
Distributed Systems

Aleardo Manacero Jr.

Replication
 - part 1

Introduction

● Using multiple servers to attend client requests
allow for a better performance in the system
● Unfortunately, as shown in the study of
transactions, server crashes may induce
abortions or extra delays
● This can be solved if other versions of objects
are present in the system
● This is provided by the replication mechanism

Introduction

● Replication allows for increases in the
system's availability and consistency
● There are several motivations to implement
replication, such as

● Performance enhancement
● Increased availability (either by server failures

or network partitions)
● Fault tolerance

System model for replication

● We will consider objects as a general entity comprising
individual pieces up to complete files
● Each object is implemented through physical copies,
the replicas
● The replicas of a given object may have different
“values” in specific times, since the update of all replicas
cannot be instantaneous
● This temporary inconsistency is tolerable for certain
applications
● It is minimized by an efficient use of replica managers

Management of replicated data

FE

Requests and
replies

C

ReplicaC

ServiceClients Front ends

managers

RM

RMFE

RM

System model for replication

● Replica managers must operate in a
recoverable approach, avoiding inconsistent
results in case of a crash
● Non-deterministic effects over objects cannot
be guaranteed
● The operation of a replica manager involves
five phases: request, coordination, execution,
agreement, response

Request

● Front-end issues the client's request to one
or more replica managers by:

● Communicating with a single manager, who
can communicate with others

● Multicasting the request to a set of
managers

Coordination

● Managers must agree upon the execution of the
request (if it will happen or not) and about the
relative ordering of the request to other requests

● Ordering may be (for managers that handle r'):
● FIFO: if front-end requests r before r', correct

replica managers handle r before r'
● Causal: if request r happened-before r', correct

managers handle r before r'
● Total: if a correct manager handles r before r', any

correct manager handles r before r'

Execution

● The replica manager executes the request
● This may be done “tentatively”, where the

manager can undo the effects of the
request in case of failures

Agreement

● The request will be committed if the replica
managers executing it reach consensus
over the request

Response

● One or more managers responds to the
front-end

● The choice between one or more responses
depends on what is the system's goal

● The fastest response is better for high
availability

● Consolidated responses are better for
consistency (avoiding byzantine errors)

Group communication in replicated objects

● The existence of object copies controlled by
separated replica managers lead to the
concept of groups of managers (those that
have copies of a given object)

● Therefore, all managers can communicate
using group communication

● The impact of this in event ordering and
replica consistency is discussed now

Problems with group communication

● We can devise two categories of problems:
● Process suspicion
● Network partition

● Process suspicions are managed by removal of
managers from the group, but this reduces the
effectiveness of the system

● Network partitions are managed by removing the
set of managers in the unreachable network
(maybe continuing to exist in the other side)

View delivery

● View deliveries are used to allow the group
members to know about group membership
changes (processes entering/leaving it)

● These views are transmