generalized by Laguerre for real
entire functions of order less than two with only real and negative zeros (E.
Titchmarsh, The theory of functions, Oxford, 1939, 8.6.1, 8.6.2).

8. The meaning of the relation (3.27) is that the representation

(3.56) Φ(u) = 4π2 exp
9u

2
exp(−π exp 2u)(1 + ϕ(u))

holds for u > 0, where

(3.57) ϕ(u) = O(exp(−2u))

when u→ ∞, i.e. the function ϕ(u) exp 2u is bounded when u tends to infinity.
Indeed, if

ϕ(u) = − 3

2π
exp(−2u) +

∞∑

n=2

n4

(
1− 3

πn2
exp(−2u)

)
exp(−π(n2 − 1) exp 2u),

then (3.55) holds for u > 0 and it remains to prove the validity of (3.56). It is
clear that

ϕ(u) = O

(
exp(−2u) +

∞∑

n=2

n4 exp(−n2 exp 2u)

)
, u→ ∞.

Further, if u > 1, then t4 exp(−t2 exp 2u) as a function of the variable t is
decreasing in the interval [1,∞). Hence,

∞∑

n=2

n4 exp(−n2 exp 2u) = O

(∫ ∞

1

t4 exp(−t2 exp 2u) dt
)

= O

(
exp(−5u)

∫ ∞

1

t3/2 exp(−t) dt
)
, u→ ∞.
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Since Φ(u) is an even function, then Φ(u) = (Φ(u) + Φ(−u))/2. Thus, (3.29)
is a consequence of (3.28).

9. The assertion III from Section 5 of Pólya’s paper [Pólya 1918] concern-
ing the entire function V (f ; z) is proved when limt→+0 f(t) = 0. A.M. Sedlet-

ski, Addition to Pólya’s theorem on zeros of Fourier sin-transform,
Integral Trans. Spec. Funct., 1 (2000), 65-68, considers the general situ-
ation when this condition is omitted. He proves that if the non-constant
function f(t), 0 ≤ t ≤ 1 is positive, non-decreasing and convex, then the
function V (f ; z) has also only real and simple zeros, each of the intervals
(π, 2π), (2π, 5π/2), (3π, 4π), (4π, 9π/2), . . . contains exactly one of them and
it has no other positive zeros.

4. A knight of the classical analysis

The paper of E. C. Titchmarsh The zeros of certain integral functions,
Proc. London Math. Soc. 25 (1926), 283-302, is probably the first study of
the zero distribution of entire functions of the form

(4.1) F (z) =

∫ b

a

f(t) exp zt dt, −∞ < a < b <∞,

under the only assumption that f(t) is a real Lebesgue integrable function in
a < t < b or, more generally, f(t) = f1(t) + if2(t), where f1(t) and f2(t) are
real Lebesgue integrable functions in the same interval. The author points out
that the related forms

∫ b

a

f(t) cos zt dt,

∫ b

a

f(t) sin zt dt

may be reduced to (4.1) by simple transformations. The type includes many
well known functions, such as Bessel functions. Further, Titchmarsh recalls
that some striking results as to the distributions of the zeros when f(t) satisfies
simple conditions have been obtained by Pólya in [Pólya 1918] and that his
own aim is to determine properties which are common to all the function F (z),
without further restriction on f(t) than that of integrability.

It is supposed that a and b are the effective lower and upper limits of the
integral in (4.1), i.e. there is no ε ∈ (0, (b− a)/2) such that

∫ a+ε

a

|f(t)| dt =
∫ b

b−ε

|f(t)| dt = 0.

It is assumed also that F (0) 6= 0, which is no loss of generality. The zeros of
F (z) are denoted by r1 exp iθ1, r2 exp iθ2, . . ., where r1 ≤ r2 ≤ . . . . The first
result concerning these zeros is:
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Theorem I. The function F (z) has an infinity of zeros and such that the
series

∞∑

n=1

1

rn

is divergent.

This result is proved by Pólya in [Pólya 1918], but Titchmarsh’s proof
is simpler than the original one. The next result is:

Theorem II. The series
∞∑

n=1

cos θn
rn

is absolutely convergent.

The author mentions that it might be supposed that cos θn tends to zero
when n→ ∞ or, which is the same, that any angular domain with vertex at the
origin containing the imaginary axis would contain all but finitely many zeros
of the function F (z), but this is not the case in general. In fact, the following
statement holds:

Theorem III. There is a function of the given class with an infinity of real
zeros.

Let 0 < θ < 1 and 0 < δ < θ(1 − θ). Titchmarsh defines the function
λ(t), 0 ≤ t ≤ θ,

λ(t) =

{
(−1)nµn, θn − δn ≤ t ≤ θn, n = 1, 2, 3, . . . ,
0, otherwise

provided that µn, n = 1, 2, 3, . . . are positive and the series
∑∞

n=1 µnδ
n is

convergent. Then, under the additional assumptions that θ < 1/2, δ < 1/a
and a > 2/θ, it is proved that the corresponding function

(4.2) Λ(z) =

∫ θ

0

λ(t) exp(zt) dt

has a real zero in every interval (−an+1,−an) when n is large enough.

According to the author, the principal result in the paper is:
Theorem IV. If n(r) is the number of zeros of F (z) in the disc |z| ≤ r,

then

(4.3) n(r) ∼ b− a

π
r, r → ∞

The validity of the statement

(4.4) lim
r→∞

n(r)

r
=
b− a

π
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is proved when a = −1, b = 1, which, of course, is no loss of generality. The
proof is preceded by a considerable number of auxiliary statements. The main
goal is to verify that

N(r) ∼ 2r

π
as r → ∞,

where

N(r) =

∫ r

0

n(t)

t
dt,

and this is the assertion of Lemma 4.7. Then, the final result follows from
the latter one and

Lemma 4.8. If N(r)/r tends to a limit, then n(r)/r tends to the same
limit.

As Titchmarsh pointed out, the above assertion is a form of a well-known
theorem of E. Landau, Rend. di Palermo, 26 (1908). The next result in the
paper is:

Theorem V. The series

(4.5)

∞∑

n=1

sin θn
rn

is conditionally convergent.
The author not only proves Theorem V and Theorem II, but obtains

the closed form expressions

∞∑

n=1

cos θn
rn

=
1

2
(a+ b)−ℜ

{
F ′(0)

F (0)

}

and

(4.6)

∞∑

n=1

sin θn
rn

= ℑ
{
F ′(0)

F (0)

}
.

After proving Theorem V, Titchmarsh makes interesting comments. He
claims that the result is, of course, obvious if f(t) is real, since then the zeros of
F (z) are conjugate complex numbers, and the terms of the series (4.6) cancel in
pairs. He also verifies (4.6) in a less trivial case. Let f(t) = 1 when −1 < t ≤ 0,
and f(t) = i for 0 < t < 1. Then F (z) = (ez − 1)(e−z + i)/z. The zeros of F (z)
are at ±2iπ,±4iπ, . . . and iπ/2,−3iπ/2, 5iπ/2,−7iπ/2, . . . . Thus,

∞∑

n=1

sin θn
rn

=
2

π

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
=

1

2
.

Since F (0) = i + 1, F ′(0) = (i− 1)/2, then F ′(0)/F (0) = i/2.
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The author obtains Weierstrass’ factorization of the entire functions of the
form (4.1). The corresponding result is

Theorem VI. We have

F (z) = F (0) exp((a+ b)z/2)

∞∏

n=1

(
1− z

zn

)
,

the product being conditionally convergent.
The most interesting result in the paper is
Theorem VII. If ϕ(t) and ψ(t) are Lebesgue integrable functions, such

that

(4.7)

∫ t

0

ϕ(u)ψ(t − u) du = 0

almost everywhere in the interval 0 < t < a, then ϕ(t) = 0 almost everywhere
in (0, λ) and ψ(t) = 0 almost everywhere in (0, µ), where λ+ µ ≥ a.

It is remarkable that it is obtained as a corollary of Theorem IV. The
latter concerns the asymptotics of the number n(r) and it is quite surprising
that it implies such a deep result as Theorem VII.

Comments and references

1. Suppose the function f(t),−1 ≤ t ≤ 1, is of bounded variation, continu-
ous at the points ±1 and, moreover, f(−1) = f(1) = 1. Then:

There exists a positive constant K such that the zeros of the entire function
(4.1) with a = −1 and b = 1 are located in the strip |ℜz| < K.

If n(r) is the number of the zeros of (4.1) with a = −1 and b = 1 located in
the disk |z| ≤ r, then

n(r) =
2r

π
+O(1).

Suppose, in addition, that the function f(t) is continuous on the whole
interval [−1, 1] and let ω(f ; δ) be its modulus of continuity. Then:

The zeros of the function (4.1) with a = −1 and b = 1 are located in the
region defined by the inequality

|ℜz| < K|z|ω
(
f ;

1

|z|

)

with a suitable constant K, and

n(r) =
2r

π
+O

(
r ω

(
f ;

1

r

))
.

These results appear in the survey paper of R.E. Langer On the zeros
of exponential sums and integrals, Bull. Amer. Math. Soc. 37 (1930),
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213-239, where the author claims that they have been taken from the paper of
M.L. Cartwright The zeros of certain integral functions, Quarterly J.
Math. 1 (1930), 38-59 and are attributed by her to Hardy.

2. Titchmarsh’s results about the zeros of the entire functions (4.1) can
be carried over the entire functions

(4.7)

∫ b

a

f(t) exp(izt) dt, −∞ < a < b <∞.

For example, if {zn = ρn exp iσn}∞n=1, ρ1 ≤ ρ2 ≤ ρ3 ≤ . . . are the zeros of (4.7)
in C∗ = C \ {0}, and n(r) is their number in the disk |z| ≤ r, then (4.3) holds.
Further, the series

(4.8)

∞∑

n=1

sinσn
ρn

is absolutely convergent. This property leads to the conclusion that whatever
δ ∈ (0, π/2) is, there are infinitely many zeros of (4.7) located in the union Aδ

of the angular domains | arg z| < δ and | arg(−z)| < δ. In particular, the last
assertion holds for the zeros of the entire functions (1.14) and (1.15). However,
the answer of the question whether, for each fixed δ ∈ (0, π/2), all but finitely
many zeros of a function of the form (4.7) are located in Aδ, is negative. A
counterexample is the entire function Λ(iz).

3. Let C[0,∞) be the R-linear space of all real and continuous functions on
the interval [0,∞). If ϕ, ψ ∈ C[0,∞), then the function ϕ ∗ ψ, defined by

(ϕ ∗ ψ)(t) =
∫ t

0

ϕ(u)ψ(t− u) du, 0 < t <∞,

is called their convolution. It is an easy exercise to establish that the compo-
sition law just defined is associative and commutative. Assuming it as a rule
of multiplication in C[0,∞), it ia clear that (C[0,∞), ∗) becomes an associative
and commutative algebra over the field of real numbers. The most remarkable
property of this algebra, considered as ring with respect to the convolution, is
that it is an integral domain. This means that, if ϕ, ψ ∈ C[0,∞) and ϕ∗ψ = 0,
that is (ϕ ∗ ψ)(t) = 0 for 0 ≤ t < ∞, then either ϕ = 0, or ψ = 0. In
other words, there are no divisors of the zero in the ring (C[0,∞), ∗). The last
property is a simple corollary of Theorem VII in Titchmarsh’s paper.

It is worth mentioning that the existence of quotient field of the ring
(C[0,∞), ∗) was used by the polish mathematician J. Mikusinski for justi-
fying the Heviside operational calculus and, thus, giving a general approach
for constructing other such calculi.
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5. The Dutch master

N. G. de Bruin begins his paper The roots of trigonometric integrals,
Duke Math. J., 17 (1950), 197-226, with results concerning the reality of zeros
of entire functions of the form

(5.1)

∫ ∞

−∞

F (t) exp izt dt.

obtained by Pólya under the conditions:

1. F (−t) = F (t) for each t ∈ R.

2. F is locally integrable.

3. |F (t)| = O exp(−|t|b) for t → ±∞, b > 2.

First he provides concrete examples of such functions,

(5.2)

∫ ∞

−∞

exp(−t2n) exp izt dt, n = 1, 2, 3, . . .

and

(5.3)

∫ ∞

−∞

C(t) exp izt dt, C(t) = exp(−λ cosh t), λ > 0.

Then he formulates one of the main results in Polya’s paper [Pólya 1927a]
concerning the universal factors preserving the reality of the zeros of the func-
tions (5.1) and, claiming that the paper is a continuation of Pólya’s research,
announces the main results:

Theorem 1. Let f(t) be an integral function of t such that its derivative
f ′(t) is the limit (uniform in any bounded domain in the t-plane) of a sequence
of polynomials, all of whose roots lie on the imaginary axis. Suppose further-
more that f(t) is not a constant, and that f(t) = f(−t), f(t) ≥ 0 for real values
of t. Then the integral

(5.4)

∫ ∞

−∞

exp(−f(t)) exp izt dt

has real roots only.
Theorem 2. Let N be a positive integer and put

(5.5) P (t) =
N∑

n=−N

pn expnt, ℜpn > 0, p−n = pn, n = 1, 2, 3, . . . , N.

Let the function q(z) be regular in the sector −π/2N −N−1 arg pN < arg z <
π/2N −N−1 arg pN and on its boundary, with possible exception of z = 0 and
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z = ∞ which may be poles (of arbitrary finite order) for q(z). Furthermore
suppose q(z) = q(1/z) in this sector (in other words, q(z) is real for |z| = 1).
Then all but a finite number of roots of the function

(5.6) Φ(z) =

∫ ∞

−∞

exp(−P (t))Q(t) exp izt dt, Q(t) = q(exp t)

are real.
Then the author makes the following comments: “It may be remarked that

our method fails to give any useful information concerning the number and
location of the non-real roots of (5.6) in the general case, so that this very
peculiar result may be of very little practical importance”. This sounds a little
strange because a considerable part of the paper is devoted to its proof and it
plays a decisive role in proving Theorem 1. On the other hand, the latter is
an essential generalization of the fact that the entire functions (5.2) and (5.3)
have only real zeros.

In Sections 2 and 3 de Bruin introduces special universal factors. Suppose
that the kernel F in (5.1) satisfies the requirements 1, 2 and 3 and the complex
function S(t), −∞ < t <∞, obeys the following properties:

(α) If the roots of (5.1) lie in a strip |ℑz| ≤ ∆, ∆ > 0, then those of

(5.7)

∫ ∞

−∞

F (t)S(t) exp izt dt

lie in a strip |ℑz| < ∆̃, where ∆̃ < ∆, and ∆̃ is independent of F .
(β) If, for any ε > 0, all but a finite number of roots of (5.1) lie in the strip

|ℑz| ≤ ε, then the function (5.7) has only a finite number of non-real roots.
If S(t) satisfies (α) and (β), it is called a strong universal factor. As it is

pointed out, it follows from (α) that any strong universal factor is a universal
factor in Pólya’s sense.

Let f(z) be a real algebraic polynomial, δk ± ∆ki, δk ∈ R, ∆k > 0, k =
1, 2, 3, . . . , n, be its nonreal zeros, and let Jk(f) be the closed disk |z−δk| ≤ ∆k,
k = 1, 2, 3, . . . , n. A well-known result of J.L.W.V. Jensen states that the
zeros of f ′(z) are either real or are located in J(f) =

⋃n
k=1 Jk(f). The theorem

of Jensen is a refinement of the classical result for the location of zeros of the
derivative of algebraic polynomial with arbitrary complex coefficients, usually
referred to as The Gauss-Lucas Theorem.

In the paper under consideration de Bruin establishes a generalization of
Jensen’s theorem by using a translation operator instead of the operator of
differentiation.

LetN be a positive integer and, for k = 1, 2, 3, . . . , n, denote by Bk(f ;N, λ),
λ > 0, the closed set of points (x, y), defined by

Bk(f ;N, λ) =

{
N−1 (x− δk)

2 + y2 ≤ ∆2
k − λ2N, if ∆k > λN1/2,

∅ if ∆k ≤ λN1/2.
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Then de Bruin proves:

Theorem 4. Suppose that all the roots of the polynomial ϕ(u) =
∑N

k=0 aku
k,

aN 6= 0 lie on the unit circle |u| = 1, that f(z) is a real polynomial, and that
λ > 0. Then the roots of the polynomial

(5.8) T−λNϕ(T 2λ)f(z) =

N∑

k=0

ak f(z + (2k −N)λi)

are contained in B(f ;N, λ) =
⋃n

k=1 Bk(b;N, λ). Here T
λ represents a transla-

tion operator defined by T λf(z) = f(z + λi).

The proof goes by induction with respect to N . The case N = 1 is es-
tablished in Theorem 3 which states that if γ ∈ C \ {0}, then the zeros of
the polynomial (γT λ + γT−λ)f(z) = γf(z + λi) + γf(z − λi) are located in
B(f ; 1, λ). As is it pointed out, Jensen’s theorem is the limit case of The-

orem 3 when λ → 0. Furthermore, it is observed that if a real polynomial
g(z) has its zeros in B(f ;m,λ), then the roots of γg(z + λi) + γg(z − λi) are
in B(f ;m+ 1, λ), and this is the main property which is used in the induction
step to prove Theorem 4.

These results for polynomials are generalized to entire functions in Section
3. A typical one is:

Theorem 9. Let the real integral function f(z) be of order < 2 and suppose
that f(z) has all but a finite number of roots outside the strip |ℑz| ≤ ∆. If
furthermore ϕ(u) satisfies the conditions of Theorem 4, then all but a finite
number of roots of T−λNϕ(T 2λ)f(z) satisfy |ℑz| ≤ {Max(∆2 −Nλ2, 0)}1/2.

Immediately after the definition of a strong universal factor de Bruin

claims that a function of the type

(5.9) S(t) =
N∑

n=−N

an exp(λnt), λ > 0, a−n = an, n = 0, 1, 2, . . . , N,

is a strong universal factor if all its roots lie on the imaginary axis and, con-
versely, if a function of the form (5.9) is such a factor, then its roots lie on the
imaginary axis.

The first part of the above assertion is a corollary of a more general result
concerning the zeros of entire functions of the form (5.1) when the function
F (t) satisfies the requirements 1, 2 and 3:

Theorem 11. Let the roots of the function (5.9) lie on the imaginary axis.
Then we have: If the roots (all but a finite number of the roots) of (5.1) lie
in the strip |ℑz| ≤ ∆, then the roots (all but a finite number of the roots)
of the real integral function (5.7) lie in the strip |ℑz| ≤ {∆2 − λ2N/2}1/2 if
∆ > λ(N/2)1/2, and are real if ∆ ≤ λ(N/2)1/2.

Theorem 12 may be considered as a “multiplicative” version of Theorem
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11, where, as an universal factor one uses the function

N∏

k=1

(γk expλkt+ γk exp(−λkt)),

where |γk| = 1 and λk > 0 for k = 1, 2, 3, . . . , N . Further, the author comments
upon Theorem 11:

“Theorem 11 proves the statements (α) and (β) made in the introduction
concerning strong universal factors. Although it will be not used in this paper,
we shall prove here that also the functions exp((λ2/2)t2), λ2 > 0 has property
(α). We do not know whether they have or have not the property (β).”

The assertion in question is:
Theorem 13. Suppose that the function F (t) satisfies the conditions 1, 2, 3

and that the zeros of the entire function (5.1) lie in the strip |ℑz| ≤ ∆. Then
all the roots of the entire function

∫ ∞

−∞

F (t) exp(λ2t2/2) exp(izt) dt

lie in the strip |ℑz| ≤ {Max(∆2 − λ2), 0}1/2
A similar statement, which the author qualifies as “a slight extension of

Pólya’s result on universal factors” is the next one:
Theorem 14. Let the roots of (5.1) lie in the strip |ℑz| ≤ ∆. Let ϕ(z) be

a real integral function of genus 0 or 1 with real roots only. Then the roots of
the entire function ∫ ∞

−∞

F (t)ϕ(it) exp(izt) dt

lie in the strip |ℑz| ≤ ∆ also.
The asymptotics of the complex function

(5.10) H(s) =

∫ ∞

0

us exp(−g(u)) du, ℜs > 0,

where g(u) = u+α1u
(N−1)/N +α2u

(N−2)/N + · · ·+αN , N is a positive integer
and αk ∈ C, for k = 1, 2, 3, . . . , N , as s → ∞, is studied in Section 4 of de
Bruin’s paper. The result, obtained by a very technical application of the
saddle-point method, is:

Theorem 15. If b is a positive constant and H(s) is given by (5.10), we
have

(5.11) H(s) = (2πξ)1/2 exp(−g(ξ)) ξs {1 +O(s−1/N )},

uniformly for ℜs > −b, |s| → ∞. Here ξ = s + γ1s
1−1/N + γ2s

1−2/N + . . . is
absolutely convergent for s large and satisfies ξg′(ξ) = s.
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It it noticed that if N = 1 and α1 = 0, then g′(u) = 1, ξ = s and (5.11)
becomes the familiar Stirling’s formula for Γ(s+ 1).

The proofs of Theorem 2 and Theorem 1 are given in Section 5. For
this purpose, an asymptotic formula for the entire function (5.6), involving the
function H(z), is obtained. It leads to the conclusion that, for every ε > 0,
this entire function has a finite number of zeros outside the strip |ℑz| ≤ ε (see
Theorem 18). Further, it is pointed out that if P (t) and Q(t) satisfy the
requirements in Theorem 2, then the same holds for P (t) and Q(t)(exp t +
2 + exp(−t))−1. Hence, the entire function

∫ ∞

−∞

exp(−P (t))Q(t)(exp t+ 2 + exp(−t))−1 exp(izt) dt

has a finite number of zeros outside any strip |ℑz| ≤ ε. Then the property (β)
of the strong universal factors with S(t) = exp t+2+exp(−t) implies Theorem

2.

Let the polynomial P (t) is as required in Theorem 2 and suppose that
P ′(t) has purely imaginary roots only. Then, by virtue of Theorem 2 the
entire function

P(z) =

∫ ∞

−∞

exp(−P (t)) exp(izt) dt

has a finite number of non-real zeros. Denote by ∆ the smallest non-negative
number such that all the roots of P(z) lie in the strip |ℑz| ≤ ∆ and suppose
that ∆ > 0. The function P ′(t) is a strong universal factor and, hence, by
property (α) of such factors, the roots of the entire function

P̃(z) =

∫ ∞

−∞

exp(−P (t)) i P ′(t) exp(izt) dt

lie in a strip |ℑz| ≤ ∆̃, ∆̃ < ∆. Since P(z) = −zP̃(z), it follows that the roots
of P(z) lie in the strip |ℑz| ≤ ∆̃, which contradicts the minimum property of
∆. Hence, ∆ = 0 and all the zeros of P(z) are real (see Theorem 19).

Further, the author proves that if all the roots of the derivative of the real
polynomial fn(t) =

∑2n
k=1 akt

k are on the imaginary axis, and if a2n > 0, then
the entire function ∫ ∞

−∞

exp(−fn(t)) exp(izt) dt

has real zeros only (see Theorem 20).

Suppose that the function f(t) satisfies the conditions of Theorem 1, i.e.

f ′(t) = a exp(bt2) t2p+1
∞∏

k=1

(1 + δ2kt
2),



Dimitar K. Dimitrov and Peter K. Rusev 63

where a > 0, b ≥ 0, δk > 0, k = 1, 2, 3, . . . and
∑∞

k=1 δ
2
k < ∞. Let the

polynomials {fn(t)}∞n=1 be defined by

f ′
n(t) = a

(
1 +

bt2

n

)n

t2p+1
n∏

k=1

(1+ δ2kt
2) and fn(0) = f(0), n = 1, 2, 3, . . . .

Then the entire functions

Fn(z) =

∫ ∞

−∞

exp(−fn(t)) exp(izt) dt, n = 1, 2, 3, . . .

have only real zeros. Moreover,

lim
n→∞

Fn(z) =

∫ ∞

−∞

exp(−f(t)) exp(izt) dt

uniformly in any bounded domain of C. Then the well-known theorem of
Hurwitz implies that the entire function (5.4) has real zeros only.

In Section 6 de Bruin’s investigates the distribution of zero of entire func-
tions of the form

(5.12)

∫ ∞

−∞

exp(−λ cosh t)
(

N∑

n=−N

αn expnt

)
exp(izt) dt.

Theorem 2 guarantees that all the zeros of this function, except for at
most a finite number, are real. In fact, it has at most N pairs of conjugate
complex zeros (see Theorem 21).

The entire functions

(5.13)

∫ ∞

−∞

exp(−λ cosh t)(µ+ cosh t) exp(izt) dt

and

(5.14)

∫ ∞

−∞

exp(−λ cosh t)(µ+ cosh2 t) exp(izt) dt

are particular cases of (5.12). For both of them it is proved that they have
only real zeros when µ ≥ 0 (Theorem 22). It is pointed out that the same is
true if −1 ≤ µ < 0, since then µ+ cosh t and µ+ cosh2 t are universal factors,
and that each of the functions (5.13) and (5.14) has a pair of purely imaginary
roots if −µ is positive and large enough.

Further, suppose that the real polynomial f(z) of degree N possesses neg-
ative roots only, and let λ ≥ N/2. Then the entire function

∫ ∞

−∞

exp(−λ cosh t)f(cosh t) exp(izt) dt
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has only real roots (see Theorem 24).
Under the same requirement on the zeros of the real polynomial f(z) it is

proved that the entire function
∫ ∞

−∞

exp(−λ cosh2 t)f(cosh t) exp(izt) dt

has only real roots when λ > 0 and f ′(1)/f(1) ≤ 2λ (see Theorem 26).

Comments and references

1. The paper of Charles M. Newman, Fourier transforms with only
real zeros, Proc. Amer. Math. Soc. 61, Number 2 (1976), 245-251 deserves a
special attention. Indeed, the author is an expert in the mathematical physics
and, which maybe is the most striking, his main result is in fact a corollary of
his “study of certain quantum field theoretic problems”.

In the beginning of the paper, using Titcmarsh’s notation for Rieman’s

ξ-function, the author introduces the entire functions

(5.15) Ξb(z) =

∫ ∞

−∞

exp(izt− bt2)Φ(t) dt,

when b is real and Φ(t) is the function whose cosine Fourier transform is Ξ(z) =
Ξ0(z). Further, it is pointed out that Theorem 13 of de Bruin (formulated
as Theorem 1 in the paper) and the fact that the zeros of Ξ(z) lie in the strip
|ℑz| ≤ 1/2 imply that, if b ≤ −1/8, then the function (5.15) has only real zeros.
The main result in the paper is:

Theorem 3. There exists a real number b0 with −1/8 ≤ b0 <∞ such that
Ξb(z) has only real zeros when b ≤ b0 but has nonreal zeros when b > b0.

Then the author makes the following comment (Remark 2 on p. 247):
“The Riemann hypothesis is the statement that b0 ≥ 0; we make the comple-
mentary conjecture that b0 ≤ 0. This new conjecture is a quantitative version
of the dictum that the Riemann hypothesis, if true, is only barely so”.

Motivated mainly by Theorem 13 of de Bruin, the author defines the
class R of even, nonnegative, finite measures ρ on the real line such that for
any b > 0 the Fourier transform of exp(−bt2) dρ(t) has only real zeros. It
seems that this is motivated also by the fact that R contains, as it is proved
by Pólya, the absolutely continuous measures ρ with density

(5.12)
dρ

dt
= Kt2m exp(−αt4 − βt2)

ω∏

k=1

(
1 +

t2

a2k

)
, 0 ≤ ω ≤ ∞,

where K > 0, m is a nonnegative integer, α and {ak}ωk=1 are positive, the series∑ω
k=1(1/a

2
k) is convergent and β is real (or else α = 0 and β > 0).

It is worth reminding another comment of the author that: “the class R is
also a natural one in quantum field theory where one is particularly interested
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in function V (t) such that exp(−λV (t)) dt ∈ R for all λ > 0, and the example
V (t) = αt4 + βt2 of (5.16) was in fact rediscovered by statistical mechanical
methods in B. Simon and R.B. Griffiths, The (φ4)2 field theorie as a
classical Ising model, Comm. Math. Phys., 33 (1973), 145-164”.

The main contribution of the author is a complete characterization of the
class R, given in Theorem 2 which concerns holomorphic functions defined
by Laplace’s transforms of the form

(5.13) Zb(z) =

∫ ∞

−∞

exp(zt− bt2) dρ(t), b > 0,

where ρ is an even, nonnegative, finite measure on the real line. A short version
of this theorem is the following assertion:

The entire function (5.13) has only pure imaginary zeros for every b > 0 if
and only if either ρ(t) = K(δ(t − t0) + δ(t + t0)) for some K > 0 and t0 ≥ 0,
where δ(t − t0) denotes the point measure of unit mass concentrated at the
point t0, or else ρ is absolutely continuous with density of the kind (5.12).

As the author points out, his main result is an immediate corollary of The-

orem 13 of de Bruin and his Theorem 2.

2. The main result in the paper of Haseo Ki and Young-One Kim, de
Bruin’s question on the zeros of Fourier transforms, J. Anal. Math.,
91 (2003), 369-387, is the following:

Let f(z) be a real entire function of genus 1∗ and if it is of order 2, then let its
type σ <∞. Suppose that there exists ∆ ≥ 0 such that for each ε > 0 all but a
finite number of the zeros of f(z) lie in the strip |ℑz| ≤ ε. If λ > 0 and λσ < 1,
then the entire function exp(−λ2D2)f(z) is also of genus 1∗ and all but a finite
number of its zeros lie in the strip |ℑz| ≤

√
max{∆2 − 2λ, 0}+ ε. Further, if

∆2 < 2λ, then all but a finite number of the zeros of exp(−λ2D2)f(z) are real
and simple.

The case ∆ = 0 gives an affirmative answer to de Bruin’s question posed
after the comments on Theorem 12. This is a corollary of the easily verified
equality

exp(−λ2D2)f(z) =

∫ ∞

−∞

F (t) exp(λ2t2) exp(izt) dt

where f(z) is the entire function (5.1) with F (t) satisfying Pólya’s conditions
1− 3 stated in the beginning of this section.

Remark. The entire functions of genus 1∗ are, in fact, the entire functions
of the form (3.38) introduced by Pólya in his survey paper on the written
heritage of Jensen.
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6. The Bulgarian trace

The first bulgarian mathematician who was influenced by the work ofG. Pólya

on entire functions with real zeros, was L. Tschakaloff. His paper On a
class of entire functions. Journal Acad. Bulgare Sci. 36 (1927), 51 - 92,
(Bulgarian, German Summary), is devoted to the class (A) of entire functions
which are either algebraic polynomials with zeros in the upper half-plane or
uniform limits of such polynomials. The main result of the paper is Theorem
IV on p. 68 which can be considered as an extension of the Hermite-Bihler

theorem. It states that:
If the function g(z) is in the class (A), then the functions

(6.1) Gα(z) = exp(iα)g(z) + exp(−iα)g(z), g(z) = g(z), α ∈ R,

which are not identically equal to a constant, have the following properties:
1) The function Gα(z) cannot have non-real zeros; indeed, it has infinitely

many real zeros except when the function g(z) has the special form g(z) =
P (z) exp p(z), where P and p are algebraic polynomials such that P is in the
class (A) and p is a real polynomial of degree at most two with non-positive
leading coefficient.

2) Both g(z) and g(z) vanish at each multiple zero of Gα(z).
3) If g(z) does not vanish for real values of z, then between each two consec-

utive zeros of Gα(z) there is only one zero of Gβ(z) when the difference α− β
is not a multiple of π.

It is well known that the order of every functions in the class (A) is at most
two (Egon Lindwart and Georg Pólya, Über einen Zusammenhang
zwischen der Konwergenz von Polynomfolgen und der Verteilung
ihrer Wurzeln. Rend. Circ. Mat. Palermo, 37 (1914) 1-8). On the other
hand, Tschakaloff points out that an entire function of order not greater
than two with zeros in the closed upper half-plan does not need to be in the
class (A). He proves this with suitable examples, one of them being the entire
function

(6.2) F (z) =
1

z2
(exp(−iz)− 1 + iz).

It is clear that it is of order one and of normal exponential type. This means
that it is of exponential type and its type is neither zero nor infinity. In fact,
the type of F (z) is equal to one. The zeros of this function are

zk = ±
(
(2k + 1)

π

2
− εk

)
+ i(log(2kπ) + ηk), k = 1, 2, 3, . . . ,

where {εk}∞k=1 and {ηk}∞k=1 are positive numbers such that limk→∞ εk =
limk→∞ ηk = 0. The function (6.2) is not in the class (A). Otherwise, since
this class is invariant under differentiation, the function z3f(z) as well as all
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its derivatives would be in the same class. However, it is impossible because
(z3F (z))(n) vanishes at the point −ni for n > 2. One may provide another
proof having in mind that

1

2i
(F (z)− F (z)) =

1

z2
(z − sin z) =

∫ 1

0

(1− t) sin zt dt, F (z) = F (z).

Indeed, Hermite-Biehler’s theorem holds for the functions in the class (A).
Hence, the entire function (F (z)−F (z))/(2i) has only real zeros. On the other
hand, it is a general property of the entire Fourier transforms

∫∞

0 ϕ(t) sin zt dt
with non-negative and decreasing kernels ϕ that they have only one real zero.
Tschakaloff gives a proof of the latter statement in the case when the sup-
port of the function ϕ is in the interval [0, 1]. In fact, he reproduces the proof
given by G. Pólya in Math. Z. 2 (1918), 342-383.

We recall that the main ingredient in the proofs of the Prime Number
Theorem given by Hadamard and J. de la Vallée Poussin is the fact that
the Riemann zeta function does not vanish on the boundary of the critical
strip, which means that ζ(s) 6= 0 when Rs ≥ 1. This, together with the
Weierstrass factorization of the entire function ξ(s), shows that if σ ≥ 1/2,
then the entire function ξ(−iσ + z) is in the class (A). Thus Tschakaloff

comes to the following conclusion:
The entire function

exp(iα)ξ(−iσ + z) + exp(−iα)ξ(iσ + z), α ∈ R,

has infinitely many zeros, all real and simple. Moreover, to every two α’s whose
difference is not a multiple of π, there correspond functions with mutually
interlacing zeros.

As another application of the results about the zeros of the functions in the
class (A) Tschakaloff obtains the following assertion:

Let f(t) be a real, non-negative, non-decreasing and bounded function on
the interval (−1, 1). If α is real, then the entire function

(6.3) Fα(f ; z) =

∫ 1

−1

f(t) cos(zt+ α) dt

has infinitely many zeros all of which are real. Moreover, if f(t) is not ex-
ceptional in the sense of G. Pólya, then all the zeros of Fα(z) are simple and
between each two consecutive zeros of Fα(f ; z) there is only one zero of Fβ(f ; z)
when α− β is not a multiple of π.

Using Eneström-Kakeya’s theorem, Tschakaloff proves that the en-
tire function

(6.4) g(f ; z) =

∫ 1

−1

f(t) exp(izt) dt
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is in the class (A) and then applies (6.1).
Let ϕ(t) be a positive, increasing and bounded function in the interval (0, 1)

and define the function f(t) in the interval (−1, 1) assuming that f(t) = ϕ(t+1)
if −1 ≤ t < 0, and f(t) = λϕ(t) if 0 ≤ t < 1, where λ is a real constant such
that |λ| ≥ 1. Then Tschakaloff proves that the entire function g(f ; z) is in
the class (A). Hence, the entire functions

1

2
{exp(iα)g(f ; z) + exp(−iα)g(f ; z)}

=

∫ 1

0

{ϕ(1− t) cos(zt− α) + λϕ(t) cos(zt+ α)} dt, α ∈ R,

possess only real zeros. In particular, by choosing ϕ(t) = ta, a > 0, λ = ±1,
α = 0 or π/2, one concludes that the entire functions

∫ 1

0

{(1− t)a ± ta} cos zt dt and

∫ 1

0

{(1− t)a ± ta} sin zt dt

have only real zeros.
Let now ϕ(t) be a real, nonnegative and convex function defined on the

interval [0, 1] with ϕ(0) = 0. Define f(t) = ϕ(t + 1) for −1 ≤ t < 0 and
f(t) = λ− ϕ(t) for 0 ≤ t ≤ 1 where λ ≥ ϕ(1). Then the entire function g(f ; z)
is in the class (A). Hence, the entire functions

∫ 1

0

ϕ(1 − t) cos(zt− α) dt+

∫ 1

0

(λ− ϕ(t)) cos(zt+ α) dt, α ∈ R,

have only real zeros. In particular, if ϕ(t) = ta, a ≥ 1 and λ = 1, then the
entire functions

∫ 1

0

{(1− t)a + 1− ta} cos zt dt and

∫ 1

0

{(1− t)a − (1 − ta)} sin zt dt

have only real zeros.
In the last part of his paper Tschakaloff studies the zero distribution

of the entire function Fα(f ; z) by applying Hurwitz’s method, i.e. by using
Mittag-Leffler’s decomposition of the meromorphic function

Fα(f ; z)

cos(z − β)
·

The result obtained by him is the following:
Let the real function f(t) have a continuous derivative in the interval [−1, 1].

If at least one of the numbers (f(1) + f(−1)) cosα, (f(1)− f(−1)) sinα is dif-
ferent from zero, then the entire function Fα(f ; z) has infinitely many real and
only a finite number of non-real zeros.
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Further, it is claimed that under the same assumption for the function f(t),
Fα(f ; z) has finitely many multiple zeros and that the differences between its
consecutive real zeros converges to π at infinity.

In his paper Sur le nombre des zéros non-réels d’une classe de fonc-
tions entière. C. R. Acad. Bulgare Sci. 2 (1949), 9-12, Tschakaloff

answers the question: How many non-real zeros do the polynomials

(6.5) Pn(z) =

∫ 1

−1

{p(t)(z + it)n + p(t)(z − it)n} dt, n = 1, 2, 3, . . . ,

have, provided p(z) is an algebraic polynomial with arbitrary complex coeffi-
cients? It is remarkable that the upper bound obtained by the author depends
only on the degree of p. More precisely, the following result holds:

Let p(z) be an algebraic polynomial of degree m. If the polynomial (6.5) is
not identically zero, then the number of its non-real zeros is at most equal to
2 [m/2]. Moreover, to each positive number m there corresponds a polynomial
p(z) of degree m (not depending on n) such that the polynomial (6.5) has
exactly 2 [m/2] non-real zeros for every n ≥ 2[m/2].

Further, the equalities

( z
n

)n
Pn

(n
z

)
=

∫ 1

−1

{
p(t)

(
1 +

izt

n

)n

+ p(t)

(
1− izt

n

)n}
dt, n = 1, 2, 3, . . .

and the theorem of Hurwitz imply that the entire function

∫ 1

−1

{p(t) exp(izt) + p(t) exp(−izt)} dt

has at most m non-real zeros provided p(z) is of degree m.
In particular, if p(z) is a real polynomial of degree m, then the entire func-

tion ∫ 1

−1

p(t) cos zt dt

may have at most m non-real zeros. If m is odd, then, since the above entire
function is real, i.e. it assumes real values when z is real, it has at most m− 1
non-real zeros.

In N. Obrechkoff’s paper On the zeros of the polynomials and
of some entire functions. Annuaire Univ. Sofia, Phys.-Math. Fac. 37
(1940/41) No 1, 1-115 (Bulgarian, French Summary), the following complex
version of a classical theorem of Laguerre for polynomials with real coeffi-
cients is obtained:

Let the zeros of the polynomial

A(z) = a0 + a1z + a2z
2 + · · ·+ anz

n, an 6= 0,
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be in the closed unit disk |z| ≤ 1 and let p(z) be an arbitrary polynomial with
zeros in the half-plane ℜz ≤ n/2. Then the zeros of the polynomial

P (z) = a0p(0) + a1p(1) z + a2p(2) z
2 + · · ·+ anp(n) z

n

are in the disk |z| ≤ 1 too. If the zeros of A(z) are in |z| ≥ 1 and those of p(z)
are in the half-plane ℜz ≥ n/2, then the zeros of P (z) are in |z| ≥ 1. If A(z)
has its zeros on |z| = 1 and p(z) has its zeros on the line ℜz = n/2, then P (z)
has its zeros on |z| = 1.

Let h(z) be a real polynomial whose zeros are in the half-plane ℜz ≤ 1/2. If
f is a non-negative and non-decreasing function in the interval [0, 1], then the
above result and Eneström-Kakeya’s theorem imply that the polynomials

n∑

k=0

h

(
k

n

)
f

(
k

n

)
zk, n = 0, 1, 2, . . .

have their zeros in the unit disk. Applying the method of variation of the
argument, Obrechkoff obtains the following remarkable result:

Let f(t) be a positive and non-decreasing function in the interval (0, 1) and
let the zeros of the real polynomial h(z) be in the half-plane ℜz ≤ 1/2. Then
the entire functions

∫ 1

0

h(t)f(t) cos zt dt and

∫ 1

0

h(t)f(t) sin zt dt

have only real zeros.
This beautiful result, which is sometimes called Obrechkoff’s h-theorem,

appeared in the above paper, published in Bulgarian, so it is not very well-
known to the the experts on the topic.

Another theorem about the zeros of algebraic polynomials, proved in the
same paper, is the following:

Let the zeros of the polynomial
∑n

k=0 akz
k be in the unit disk. If δ is

an arbitrary positive real number and p(z) is a polynomial with zeros in the
half-plane ℑz ≥ 0, then the zeros of the polynomial

n∑

k=0

akp(z + (n− 2k)δi)

lie in the same half-plane.
Again, the above mentioned classical results of Eneström-Kakeya and

Hurwitz, combined with the latter statement, yield:
Let ϕ(t) be a positive and nondecreasing function in the interval (−a, a),

0 < a < ∞. If the zeros of the polynomial p(z) are in the (closed) upper
half-plane, then the same holds for the zeros of the polynomial

∫ a

−a

ϕ(t) p(z − it) dt.
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It is clear that both Tschakaloff and Obrechkoff were inspired by
the results and methods of G. Pólya. If we compare their results, it is
quite evident that Tschakaloff’s approach is rather analytical while that
of Obrechkoff is more algebraic. Of course, both obtain results for the zero
distribution of entire functions defined as finite Fourier transforms. However,
Tschakaloff uses mainly the techniques developed by Pólya and Hurwitz,
while Obrechkoff prefers to establish first results about zeros of algebraic
polynomials. Another example of a result obtained by the latter approach is:

Let ϕ(t) and ψ(t) be non-negative functions in the interval (0, λ), λ > 0, let
ϕ(t) be non-increasing, ψ(t) be non-decreasing, with ϕ(0) ≤ ψ(0). Let us define
f(t) = ϕ(t) + ψ(t) for 0 ≤ t ≤ λ and f(t) = f(−t) for −λ ≤ t ≤ 0. Consider
three polynomials P (z), Q(z) and R(z), such that P (z) is real, Q(z) has only
real and negative zeros, and R(z) has only real zeros. Then the polynomial

∫ λ

−λ

f(t)P (z + it) dt

has at least as many real zeros as P (z). Moreover, the polynomial

∫ λ

−λ

f(t)Q(izt) dt

and the entire functions

∫ λ

−λ

f(t)R(it) exp(izt) dt

have only real zeros.
We hasten to remark that the idea to use functions like ϕ and ψ is due to

Tschakaloff.
The above result is inspired by a Problem stated by G. Pólya in Jahresber.

Deutsch. Math. Ver. 35 (1926), and solved by Obrechkoff (Jahresber.
Deutsch. Math. Ver. 36 (1927). The Problem is the following:

Let P (z), Q(z), R(z) and S(z) =
∑n

k=0 akz
k be polynomials such that:

• P (z) is real,

• Q(z) has only real and negative zeros,

• R(z) has only real zeros, and

• S(z) has its zeros on the unit circle.

Then

• the number of non-real zeros of the polynomial
∑n

k=0 akP (z − (n− 2k)i)
is less or equal to those of P (z);
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• the polynomial

n∑

k=0

akQ((2k − n)iz) has only real zeros;

• the zeros of the polynomial

n∑

k=0

R((2k − n)i)zk are on the unit circle.

Obrechkoff obtains some interesting results which may be considered as
necessary conditions that an entire Fourier transform is in LP.

Let F be a Lebesgue-integrable function in the interval (−a, a), 0 < a ≤ ∞
and let the entire function

∫ a

−a

F (t) exp(izt) dt

be in the class LP . If the zeros of the polynomial p(z) are in a strip parallel
to the imaginary axis, then the zeros of the polynomial

∫ a

−a

F (t)p(z + t) dt

are also in the same strip.
As a corollary of the above theorem, Obrechkoff obtains the following

result:
Let f(t) be an Lebesgue-integrable function in (−1, 1), such that f(−t) =

f(t) for t ∈ (−1, 0) and let the entire function

∫ 1

−1

f(t) exp(izt) dt

have only real zeros. If P (z) is an arbitrary real polynomial and Q(z) is a
polynomial with only real and negative zeros, then the polynomial

∫ 1

−1

f(t)P (z + it) dt

has at least as many real zeros as P (z), and the polynomial

∫ 1

−1

f(t)Q(izt) dt

has only real zeros.
In the beginning of his dissertation Über die Nullstelle gewisser Klassen

von Polynomen und ganzen Funktionen, Inagural Dissertation zur Erlan-
gung der Doktorwürde der mathematischenWissenschaften an der Physikalisch-
Mathematischen Fakultät der Universität Sofia, Sofia, 1940 (Bulgarian, Ger-
man Summary), L. Ilieff proposes an elementary proof of the well-known



Dimitar K. Dimitrov and Peter K. Rusev 73

result of Pólya for reality of the zeros of the entire function

Fq(z) =

∫ ∞

0

exp(−t2q) cos zt dt, q ∈ N.

Using only Rolle’s theorem the author proves by induction that the polyno-
mials

Pm,n(z) =

∫ 1

−1

(1− t2q)m(1 + itz)n dt, k, n = 0, 1, 2, . . .

have only real zeros. Further, replacing z by z/n and letting n to converge to
∞, one concludes that the entire functions

∫ 1

0

(1− t2q)m cos zt dt, m = 1, 2, 3. . . . ,

have only real zeros. Hence, the entire functions

Em(z) =

∫ m1/2q

0

(
1− t2q

m

)m

cos zt dt, m = 1, 2, 3, . . .

have also only real zeros. Since limm→∞Em(z) = Fq(z) uniformly on every
bounded domain, the assertion for the zeros of the function Fq(z) is a conse-
quence of Hurwitz’s theorem.

A very fruitful idea of Ilieff is the synthesis of two algebraic theorems.
The first of them is due to Obrechkoff (Sur les racines des équations
algébriques, The Tôhoku Mathem. J. 38 (1933) 93-100):

Let λ be an arbitrary non-zero complex number with amplitude θ and let
S be the closed strip between two parallel lines crossing the positive real axis
at an angle θ+ π/2. If the zeros of the polynomial p(z) are in S and the zeros
of the polynomial a0 + a1z + a2z

2 + · · · + anz
n are on |z| = 1, then the zeros

of the polynomial

(6.6)

n∑

k=0

ak p(z + (n− 2k)λ)

are also in S.
The second assertion, which plays the role of a “key lemma”, is formulated

as an auxiliary theorem on p. 15 of Ilieff’s Dissertation:
Let P (z) be a polynomial of n-th degree with zeros in the region |z| ≥ 1

and let us define P ∗(z) = znP (1/z). Then the zeros of the polynomials

(6.7) P (z) + γzkP ∗(z), |γ| = 1, k = 0, 1, 2, . . .

are on |z| = 1.
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The following statement is more general than Theorem IV on p. 15 in the
Dissertation. We provide a sketch of the proof where we follow the idea of Ilieff.

If f(t) is a real, positive and non-decreasing function in the interval (0, a),
a > 0 and the zeros of the algebraic polynomial p(z) are in the strip α ≤ ℜz ≤ β,
then each of the polynomials

(6.8)

∫ a

0

f(t){p(z + t) + γp(z − t)} dt, |γ| = 1,

has its zeros in the same strip.
It follows from the Eneström-Kakeya theorem and the key lemma that,

for every n ∈ N and |γ| = 1, the zeros of the polynomial

n−1∑

k=0

f

(
a

(
1− k

n

))
zk + (1 + γ)f(0)zn + γ

n∑

k=1

f

(
a
k

n

)
zn+k,

are on the unit circle. If λ = a/(2n), then Obrechkoff’s theorem implies
that the zeros of the polynomials

Qn(f, p; z) =
a

n

n−1∑

k=0

f

(
a

(
1− k

n

))
p

(
z + a

(
1− k

n

))

+
a

n
(1 + γ)f(0)zn +

a

n

n∑

k=1

f

(
a
k

n

)
p

(
z − a

k

n

)
, n = 1, 2, 3, . . .

are in the strip α ≤ ℜz ≤ β. Since

lim
n→∞

Qn(f, p; z) =

∫ 1

0

f(a(1− t))p(z + a(1− t)) dt+ γ

∫ 1

0

f(at)p(z − at) dt

=
1

a

∫ a

0

f(t){p(z + t) + γp(z − t)} dt

uniformly on every compact subset of the complex plane, Hurwitz’s theorem
yields that the zeros of the polynomial (6.8), with |γ| = 1, are in the strip
α ≤ ℜz ≤ β.

If p(z) = zn, α = β = 0 and a = 1, then the zeros of the polynomials

∫ 1

0

f(t){(z + t)n + γ(z − t)n} dt, |γ| = 1, n = 1, 2, 3, . . .

are on the imaginary axis and, hence, the polynomials

∫ 1

0

f(t)

{(
1 +

izt

n

)n

+ γ

(
1− izt

n

)n}
dt, n = 1, 2, 3, . . .
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have only real zeros. Therefore, the entire function

∫ 1

0

f(t){exp(izt) + γ exp(−izt)} dt

has only real zeros too.
Classical results of Pólya are particular cases for γ = 1 and γ = −1,

respectively.
In the paper On the distribution of the zeros of a class of entire

functions. Annuaire Univ. Sofia, Faculté des Sci. 44 (1948) 143-174 (Bulgar-
ian, German Summary), Ilieff proposes a technique which generates classes of
entire functions, defined as finite cosine transforms, with only real zeros. Some
of the results in this paper are published also in the note Ganze Funktionen
mit lauter reellen Nullstellen. C. R. Acad Bulgare Sci. 2 (1949) 17-20.
The first one is the following:

Let the function f0(t) be non-negative, increasing and integrable in the
interval (0, 1). Define x = x(t) = 1 − tα, α ≥ 1, 0 ≤ t ≤ 1, ϕ0(x) = f0((1 −
x)1/α), ϕ1(x) =

∫ x

0
ϕ0(u) du, 0 ≤ x ≤ 1, and f1(t) = ϕ1(1 − tα), 0 ≤ t ≤ 1.

Then the entire function ∫ 1

0

f1(t) cos zt dt

has only real zeros. If α > 1, then its zeros are simple.
Examples to the above assertion are the entire functions

∫ 1

0

(1 − tα)λ cos zt dt,

∫ 1

0

sinλ(1 − tα) cos zt dt,

∫ 1

0

(1− tα)(1 − log(1− tα)) cos zt dt,

where α ≥ 1, 0 < λ ≤ 1.
The second result in the paper is more general:
Let the function ψ(t) be positive and integrable in the interval (0, 1). De-

fine x = ω(t) =
∫ 1

t ψ(u) du, 0 ≤ t ≤ 1. Suppose that the function f0(t) is
nonnegative, increasing and integrable in (0, 1). Define ϕ0(x) = f0(ω

−1(x)),
ϕ1(x) =

∫ x

0
ϕ0(u) du and f1(t) = ϕ1((ω(t)). If the entire function

∫ 1

0

ψ(t)f0(t) sin zt dt

has either only real zeros or only real and simple zeros, then the entire function

(6.9)

∫ 1

0

f1(t) cos zt dt

has either only real zeros or only real and simple zeros too.
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There is no doubt that Ilieff’s paper Über trgonometrische Integrale,
welche ganze Funktionen mit nur reellen Nulstellen darstellen. Acta
Math. Acad. Sci. Hungar. 6 (1955), 191-195, is one of his main contributions
to the zero distribution of entire Fourier transforms.

Let p(z) be either a real and even polynomial or a real and even entire
function such that: a) p(a) = 0, a > 0; b) p′(iz) is in the class LP . Denote by
A(a) the set of the real and even function p(z), z ∈ C satisfying the conditions
a) and b). The first result in the paper of Ilieff concerns cosine transforms.
It is the corollary on p. 193:

If p(z) ∈ A(a), p(0) > 0 and λ > −1, then the entire function

∫ a

0

pλ(t) cos zt dt

has only real zeros.
It is pointed out that Pólya’s classical result that the entire function

∫ 1

0

(1− t2q)λ cos zt dt

has only real zeros, when q is a positive integer and λ > −1, is a consequence
of the fact that the real and even function 1− z2q is in A(1).

Let p(z) be real, positive and even polynomial, such that the polynomial
p′(iz) has only real zeros. It is proved that if the positive integer n > p(0), then
there exists a unique sequence of real positive numbers an, such that p(an) = n.
Moreover, limn→∞ an = ∞. It turns out that the function 1− p(z)/n ∈ A(an)
for every sufficiently large n. Hence, the entire function

∫ an

0

(
1− p(t)

n

)n

cos zt dt

has only real zeros if n is large enough. Since 0 < p(t) < n and

0 <

(
1− p(t)

n

)n

< exp(−p(t)) for n > p(0) and t ∈ (0, an),

it follows that the entire function
∫∞

0 exp(−p(t)) cos zt dt has only real zeros.
Further, Hurwitz’s theorem yields:

Let f(z) be a nonconstant, real and even entire function such that f ′(iz) is
in the class LP . If f(t) ≥ 0 for t ∈ (0,∞), then the entire function

(6.10)

∫ ∞

0

exp(−f(t)) cos zt dt

has only real zeros.
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The classical statement of Pólya concerning the reality of the zeros of the
entire function ∫ ∞

0

exp(−a cosh t) cos zt dt, a > 0,

is a consequence of Ilieff’s result because the entire function a cosh z satisfies
the requirements of the above assertion.

Entire functions of the form (6.10) are studied in the paper of N. G. de

Bruijn, Duke Math. J. 17 (1950), 197-226. In fact, Ilieff’s theorem is a
version of Theorem 1 in de Bruijn’s paper. Ilief’s proof of de Bruijn’s

theorem is included first in his paper in Proc. Inst. Math. Acad. Bulgare Sci.
1 (1954), 147-153 (Bulgarian, German Summary), with the same title as that
in Acta Math. Hung. It seems that by that time Ilieff was not familiar with
de Bruijn’s paper.

The “algebraic” tradition in studying the zero distribution of classes of
complex polynomials having suitable integral representation is followed in the
paper On the distribution of the zeros of a class of polynomials and
entire functions, Annuaire Univ. Sofia, Fac. des Sciences, 46 (1949/50) Livre
1, 43-72 (Bulgarian, German Summary) of E. Bojoroff. A typical example
is the following statement:

Let the real function f(t) and ϕ(t) satisfy the conditions: 1) f(t) > 0, ϕ(t) >
0 in the interval (0, a), a > 0; 2) f(t) is increasing and ϕ(t) is decreasing in
(0, a). If the zeros of the algebraic polynomial p(z) lie in the strip α ≤ ℜz ≤ β,
then the zeros of the polynomial

∫ a

0

{Fλ(t)p(z + t) + Φλ(t)p(z − t)} dt,

where

(6.11) Fλ(t) =

∫ a−t

0

{f(t+ u)ϕ(u) + λϕ(t+ u)f(u)} du, |λ| = 1,

(6.12) Φλ(t) =

∫ a−t

0

{ϕ(t+ u)f(u) + λf(t+ u)ϕ(u)} du, |λ| = 1,

lie in the same strip.
The proof is based on the following assertion, which is a further extension

of Ilieff’s generalization of I. Schur’s theorem, established in [Schur 1917]:
If the zeros of the polynomial P (z) are in the region |z| ≥ 1 and those of the

polynomial Q(z) are in the region |z| ≤ 1, then the zeros of the polynomials

P (z)Q∗(z) + λzsP ∗(z)Q(z), |λ| = 1, s = 0, 1, 2, . . .

are on the unit circle.
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If λ = 1, then the zeros of polynomial

∫ a

0

s(t){p(z + t) + p(z − t)} dt,

where

s(t) =

∫ a−t

0

{f(t+ u)ϕ(u) + f(u)ϕ(t+ u)} du,

are in the strip α ≤ ℜz ≤ β. It is clear that in general the positive function
s(t) is not monotonically increasing in the interval (0, a).

Let ϕ(t) = 1 for each t ∈ (0, a) and suppose that f(t) is continuous. Then,
s(t) is differentiable for t ∈ [0, a] and s′(t) = −{f(t) + f(a− t)} there. Hence,
in this case s(t) is an even decreasing function in (0, a).

Further, suppose that α = β = 0 and choose p(z) = zn, n = 1, 2, 3, . . . .
Then the zeros of polynomials

Pn(z) =

∫ a

0

s(t) {(1 + izt)n + (1− izt)n} dt, n = 1, 2, 3, . . .

are real. Therefore, the entire function

∫ a

0

s(t) cos zt dt =
1

2
lim
n→∞

Pn

( z
n

)

has only real zeros.
If λ = −1, then the polynomial

∫ a

0

σ(t){p(z + t)− p(z − t)} dt,

where

σ(t) =

∫ a

0

{f(t+ u)ϕ(u)− f(u)ϕ(t+ u)} du,

has its zeros in the strip α ≤ ℜz ≤ β. Choosing again p(z) = zn, one concludes
that the polynomials

Qn(z) =

∫ a

0

σ(t){(1 + izt)n − (1− izt)n} dt, n = 1, 2, 3, . . . ,

have only real zeros and, hence, the entire function

∫ a

0

σ(t) sin zt dt =
1

2i
lim
n→∞

Qn

( z
n

)

has also only real zeros too.
Statements similar to Bojoroff’s one, were obtained inD. G. Dimitrov’s

paper On the distribution of zeros of certain polynomials and entire
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functions representable in an integral form Proc. Vish Lesotehnich-
eski Institute 8 (1960) 311-326. All these may be considered as extensions of
Obreshkoff’s earlier results. Here are some of them:

If p(z) is a polynomial with zeros in the half-plane ℑz ≤ 0 and Fλ and Φλ

are the functions defined in (6.11) and (6.12), with |λ| ≤ 1, then the zeros of
the polynomial

∫ a

0

{Fλ(t)p(z + it) + Φλ(t)p(z − it)} dt,

are in the same half-plane.
Suppose that P (z), Q(z) and R(z) are polynomials, where P (z) is real,

Q(z) with real negative zeros, and R(z) with real zeros, and Fλ and Φλ are the
functions (6.11) and (6.12) with |λ| = 1. Then, the polynomial

∫ a

0

{Fλ(t)P (z + t) + Φλ(t)P (z − it)} dt

has at least so many real zeros as P (z), the polynomial

∫ a

0

{Fλ(t)Q(−izt) + Φλ(t)Q(izt)} dt

and the entire function
∫ a

0

{Fλ(t)R(−it) exp(−izt) + Φλ(t)R(it) exp(izt)} dt

have only real zeros.
A consequence of the first statement is that the zeros of the polynomials

∫ a

0

{
Fλ(t)

(
1 +

izt

n

)n

+Φλ(t)

(
1− izt

n

)n}
dt n = 1, 2, 3, . . .

are in the half-plane ℑz ≥ 0. Hence, the zeros of the entire function

∫ a

0

{Fλ exp(izt) + Φλ exp(−izt)} dt

are also in the half-plane ℑz ≥ 0. Moreover, if λ is real and |λ| ≤ 1, then the
entire functions ∫ a

0

{Fλ(t) cos zt+Φλ(t) sin zt} dt

and ∫ a

0

{Fλ(t) cos zt− Φλ(t) sin zt} dt

have only real zeros.
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An entire function is said to be in the class A, if the series

ω∑

n=1

∣∣∣∣ℑ
(

1

zn

)∣∣∣∣ ,

where {zn}ωn=1, 0 ≤ ω ≤ ∞, are its zeros which are not at the origin, is
convergent (B. Ja. Levin, Distribution of zeros of entire functions,
Chapter V). In particular, an entire function without zeros (ω = 0) or with
finitely many zeros (1 ≤ ω <∞) is in the class A.

The entire functions of the form (4.7) are also in the class A and this follows
from the absolute convergence of the series (4.8). It was already observed that
a consequence of the last property is that, if δ ∈ (0, π/2), then in the “angular
neighbourhood” Aδ = {| arg z| < δ}⋃{| arg(−z)| < δ} of the real axis contains
infinitely many zeros of the function (4.8). In fact, this is a common property
of all the functions in the class A. A function of this class may have infinitely
many zeros outside any Aδ. However, if {z̃n}ωn=1 are its zeros outside Aδ, then
the series

ω∑

n=1

1

|z̃n|
is convergent, whatever δ ∈ (0, π/2) is. This means that, for every such δ,
“almost” all the zeros of a function from the class A are in Aδ.

It is well known that an entire function of exponential type, which is
bounded on the real axis, is in the class A. This follows immediately from
Theorem 2 on p. 225 in B. Ja. Levin’s book. In particular, every entire
function of the form

(6.13) Ea(f ; z) =

∫ a

−a

f(t) exp(izt) dt, 0 < a <∞, f ∈ L(−a, a),

is in the class A and the same holds for the entire functions

(6.14) Ua(f ; z) =

∫ a

0

f(t) cos zt dt

and

(6.15) Va(f ; z) =

∫ a

0

f(t) sin zt dt

where f ∈ L(0, a).
On p. 291 in his paper [Titchmarsh 1926] E. Titchmarsh gives an ex-

ample of an entire function of the form (6.13) with infinitely many zeros on
the “positive” imaginary half-axis. As we have just mentioned, there exists a
function in the class A with infinitely many zeros outside every set Aδ with
δ ∈ (0, π/2). On the other hand, the entire function

1

z2
{exp(−iz)− 1 + iz} = −

∫ 1

0

(1− t) exp(−izt) dt,
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considered by L. Tschakaloff, has finitely many zeros outside every set Aδ

with δ ∈ (0, π/2)
The asymptotic behaviour of the zeros of functions of the form (6.13) is

studied in one of papers of N. Obrechkoff’s that we have already surveyed.
It is proved that if the function f(t),−a ≤ t ≤ a, 0 < a < ∞ admits an L-
integrable derivative and if f(−a)f(a) 6= 0, then there exists a strip α ≤ ℑz ≤
β, α < 0 < β containing all the zeros of the entire function (6.13). Further,
it is proved that if N(µ, λ), µ < λ is the number of the zeros of this function
whose real parts are in the interval (µ, λ), then

N(µ, λ) =
a

π
(λ− µ) +O(1).

The asymptotics of the zeros of the entire functions (6.14) and (6.15) is inves-
tigated in P. Rusev’s paper On the asymptotic behaviour of the zeros
of a class of entire functions. Proc. Inst. Math. Acad. Bulgare Sci. 4
(1960), 67-73 (Bulgarian, Russian and German Summaries). Without loss of
generality, one may assume that a = 1. Recall that in this case the function
(6.14) and (6.15) are denoted by U(f ; z) and V (f ; z), respectively. For any
λ ∈ R, denote by G(λ) the set of the real positive functions γ(t), defined for
0 < t <∞, such that lim inft→∞ tλγ(t) exists and is positive. Let H(λ) be the
class of entire functions F with the property that, for every γ ∈ G(λ), F has
finitely many zeros outside the region

S(γ) = {z = x+ iy : −∞ < x <∞, |y| < γ(|x|)}.

The results in [Rusev 1960] are:
Let f be an Lebesgue-integrable function in the interval [0, 1]. If

∫ 1

0

f(t) cos(2n+ 1)
πt

2
dt = o

(
1

nδ+3

)
, n→ ∞,

for some δ > 0 and

∞∑

n=0

(−1)n(2n+ 1)

∫ 1

0

f(t) cos(2n+ 1)
πt

2
dt 6= 0,

then, for any ε ∈ (0, δ), the entire function U(f ; z) is in the class A(δ − ε).

Let f be an Lebesgue-integrable in [0, 1]. If

∫ 1

0

f(t) sinnπt dt = o

(
1

nδ+3

)
, n→ ∞,

for some δ > 0 and

∞∑

n=1

(−1)nn

∫ 1

0

f(t) sinnπt dt 6= 0,
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then, for any ε ∈ (0, δ), the entire function V (f ; z) is in the class A(δ − ε).
The proofs are based on a theorem of N. Obrechkoff, stated on p. 144 of

his paper [Obrechkoff 1936], which concerns the distribution of zeros of mero-
morphic functions of the form

−γ +
∞∑

n=−∞

An

z − an
,

where γ 6= 0, and An, an ∈ R for n ∈ Z, as well as on the Mittag-Leffler

decompositions of the meromorphic functions U(f ; z)/ cos z and V (f ; z)/ sin z.
Recall that G. Pólya proved in [Pólya 1918] that the entire function

V (z) =

∫ 1

0

t sin zt dt =
1

z

(
sin z

z
− cos z

)

has only real zeros and that every interval ((2n− 1)π/2, (2n+ 1)π/2), n ∈ N,
contains only one zero αn of this function. Moreover,

lim
n→∞

(
(2n+ 1)

π

2
− αn

)
= 0

and the last limit relation is intuitively clear, if we look at the graph of

V (z) =
cos z

z2
(tan z − z).

A similar result, proved by P. Rusev in the paper Asymptotic properties
of the zeros of a class of meromorphic functions, Annuaire Univ. Sofia,
Math. Fac. 58 (1963/64) 241-271 (Bulgarian, English Summary), is the fol-
lowing one:

Let F be an even entire function of normal exponential type and let σ be
its type. Let F satisfy the following conditions:

a) F (x) = O

(
1

|x|µ
)

as |x| → ∞, µ >
1

2
;

b) (−1)nF
(
(2n+ 1)

π

2σ

)
> 0, n = 0, 1, 2, . . . ;

c) F
(
(2n+ 1)

π

2σ

)
= O

(
1

n3+δ

)
, δ > 0, n→ ∞.

Then F has only real zeros and every interval ((2n−1)π/(2σ), (2n+1)π/(2σ)),
n ∈ N contains only one zero of F . If this zero is zn, then

(2n+ 1)
π

2σ
− zn = O

(
1

nδ−ε

)

for every positive ε < δ.
The asymptotics of the zeros of the entire functions U(f ; z) and V (f ; z) is

studied also in the paper of I. Kasandrova Distribution of the zeros of
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a class of entire functions of exponential type. Université de Plovdiv
“Paissi Hilendarski”, Travaux scientifiques, vol. 13 (1975) - Mathematiques,
339-345 (Bulgarian, English Summary) under weaker assumptions than those
in the papers of P. Rusev. Here are the corresponding results:

Let f be a real and Lebesgue-integrable function in [0, 1]. If

∫ 1

0

f(t) cosnπt dt = O

(
1

n2+ε

)

for some ε > 0 and

∞∑

n=1

(−1)n
∫ 1

0

f(t) cosnπt dt 6= 0,

then the zeros of the entire function U(f ; z) belong to a strip parallel to the
real axis.

Let f be a real and Lebesgue-integrable function in [0, 1]. If

∫ 1

0

f(t) sin(2n+ 1)
πt

2
dt = O

(
1

n2+ε

)

for some ε > 0 and

∞∑

n=0

(−1)n
∫ 1

0

f(t) sin(2n+ 1)
πt

2
dt 6= 0,

then the zeros of the entire function V (f ; z) are in a strip parallel to the real
axis.

It is clear that, since the entire functions U(f ; z) and V (f ; z) are real when f
is real, any strip parallel to the real axis and containing their zeros, is symmetric
with respect to it.

We recall once again that G. Pólya was the first to observe the relation
between the reality of the zeros of Fourier’s transforms of a real R-integrable
function f on the interval [0, 1] and the distribution of zeros of the polynomials

(6.16) Pn(f ; z) =
n∑

k=0

f

(
k

n

)
zk, n = 1, 2, 3, . . .

His idea was to apply the principle of argument and the Eneström-Kakeya

theorem. Thus, he succeeded to prove that the entire functions U(f ; z) and
V (f ; z) have only real and, in general, interlacing zeros when f is a non-negative
and monotonically increasing in [0, 1]. L. Ilieff’s approach to the same prob-
lem is based on his generalization of a theorem of I. Schur and on an algebraic
theorem of N. Obrechkoff. In the paper Über die Verteilung der Null-
stellen einer Klasse ganzer Funktionen,C. R. Acad. Bulgare Sci. 14



84 Zeros of entire Fourier transforms

(1961) No 1, 7-9 (Russian Summary), P. Rusev studies the relation between
the asymptotics of the zeros of polynomials (6.17) when n → ∞ and the zero
distribution of the entire functions U(f ; z) and V (f ; z). The following asser-
tion can be considered as a generalization of a particular case of L. Ilieff’s

theorem of Schur’s type:
Let P (z) be a polynomial of n-th degree with zeros in the region |z| ≥ r,

0 < r ≤ 1. Then the zeros of the polynomial P (z) + εznP ∗(z), |ε| = 1, are in
the circular ring

1−
√
1− r2

r
≤ |z| ≤ 1 +

√
1− r2

r
.

Note that if P (z) = z − r, 0 < r < 1, then the zeros of the polynomial
P (z)− zP ∗(z) are at the points (1−

√
1− r2)/r and (1 +

√
1− r2)/r, so that

this result is sharp.
Suppose that f is a real R-integrable function in [0, 1], such that there exists

a nonnegative constant λf with the property that, for every positive number
δ, all the zeros of the polynomials (6.16) are in the disk |z| ≤ 1 + (λf + δ)n−2,
provided n is large enough. Then, under the additional assumption that
f(0)f(1) 6= 0, it was proved that the zeros of the entire functions U(f ; z)
and V (f ; z) are in the strip |ℑz| ≤

√
2λf .

These results we sharpened by K. Dočev’s in his paper Über die Ver-
teilung der Nullstellen einer Klasse ganzer Funktionen C. R. Acad.
Bulgare Sci. 15 (1962), 239-241 (Russian Summary). There he introduces the
class Lα(λ), α, λ > 0 of the complex-valued and R-integrable functions f on
the interval [0, 1] with the property that, for any δ > 0, all the zeros of the
polynomial (6.16) lie in the disk |z| < 1+(λ+δ)n−α provided n is large enough.
The first results announced in this paper are:

If f ∈ L1(λ), then the zeros of the entire function

(6.17) E(f ; z) =

∫ 1

0

f(t) exp(izt) dt

are in the half-plane ℑz ≥ −λ.
If f ∈ Lα(λ) with α > 1, then the zeros of the entire function (6.18) are in

the half-plane ℑz ≥ 0.
Further, it is claimed that from the above assertion andHermite-Biehler’s

theorem for entire function of first order, it follows that, if the function f is
real, then the entire functions U(f ; z) and V (f ; z) have only real and interlacing
zeros. This is true if the defect of the entire function (6.17) is positive and this
condition is satisfied if the function f satisfies additional requirements. The
other results in K. Dočev’s paper are the following:

If the function f satisfies the Lipschitz condition |f(t′)−f(t′′)| ≤M |t′−t′′|
in the interval [0, 1], |f(1)| ≥ |f(0)| and f(1) 6= 0, then f ∈ L1(λ) with λ =
M |f(1)|−1.
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If f satisfies Lipschitz’s condition in the interval [0, 1] with constant M
and |f(1)| ≤ |f(0)|, then all the zeros of entire function (6.17) are in the strip
−M |f(0)|−1 ≤ ℑz ≤ (|f(0)| − |f(1)|+M)|f(1)|−1.

The fact that the defect of the entire function E(f ; z) is, in general, non-
negative, plays an essential role in proving that the entire functions U(f ; z) and
V (f ; z) have only real zeros when f ∈ Lα(λ) with α > 1. It is interesting what
happens when α = 1. An answer of this question for a class of entire func-
tions of exponential type is given in I. M. Kasandrova’s paper A theorem
of Hermite-Biehler type for a class of entire functions. C. R. Acad.
Bulgare Sci. 29 (1976), 1245-1248 (Russian). The corresponding assertion is:

Let ω(z) = u(z)+ iv(z) be an entire function of exponential type satisfying
the following conditions:

a) the defect dω of the function ω is positive;
b) the zeros of the function ω(z) are in the half-plane ℑz ≥ −λ, 0 ≤ λ <∞;
c) the function ω(z) is bounded on the real axis;
d) if δ > λ, then Mω(δ, λ) = supt∈R

|ω(t+ iδ)/ω(t+ iδ)| <∞.
Then the zeros of the real entire functions u(z) and v(z) belong to the strip

|ℑz| ≤ δ + (2dω)
−1 log+Mω(δ, λ).

As an application of the above theorem Kasandrova obtains the following
result:

Let the zeros of the function (6.17) be in the half-plane ℑz ≥ −λ, λ ≥ 0,
the function f be continuous and f(1) 6= 0, and let ME(δ, λ) < ∞ for δ > λ.
Then the zeros of the entire functions U(f ; z) and V (f ; z) belong to the strip
|ℑz| ≤ δ +ME(δ, λ).

For a complex function F , defined on the interval [0, 1], denote by Bn(F ; z)
its n-th S. N. Bernstein polynomial,

Bn(F ; z) =
n∑

k=0

(
n

k

)
F

(
k

n

)
zk(1 − z)n−k, n = 1, 2, 3, . . .

Let B be the set of functions F for which limn→∞Bn(F ; t) = F (t) almost
everywhere in [0, 1]. Further, denote by F the set of function F , such that the
zeros of the polynomials

Qn(F ; z) =

n∑

k=0

(
n

k

)
F

(
k

n

)
zk, n = 0, 1, 2 . . .

are in the unit disk when n is large enough. Finally, let E be the set of the
complex functions f defined in [0, 1], such that the zeros of the polynomials
(6.16) are located in the unit disk for every sufficiently large n.

The following assertion is proved in P. Rusev’s paper On an application
of S. N. Bernstein’s polynomials. C. R. Acad. Bulgare Sci. 26 (1973),
585-586 (Russian):
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If F ∈ B ∩ F with F (1) 6= 0 is real and bounded and f ∈ E is real and
R-integrable, then the entire functions

U(F, f ; z) =

∫ 1

0

F (t)f(t) cos zt dt

and

V (F, f ; z) =

∫ 1

0

F (t)f(t) sin zt dt

have only real zeros.
The proof is based on the equalities

Bn(F ; z) = (1− z)nQn

(
F ;

z

1− z

)
, n = 1, 2, 3, . . . ,

which imply that if n is large enough, then the zeros of the polynomial Bn(F ; z)
are in the half-plane ℜz ≤ 1/2. By Obrechkoff’s h-theorem the entire
functions

Un(F, f ; z) =

∫ 1

0

Bn(F ; t)f(t) cos zt dt,

Vn(F, f ; z) =

∫ 1

0

Bn(F ; t)f(t) sin zt dt

have only real zeros. The sequences {Un(F, f ; z)}∞n=1 and {Vn(F, f ; z)}∞n=1

are uniformly bounded on every compact set K ⊂ C and, by a well-known
theorem of Lebesgue, they converge to U(f ;x) and V (f ;x), respectively, for
every z ∈ R. Hence, by Vitali’s theorem, these sequences converge locally
uniformly to the entire functions U(F, f ; z) and V (F, f ; z), respectively, and,
by Hurwitz’s theorem, the latter functions possess only real zeros.

The class E , under another notations, is used by different authors. It seems
that the class F was introduced in E. Bojoroff’s paper On some questions
related to the theory of integral polynomials. Annuaire de l’Institut
Chimico-Technologique, 2 (1955), Livre 2, 151-161 (Bulgarian, Russian and
German Summaries). There, on the basis ofG. Szegö’s version of the classical
theorem of Grace, it is proved that if F ∈ F ,Φ ∈ F and f ∈ E , then FΦ ∈ F
and Ff ∈ E . In addition, it is shown that an algebraic polynomial p(z) having
its zeros in the half-plane ℜz ≤ 1/2 is in the set F . This is a corollary of the
equality

n∑

k=0

(
n

k

)(
k

n
− ζ

)
zk = (1 + z)n−1(z(1− ζ)− ζ), n = 1, 2, 3, . . .

and the fact that ℜζ ≤ 1/2 implies |ζ(1 − ζ)−1| ≤ 1.
Let h(z) be a real polynomials having its zeros in the half-plene ℜz ≤ 1/2

and let the function f ∈ E . Then, it follows from the above statement that
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hf ∈ E . Hence, the entire functions U(hf ; z) and V (hf ; z) have only real zeros.
Thus, as Bojoroff mentions, one obtains another proof of Obrechkoff’s h-
theorem.

G. Pólya pointed out that there are kernels f , for which the entire func-
tions U(f ; z) and V (f ; z) have only real zeros and infinitely many common
zeros. This happens, if, for example, f is an exceptional function, i.e. f is
non-negative, increasing and has finitely many points of growth, all of which
are rational numbers. Indeed, here is a simple example:

U(1; z) =

∫ 1

0

cos zt dt =
sin z

z
=

2

z
sin

z

2
cos

z

2
,

V (1; z) =

∫ 1

0

sin zt dt =
1− cos z

z
=

2

z
sin

z

2
sin

z

2
.

Let η(t) be the function defined in [0, 1] by

η(t) =





1, 0 ≤ t < 1/2,
0, t = 1/2,
−1, 1/2 < t ≤ 1.

Then a simple calculation shows that

U(η; z) =
2

z

(
1− cos

z

2

)
sin

z

2
, V (η; z) = −2

z

(
1− cos

z

2

)
cos

z

2
·

A wide classes of functions U(f ; z) and V (f ; z) with only real zeros and
having infinitely many common zeros are given in P. Rusev’s paper Some
results about the distribution of zeros of entire functions of the form∫ 1

0
f(t) cos zt dt and

∫ 1

0
f(t) sin zt dt. Proc. Inst. Math. Acad. Bulgare Sci.

15 (1974) 33-62 (Bulgarian, Russian and English Summaries). Theorem 3 on
p. 38 states:

Let τ be a real number, such that |τ | ≥ 1, and let Eτ be the set of the real
R-integrable function f in [0, 1], satisfying the following conditions:

1) f(t) = τf(1− t) if 1
2 < t ≤ 1;

2) all the zeros of the polynomial

n−1∑

k=0

f

(
k

2n− 1

)
zk

are in the region |z| ≥ 1 when n is large enough.
Then
a) for each f ∈ Eτ the entire functions U(f ; z) and V (f ; z) have only real

zeros;
b) if f ∈ E1, then

U(f ; z) = R(z) cos
z

2
, V (f ; z) = R(z) sin

z

2
,
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where R(z) is an entire function with only real zeros. Moreover, R(z) =
(2/z) sin(z/2) if and only if f(t) = 1 almost everywhere in the interval [0, 1].

c) if f ∈ E−1, then

U(f ; z) = S(z) sin
z

2
, V (f ; z) = −S(z) cos z

2
,

where S(z) is an entire function with only real zeros. Moreover, S(z) =
(2/z)(1− cos(z/2)) if and only if f(t) = η(t) almost everywhere in [0, 1].

It is clear that if a function f ∈ Eτ is positive and monotonically decreasing
in [0, 1/2), then it satisfies condition 2).

It was already mentioned that the possibility to apply a theorem ofHermite-

Biehler’s type to the entire function E(f ; z) leads to the conclusion that the
entire functions U(f ; z) and V (f ; z) have only real and, in general, interlac-
ing zeros. More detailed information about the distribution of their zeros can
be obtained by A. Hurwitz’s approach to this problem. We emphasize that
Hurwitz uses Mittag-Leffler’s decompositions of the meromorphic func-
tions U(f ; z)/ cos z, V (f ; z)/ sin z, U(f ; z)/ sin z and V (f ; z)/ cos z. Then, as it
is well-known, the number of the non-real zeros of U(f ; z) and V (f ; z) depends
on the number of variations in the sequences of Fourier’s coefficients of func-
tions, which are related to the function f . Moreover, the real zeros of U(f ; z)
and V (f ; z) may interlace either with the zeros of cos z or with those of sin z.

In I. M. Kasandrova’s paper Some results about a class of entire
functions with only real zeros, C. R. Acad. Bulgare Sci. 30 (1977), 965-968
(Russian), sufficient conditions ensuring this interlacing are established in the
case when U(f ; z), and V (f ; z) have only real zeros and the distance between
every two consecutive zeros of each function is not greater that π. Under these
assumptions, the corresponding results can be formulated as follows:

If U(f ; 0) 6= 0 and if {µn, n ∈ Z} is a sequence of positive numbers with∑∞

n=−∞
µn = 1 and |U(f ; (2n + 1)π/2)| < µn|U(f ; 0)| for n ∈ Z, then every

interval [(2n−1)π/2, (2n+1)π/2], n ∈ Z, contains only one zero of the function
U(f ; z).

If U(f ; 0) 6= 0 and if {µn, n ∈ Z∗} is a sequence of positive numbers such
that

∑∞

n=1(µn + µ−n) = 1 and n|U(f ;nπ)| < µn|U(f ; 0)|, n ∈ Z∗, then the
zeros of U(f ; z) are separated by that of the function sin z.

If V ′(f ; 0) 6= 0 and {µn, n ∈ Z∗} is a sequence of positive numbers such
that

∑∞

n=1(µn + µ−n) = 1 and |V (f ;nπ)| < µn|V ′(f ; 0)|, n ∈ Z∗, then every
interval [nπ, (n+ 1)π], n ∈ Z

∗ contains only one zero of the function V (f ; z).

If V (f ;π/2) 6= 0 and if {µn, n ∈ Z∗} is a sequence of positive numbers such
that

∑∞

n=1(µn + µ−n) = 1 and n|V (f ; (2n+ 1)π/2)| < µn|V (f ;π/2)|, n ∈ Z∗,
then the zeros of V (f ; z) are separated by that of the function cos z.

If δ > 0, then the entire function

Vδ(z) =

∫ 1

0

(1 + δt) sin zt dt
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has only real and simple zeros. Evidently,

lim
δ→0

Vδ(z) = V0(z) =

∫ 1

0

sin zt dt

uniformly on every compact subset of the complex plane. The zeros of the
function V0(z) are at the points 0,±2π,±4π, . . . . Hence, by the theorem of
Hurwitz, if δ is small enough, then there are consecutive zeros of the function
V0(z) such that the distance between them is greater than π. This example
shows that the requirement for reality of the zeros, e.g for functions of the form
V (f ; z) does not imply that the distances between their consecutive zeros are
not greater that π.

A similar problem is discussed in another paper of I.M. Kasandrova en-
titled Distribution of zeros of a class of entire functions. Complex
Analysis and Applications, Sofia, 1984, 272-275. Under the assumption that f
is a real function, defined in [0, 1], with an integrable second derivative there,
the following statements are proved:

If f(1) 6= 0 and if the function U(f ; z) has only real zeros, then every interval
[(2n − 1)π/2, (2n + 1)π/2], n ∈ Z, contains only one zero un of the function
U(f ; z) provided |n| is sufficiently large, and this zero is simple.

If f(0) = 0, f(1) 6= 0 and if the function V (f ; z) has only real zeros, then
every interval [nπ, (n + 1)π], n ∈ Z, contains only one zero vn of the function
V (f ; z) provided |n| is sufficiently large, and this zero is simple.

If f(0) = 0, f(1) 6= 0 and if the functions U(f ; z) and V (f ; z) have only real
zeros, then their zeros un and vn interlace provided |n| is large enough.

An algorithm allowing to answer the question whether the zeros of a given
algebraic polynomial are in the unit disk is due to I. Schur Über algebrais-
che Gleichungen die nur Wurzeln mit negativen Realteilen besitzen.
Z. angew. Math. Mech. 1 (1921), 75-88. It is applied in the papers of M.

Kostova. On the functions of the class E II, Université de Plovdiv “Paissi
Hilendarski”, Travaux scientifiques, 11 (1973) 3-Mathematiques, 33-36 (Bul-
garian, Russian and German Summaries) and Einige Anwendungen eines
Schurs Theorem. Université de Plovdiv “Paissi Hilendarski”, Bulgarie, Na-
ture, 6 1973, 1, 43-47 (Russian Summary). The main result in the first of them
is the following one:

Let the function f(t) be real, nonnegative and monotonically increasing
in the interval [0, 1]. Then, for any positive integer s, the function F (t) =
ts(f(1 − t)− f(t)) is in the class E (see Theorem 1 on p. 33).

We point out that this assertion is true under the only assumption that the
function f is in the class E . An immediate corollary is the following one (see
Theorem 3 on p. 35):

If f ∈ E , then the entire functions U(F ; z) and V (F ; z) have only real zeros.
In the second paper Kostova provides a procedure which allows, given a

function of the class E , to generate a sequence of functions of the same class.
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Let f be a real function in [0, 1] and let us define it to be zero outside this
interval. If s ∈ N and α ∈ [0, 1/2], then f0(t;α) := f(t) and fs(t;α) :=
fs−1(t; 1)fs−1(t;α) − fs−1(α;α)fs−1(1 − t + α;α). Suppose that f ∈ E and
p < q are positive integers, such that (p, q) = 1 and 2p < q. Let, for every s =
1, 2, 3, . . . , p+1, Fs(t) be defined by Fs(t) = fs(t; (s−1)/q) for t ∈ ((s−1)/q, 1]
and Fs(t) = 0 for 0 ≤ t ≤ (s− 1)/q. Then Fs ∈ E for each s = 1, 2, 3, . . . , p+1.

Let p(x) be a nonconstant real algebraic polynomial and let m(p; a) be
the multiplicity of a as a zero of p(z), that is, m(p; a) = ℓ if p(a) = p′(a) =
p′′(a) = · · · = p(ℓ−1)(a) = 0, p(ℓ)(a) 6= 0. In the paper of S. Todorinov

On the distribution of zeros of a class of entire functions. Annuaire
Univ. Sofia, Phys.-Math. Fac. 52 (1957/58) Livre 1-Mathematiques, 145-147
(Bulgarian, French Summary), the following assertion is proved:

Let p(x) be a nonconstant real algebraic polynomial with m(p; 0) = k and
m(p; 1) = q. If k ≤ q, then there exists a positive number a0 such that, for
every a > a0, the entire functions

(6.18)

∫ 1

0

exp(at)p(t) cos zt dt,

∫ 1

0

exp(at)p(t) sin zt dt

have only real and interlacing zeros. If k > q, then, for every positive a, the
above functions cannot have only real and interlacing zeros.

The proof is based on Biehler-Hermite’s theorem for entire functions of
exponential type. In fact, it is proved that if k ≤ q, then there exists a positive
a0, such that the zeros of the entire function

∫ 1

0

p(t) exp zt dt

are in the half-plane ℜz ≤ a0. Hence, the zeros of the entire function

∫ 1

0

p(t) exp{(a+ iz)t} dt

are in the half-plane ℑz > 0 provided a > a0.
If k > q, then the assumption that the entire functions (6.18) have only real

and interlacing zeros for some positive a contradicts a result about the zero
distribution of quasi polynomials without main term due to L. S. Pontriagin

On the zeros of certain elementary transcendental functions. Izv.
Akad. Nauk SSSR, Ser. Math. 6 (1942) 115-131 (Russian). Pontriagin’s
result states that the real parts of the zeros of such quasi polynomials are not
bounded.

Comments and references

1. If P (z) is a polynomial having its zeros in the unit disk, then the zeros
of the polynomial P (z)+ γP ∗(z), |γ| = 1, are on the unit circle. This assertion
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is due to I. Schur and appears on p. 230 in his paper Über Potenzreihen,
die im Innern des Einheitskreises beschränkt sind. J. r. angew. Math.
147 (1917) 205-232, p. 230, XII. Ilieff’s key lemma may be considered as
its extension. Indeed, suppose that the origin is a zero of multiplicity m of
the polynomial P (z), i.e. P (z) = zmQ(z), Q(0) 6= 0, and define Pδ(z) =
(z + δ)mQ(z), 0 < δ < 1. Then the zeros of the polynomial P ∗

δ (z) are outside
the unit disk and then the key-lemma with k = 0 gives that the zeros of the
polynomial γ{P ∗

δ (z) + γ−1Pδ(z)} = (z + δ)mQ(z) + γ(1 + δz)mQ∗(z) are on
the unit circle. Letting δ → 0, we obtain that the zeros of the polynomial
zmQ(z)+ γQ∗(z) = P (z)+ γP ∗(z) are on the unit circle too. It turns out that
Schur’s theorem is a corollary of Ilieff’s key lemma, but the converse is not
true.

2. Ilieff’s results about the zeros of the entire function (6.10) are general-
ized and extended by Alfred Rényi in his paper Remarks concerning the
zeros of certain integral functions. C. R. Acad. Bulgare Sci. 3 (1950) no
2-3, 9-10. Rényi proves the following:

Theorem A. Let n and m denote non-negative integers, and let us suppose
that n +m is odd. Let f(t) denote a real function, with f ∈ Cn(0, 1), which
satisfies the following conditions:

a) f (k)(1) = 0 for k = 1, 2, 3, . . . , n− 1;
b) f (2k+1)(0) = 0 for 1 ≤ 2k + 1 < n;
c) g(t) = t−mf (n)(t) is integrable, non-negative and non-decreasing in (0, 1).
It follows that the functions

F (z) =

∫ 1

0

f(t) cos zt dt and Φ(z) =

∫ 1

0

f(t) sin zt dt

have only real roots.
Theorem B. Let n and m be non-negative integers with n + m is even.

Let the real function f ∈ Cn(0, 1) satisfies conditions a) and c) of Theorem A,
but instead of b) obeys the following property:

b′) f (2k)(0) = 0 for 2 ≤ 2k < n.
It follows that the functions F (z) and Φ(z) have only real roots.
The proofs are based on the general property that the derivatives of real

entire functions of order not greater than one with only real zeros have only

real zeros too. This property is applied to the entire functions
∫ 1

0 g(t) sin zt dt

and
∫ 1

0
g(t) cos zt dt.

3. P. Rusev, Distribution of the zeros of a class of entire functions,
Phys.-Math. J. 4(37) (1961), 130-135 (Bulgarian) makes an attempt to extend
Pólya’s classical results concerning the zero-distribution of the entire functions
(5.1) and (5.2) to entire functions defined by means of Riemann-Stieltjes’

integrals. He proves the following:
Suppose that f(t) and ψ(t), 0 ≤ t ≤ 1 are real functions such that the

function F (u) =
∫ t

0
f(u) dψ(u), 0 ≤ t ≤ 1 is increasing and convex. Then
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the entire functions
∫ 1

0
f(t) cos zt dψ(t) and

∫ 1

0
f(t) sin zt dψ(t) have only real

zeros.

7. The Hawaii school and the Hungarian connection

There are some remarkable examples of scientific collaboration of outstanding
mathematicians during the twentieth century. Among the most convincing
are G. Pólya and G. Szegö, the authors of Aufgaben und Lehrsätze
aus der Analysis I,II, Berlin, 1925, G. Hardy and J. Litlewood for their
contributions to the Analytic Number Theory as well as N. Wiener and R.

Paley whose joint work made the Fourier transform in the complex domain
a powerful tool in Classical Analysis.

If we think about a collaboration of mathematicians who most contributed
to the topic of the present survey, probably the first names are those ofGeorge

Csordas and Thomas Craven. As a result of their very long activity at the
University of Hawaii, a considerable number of interesting joint papers ap-
peared. Among them are Zero-diminishing linear transformations, Proc.
Amer. Math. Soc. 80 (1980), 544-546, An inequality for the distribution
of zeros of polynomials and entire functions, Pacific J. Math., 95 (1981),
263-280, On the number of real roots of polynomials, Pacific J. Math.
102 (1982), 15-28, On the Gauss-Lucas theorem and Jensen polynomi-
als, Trans. Amer. Math. Soc. 278, (1983), 415-429, the already mentioned
Jensen polynomials and the Turán and Laguerre inequalities, Pacific
J. Math. 136 (1989), 241-260,Differential operators of infinite order and
the distribution of zeros of entire functions, J. Math. Anal. Appl. 186
(1994), 799-820, On a converse of Laguerre’s theorem, Electron. Trans.
Numer. Anal., 5 (1997), 7-17, Hermite expansions and the distribution
of zeros of entire functions, Acta Sci. Math. (Szeged), 67 (2001) 177-196,
The Fox-Wright functions and Laguerre multiplier sequence, J. Math.
Anal. Appl. 314 (2006), 109-125.

It has to be noted that G. Csordas is a co-author of several other papers
treating problems concerning entire Fourier transforms. In his joint paper with
Timothy S. Norfolk and Richard S. Varga The Riemann hypothesis
and the Turán inequalities, Trans. Amer. Math. Soc. 296 (1986), 521-541,
a fifty-eight year-old problem of Pólya [Pólya 1927b] related to the Riemann
Hypothesis is solved. More precisely, Pólya asked the natural question if the
Turán inequalities (3.44) hold for the Maclaurin coefficients of Riemann’s ξ-
function. It is a matter of straightforward calculation to transform them into
the following inequalities for the moments of the kernel Φ(t):

(7.1) b̂2m >
2m− 1

2m+ 1
b̂m−1b̂m+1, m = 1, 2, 3, . . .
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where

(7.2) b̂m :=

∫ ∞

0

t2mΦ̂(t) dt, m = 0, 1, 2, . . . ,

and

(7.3) Φ̂(t) =
∞∑

n=1

(2π2n4 exp(9t)− 3πn2 exp(5t)) exp(−πn2 exp(4t)).

The delicate nature of the inequalities (7.3) is revealed by comparing them
with the inequalities

b̂2m ≤ b̂m−1b̂m+1, m = 1, 2, 3, . . .

which follow immediately from the Cauchy-Schwarz inequality applied to
the numbers {b̂m}∞m=0 after representing them in the form

b̂m =

∫ ∞

0

t(2m−2)/2
√
Φ(t)t(2m+2)/2

√
Φ(t) dt, m = 1, 2, 3, . . . .

Thus, if K(t) is an even kernel, whose cosine transform is in LP , then its
moments bm =

∫∞

0 tmK(t)dt must satisfy

1 ≤ bm−1bm+1

b2m
≤ 2m+ 1

2m− 1
for m ∈ N.

The clue idea of the proof of (7.1) is to establish first the following sufficient
conditions which guarantee that the Turán inequalities hold. These read as
follows:

Set bm =
∫∞

0 t2mK(t) dt and γm = m!/(2m)!, m = 0, 1, 2, . . . . If logK(
√
t)

is strictly concave for 0 < t <∞, then the Turán inequalities

γ2m − γm−1γm+1 > 0, m = 1, 2, 3, . . . ,

or equivalently

(2m+ 1)b2m − (2m− 1)bm−1bm+1 > 0, m = 1, 2, 3, . . . ,

hold.
This principal idea for establishing Turán’s inequalities for entire function

that are represented by cosine transforms of even positive kernels was explored
further.

It is worth mentioning that logK(
√
t) is strictly concave for 0 < t < ∞ if

and only if

t{K2(t)−K(t)K ′′(t)} +K(t)K ′(t) > 0 for 0 < t <∞.
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Then the authors prove that

(7.4) t{(Φ(t))2 − Φ(t)Φ′′(t)} +Φ(t)Φ′(t) > 0

holds for t > 0. It is worth mentioning that the proof of (7.4), which takes
up nearly 13 pages, is very technical and by no means it could be qualified as
elementary one.

George Csordas and Richard Varga, Moments inequalities and
the Riemann Hypothesis, Constr. Approx. 4 (1988), 175-198, prove an
extension of (7.1) for much more general kernels. The authors consider function
in LP of the form

(7.5) f(z) = Czn
ω∏

k=1

(
1− z2

z2k

)
, 0 ≤ ω ≤ ∞,

where C is a real nonzero constant, n is a nonnegative integer, zk, 1 ≤ k ≤ ω
are real and positive and

∑ω
k=1 z

−2
k < ∞. It is supposed also that inC is

a positive number. Then f(iz) is also a real entire function having its zeros
on the imaginary axis. Then, for any λ ≥ 0, the function exp(λt2)f(it) is an
universal factor in the sense of Pólya. The authors prove that the Maclaurin

coefficients of the entire function

G(z; f, λ) =

∫ ∞

0

exp(λt2)f(it)Φ(t) cos zt dt,

satisfy Turán’s inequalities. Let

b̂m(f, λ) =

∫ ∞

0

t2m exp(λt2)f(it)Φ(t) dt, m = 0, 1, 2, . . . .

The main result in [Csordas Varga 1988] is Theorem 2.4 which says:
For any f(z) of the form (7.4) the following Turán inequalities

(7.6) (b̂m(f ;λ))2 >

(
2m− 1

2m+ 1

)
b̂m−1(f, λ)b̂m+1(f, λ)

hold for all m = 1, 2, 3, . . . and all real λ.
It is clear that the inequalities (7.3) are particular case of (7.5) when f ≡ 1

and λ = 1.
InFourier transforms and the Hermite-Biehler theorem, Proc. Amer.

Math. Soc. 107 (1989), 645-652, G. Csordas and R.S. Varga establish
necessary and sufficient conditions for a real entire functions, represented by
Fourier transforms, to have only real zeros and apply their result to the Rie-

mann ξ-function. They study entire functions of the form

(7.7) F (z;K) =

∫ ∞

−∞

K(t) exp(izt) dt.
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The authors call the function K : R → R an admissible kernel if it satisfies the
following requirements:

(i) K(t) > 0 for each t ∈ R,
(ii) K(−t) = K(t) for t ∈ R,
(iii) K(t) = (exp(−|t|2+ε)) for some ε > 0 as t→ ∞.
ApplyingHermite-Biehler’s theorem to the entire function F (z;K), where

K(t) is an admissible kernel, they obtain the following:
Suppose that all the zeros of the real entire function F (z;K) lie in the strip

(7.8) S(τ) := {z ∈ C : |ℑz| < τ} for some τ > 0.

Then, for each fixed µ ≥ τ ,

Pµ(z;K) =

∫ ∞

0

K(t) cosh(µt) cos(zt) dt ∈ LP

and

Qµ(z;K) =

∫ ∞

0

K(t) sinh(µt) sin(zt) dt ∈ LP .

Define

∆(x, y;K) =

∫ ∞

−∞

∫ ∞

−∞

K(t)K(s) exp(i(t+ s)x) exp((t− s)y)(t− s)2 dt ds.

Further, on the basis of Proposition 3.1, a criterion of Jensen’s type is estab-
lished:

Suppose that the zeros of F (z;K) lie in the strip (7.8) for some fixed τ .
Then, F (z;K) ∈ LP if and only if∆(x, y;K) ≥ 0 for 0 < x <∞ and 0 ≤ y < τ .

At the end of the paper the above criterion is applied to the entire function

ξ
(z
2

)
= F (z; Φ) =

∫ ∞

−∞

Φ(t) exp(izt) dt.

Since Φ(t) is an admissible kernel and the zeros of ξ(z/2) are in the strip S(1),
the authors formulate the following criterion:

F (z; Φ) ∈ LP if and only if

(7.9) ∆(x, y; Φ) ≥ 0

for 0 < x <∞ and 0 ≤ y < 1.
In other words, Riemann’s Hypothesis is true if and only if the inequality

(7.9) holds.
In Integral transform and the Laguerre-Pólya class, Complex Vari-

ables, 12 (1989), 211-230, George Csordas and Richard S. Varga inves-
tigate again entire Fourier transforms of the form (7.7) under the assumption
that the admissible kernel K(t) satisfies the the additional conditions
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(iv) K ′(t) < 0 for t > 0,
(v) There exist a positive τ = τ(K), such that K(t) has a holomorphic

extension in the strip (7.8).
The following results are proved under the assumptions (i)-(v):
Suppose that logK(

√
t) is strictly concave for 0 < t < ∞. Let f ∈ LP ,

f 6≡ 0 be even and normalized so that its first non-zero Taylor coefficient is
positive. Set

cm(K; f) =

∫ ∞

0

t2mf(it)K(t) dt m = 0, 1, 2, . . . .

Then

(cm(f ;K))2 >

(
2m− 1

2m+ 1

)
cm−1(f ;K) cm+1(f ;K), m ∈ N.

A brief outline of the paper ofGeorge Csordas, Richard S. Varga and
István Vincze, Jensen Polynomials with Applications to the Riemann
ξ-Function, J. Math. Anal. Appl. 153 (1990), 112-135, is given in its abstract,
where the authors claim that they establish generalizations of some known
results for Jensen polynomials, pertaining to (i) convexity, (ii) the Turán

inequalities, and (iii) the Laguerre inequalities, and that these results are
then applied in general to real entire function, which are represented by Fourier
transform, and in particular to the Riemann ξ-function.

In Section 2 of the same paper real entire functions of the form (1.9) are
considered, i.e.

f(z) =

∞∑

k=0

γk
k!
zk,

where γk > 0, k = 0, 1, 2, . . . and γ2k − γk−1γk+1 ≥ 0 for k ∈ N. Under these
weak assumptions it is shown that not only the Laguerre inequalities (1.12)

hold, but also that L
(ν)
p (t) ≥ 0 for t ≥ 0, ν, p = 0, 1, 2, . . . (see Theorem 2.5).

The main result in this section, which is Theorem 2.7, states that under the

same conditions on the numbers γk, k = 0, 1, 2, . . . , the inequality ∆
(ν)
n,p(t) ≥ 0

holds for t ≥ 0 and for ν, p = 0, 1, 2, . . . . This extends inequality (1.11).
Entire functions of the form

Fc(z) := Fc(z;K, f) =

∫ ∞

−∞

f(it)K(t) cosh(t
√
z) dt,

where f ∈ LP and K is an admissible kernel, are studied in Section 3. Let

Lp(t;Fc) = (F (p+1)
c (t))2 − F (p)

c (t)F (p+2)
c (t), p = 0, 1, 2, . . . .

Then, under the additional assumptions that f is even, f(0) = 1 and the
function logK(

√
t) is strictly concave for 0 < t < ∞, it is proved in Theorem
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3.3 that that L
(ν)
p (t;Fc) ≥ 0 for t ≥ 0 and ν, p = 0, 1, 2, . . . . This result is

applied to the entire functions

Fc(z; Φ, f) =

∫ ∞

−∞

f(it)Φ(t) cosh(t
√
z) dt,

and this leads to the inequality L
(ν)
p (t;Fc) ≥ 0 for t ≥ 0 and ν, p = 0, 1, 2, . . . .

Further, the authors focus their attention on a relation between the La-

guerre inequalities and the Riemann hypothesis stating that the latter is
true if and only if

L
(0)
0 (t;Pµ) + L

(0)
0 (t;Qµ) ≥ 0, t ≥ 0, 0 ≤ µ < 1,

where

Pµ(z) = 2

∫ ∞

0

cosh(µt)Φ(t) cos(zt) dt

and

Qµ(z) = 2

∫ ∞

0

sinh(µt)Φ(t) sin(zt) dt.

The main result in the paper of George Csordas, Convexity and the
Riemann ξ-function, Glasnik Matematički, 33 (1998) 37-50, stated as The-
orem 2.12, is that the function Φ(

√
t) is strictly convex for t > 0, that is,

(Φ(
√
t))′′ > 0 for t > 0 (). As an application of this fact, it is shown in

Corollary 2.13 that the inequality

∫ ∞

0

Φ(
√
t) cos(xt) dt > 0

holds for every x ∈ R. This means that the cosine transform of the function
Φ(

√
t) cannot have any real zeros. Let us point out that it is shown in Section

6 of Pólya’s paper in Math. Z., 2 (1918) 352-383, that the sine transform of
a function which is positive and decreasing in (0,∞), has no positive zeros. A
corollary of this fact is that if, in addition, the function is convex, then the
same holds for its cosine transforms.

Comments and references

Extensions of Turán’s inequalities

(7.10) γ2k − γk−1γk+1 ≥ 0, k ∈ N,

were obtained by D. K. Dimitrov in [Dimitrov 1998], where the inequalities
(7.11)
Hk := 4(γ2k − γk−1γk+1)(γ

2
k+1 − γkγk+2)− (γkγk+1 − γk−1γk+2)

2 ≥ 0, k ∈ N,
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were shown to be another necessary conditions that the entire function ψ(x),
defined by

ψ(x) =

∞∑

k=0

γk
xk

k!
,

is in LP . In [Dimitrov 1998] (7.11) were called the higher order Turán inequa-
lities. The recent paper [Dimitrov Lucas 2011] of D. K. Dimitrov and F. R.

Lucas shows that, while the Turán inequalities provide necessary and suffi-
cient conditions for the second degree Jensen polynomials to be hyperbolic,
(7.11) hold if and only if the generalized Jensen polynomials of degree three
g3,k−1(x) possess only real zeros. The result reads as follows:

Let k ∈ N. Then the real polynomial

g3,k−1(x) = γk−1 + 3γkx+ 3γk+1x
2 + γk+2x

3

with nonzero leading coefficient γk+2 is hyperbolic if and only if the inequalities

γ2k+1 − γkγk+2 ≥ 0,

and

4(γ2k − γk−1γk+1)(γ
2
k+1 − γkγk+2)− (γkγk+1 − γk−1γk+2)

2 ≥ 0

hold simultaneously.
If k(t) is an even admissible kernel and it Fourier transform is

F (x) =
1

2

∫ ∞

−∞

K(t)eixtdt =

∫ ∞

0

K(t) cos(xt)dt,

then its moments are

bm :=

∫ ∞

0

t2mK(t)dt, m = 0, 1, 2, . . . .

The change of variable, z2 = −x shows that

F1(x) :=

∞∑

k=0

γk
xk

k!
=

∞∑

k=0

bk
xk

(2k)!
, γk :=

k!

(2k)!
bk

belongs to LPI if and only if F ∈ LP . Moreover, straightforward calculations
yield Hk = dkH̃k, where

dk =
[k!]2[(k + 1)!]2

(2k)!(2k + 1)![(2k + 3)!]2

and

H̃k = 4(2k + 3) [(2k + 1)b2k − (2k − 1)bk−1bk+1]

×[(2k + 3)b2k+1 − (2k + 1)bkbk+2]

−(2k + 1) [(2k + 3)bkbk+1 − (2k − 1)bk−1bk+2]
2.
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The following result was proved in [Dimitrov Lucas 2011]:
If K(t) is an admissible kernel with moments bk =

∫∞

−∞
t2kK(t)dt and

(logK(
√
t))′′ < 0 for t > 0,

then H̃k ≥ 0 for every k ∈ N.
Its rather curious and surprising that the logarithmic concavity of K(

√
t)

guarantees not only that the Turán inequalities hold but also that the higher
order ones are true. Then an immediate consequence of the fact the Φ(

√
t)

is logarithmically concave, established in [Csordas Norfolk Varga 1986], is that

H̃k ≥ 0 for the moments of the kernel Φ(t). Thus, all Jensen polynomials
of degree three g3,k−1(x), associated with the Riemann function ξ1(z) are
hyperbolic.

Another interesting extension of Turán inequalities is due to Craven and
Csordas. In [Craven Csordas 1989] they considered entire functions whose
Maclaurin coefficients γk, k = 0, 1, . . ., obey the so-called double Turán

inequalities

Ek = Ek(γ) := T 2
k − Tk−1Tk+1 ≥ 0, k = 2, 3, 4, . . . .

and proved the following:
If

ϕ(x) :=

∞∑

k=0

γk
xk

k!
∈ LPI, where γk ≥ 0 for k = 0, 1, 2, . . . ,

then the sequence {γk}∞k=0 satisfies the double Turán inequalities

Ek = T 2
k − Tk−1Tk+1 ≥ 0, k = 2, 3, 4, . . . .

The problem of finding sufficient conditions which guarantee that theMaclau-

rin coefficients of an entire function, defined as a Fourier transform of an even
admissible kernel, satisfy the double Turán inequalities was studied by G.

Csordas and D. K. Dimitrov. The relevant result is Theorem 2.4 b), estab-
lished in [Csordas Dimitrov 2000] which reads as follows:

Let K(t) be an even admissible kernel and let bk denote its moments. Let
s(t) := K(

√
t) and f(t) := s′(t)2 − s(t)s′′(t). If both logK(

√
t) and log f(t) are

concave for t > 0, that is, if (logK(
√
t))′′ < 0 and

(7.12) (log f(t)))′′ < 0 for t > 0,

hold, then the double Turán inequalities hold.
The natural question if inequalities (7.12) are true when K(t) is the kernel

Φ(t), associated with the Riemann ξ-function, remains open.
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8. Variations on classical themes

In the paper of D. K. Dimitrov, Fourier transforms in the Laguerre-
Pólya class and Wronskians of orthogonal polynomials, (submitted),
a criterion the Fourier transform of a real, even and positive function K(t),
−a < t < a, 0 < a ≤ ∞ to be in the LP class is established. It is assumed that
all the moments

µk =

∫ a

−a

tkK(t) dt, k = 0, 1, 2, . . .

exist and limk→∞(|µk|/(k!))1/k = 0. Denoting by {pn(z)}∞n=0 the system of
polynomials which are orthogonal on the interval (−a, a) with respect to the
kernel K(t), the author proves that:

The entire function

F (z;K) =

∫ a

−a

K(t) exp(izt) dt = 2

∫ a

0

K(t) cos(zt) dt

is in the LP class if and only if for any even integer n all the zeros of the
Wronskian W (p1(z), p2(z), . . . , pn(z)) are purely imaginary.

It seems for the first time Wronskians of systems of orthogonal polynomials
were investigated systematically in the long paper of S. Karlin andG. Szegö,
On certain determinants whose elements are orthogonal polynomials,
J. Analyse Math. 8 (1961), 1-157. There the authors, inspired by Turán’s

inequality P 2
n(x) − Pn−1(x)Pn+1(x) ≥ 0, x ∈ [−1, 1], which hold for the Leg-

endre polynomials, study certain determinants whose elements are orthogonal
polynomials.

An interesting extension of a result of G. Pólya is given in the paper of
David A. Cardon, Convolution operators and zeros of entire func-
tions, Proc. Amer. Math. Soc. 130 (2000) No 6, 1725-1734. The author
denotes by {Xi}∞i=1 a sequence of independent random variables such that Xi

takes values ±1 with equal probability and by Fn the distribution function of
the normalized sum (a1X1 + · · ·+ anXn)/sn, sn = a21 + · · ·+ a2n, n ∈ N, where
{ai}∞i=1 is a nonincreasing sequence of positive numbers.

It is proved in Lemma 1 that, under the above assumptions, the sequence
{Fn}∞n=1 converges pointwise to a continuous distribution F which is either
normal, or not depending on whether limn→∞ sn is equal or less than infinity.

Let G(z) be a real entire function of order less than 2 with only real zeros.
In other words, it is in the class LP∗ which consists of LP functions of order
less than 2. The main result in the paper is Theorem 1:

Define H by the integral

H(z) = (G ∗ dF )(z) :=
∫ ∞

−∞

G(z − is)dF (s).

Then, H is a real entire function of order less than 2. If H is not identically
zero, then it has only real zeros.
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The author points out that his main result generalizes a “very interesting
observation of Pólya about the zeros of certain entire functions”, having in
mind Hilfssatz II in Pólya’s paper in Acta Math. 48 (1926) 305-317 concern-
ing the zeros of entire function of the form (3.31). The main result is applied
then to the case when the function G can be represented as Fourier transform,
i.e.

G(z) =

∫ ∞

−∞

K(t) exp(izt) dt,

where the real function K is (locally) absolutely integrable and satisfies K(t) =
O(exp(−|t|2+ε)) for some ε > 0 when |t| → ∞. Let

L(t) =

∫ ∞

−∞

cosh(ts)dF (s)

with F as above. Then, Theorem 3 states:
If the entire function

H(z) =

∫ ∞

−∞

K(t)L(t) exp(izt) dt

is not identically zero, then it has only real zeros.
It is observed at the end of the paper that the realization of Riemann ξ-

function as a convolution G ∗ dF with G ∈ LP∗ “would prove the Riemann
Hypothesis. However, it seems unlikely that this approach would be fruitful
because the formula

ξ(t) = 2

∫ ∞

0

Φ(u) cos(tu) du

with

Φ(u) = 2

∞∑

N=1

(2π2n4 exp(9u/2)− 3πn2 exp(5u/2)) exp(−πn2 exp(2u))

suggests that it may be more natural to consider ξ(t) as a Fourier integral than
as a convolution G ∗ dF”.

Pólya’s characterization of the universal factors in [Pólya 1927a] inspired
the main result in Cardon, Fourier transforms having only real zeros,
Proc. Amer. Math. Soc. 133 (2005), 1349-1356, which states:

Let H be the Fourier transform of G(it) with respect to the measure dF ,
that is,

H(z) =

∫ ∞

−∞

G(it) exp(izt)dF (t).

Then H is an entire function of order ≤ 2 that is real on the real axis. If
H is not identically zero, then it has only real zeros.

The author compares his main result with Pólya’s one and claims that
“while there is some overlap between Proposition 1 (Pólya’s result) and Theo-
rem 1 (the latter statement), neither implies the other”.
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Matematički 33 (1998), 37–50.

[Csordas Dimitrov 2000] G. Csordas and D. K. Dimitrov, Conjectures and theorems
in the theory of entire functions, Numer. Algorithms 25 (2000) 109–122.

[Csordas Norfolk Varga 1986] G. Csordas, T. S. Norfolk and R. S. Varga, The
Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296
(1986), 521–541.

[Csordas Varga 1988] G. Csordas and R. Varga, Moments inequalities and the
Riemann hypothesis, Constr. Approx. 4 (1988), 175–198.

[Csordas Varga 1989a] G. Csordas and R. Varga, Fourier transforms and the
Hermite-Biehler theorem, Proc. Amer. Math. Soc. 107 (1989), 645–652.

[Csordas Varga 1989b] G. Csordas and R. Varga, Integral transform and the
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[Landau 1908] E. Landau, Beiträge zur analytischen Zahlentheorie, Palermo Rend.
26 (1908), 169–302.

[Langer 1930] R.E. Langer, On the zeros of exponential sums and integrals, Bull.
Amer. Math. Soc. 37 (1930), 213–239.

[Lehner 1964] J. Lehner, Discontinuous Groups and Automorphic Functions, Amer.
Math. Soc., Providence, Rhode Island, 1964.

[Levin 1964] B.J. Levin, Distribution of Zeros of Entire Functions, Amer. Math.
Soc., Providence, Rhode Island, 1964.
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[Pólya Szegő 1925] G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Anal-
ysis, Berlin, 1925.

[Pontriagin 1942] L. S. Pontriagin, On the zeros of certain elementary transcen-
dental functions, Izv. Akad. Nauk SSSR, Ser. Math. 6 (1942), 115–131. (Russian)
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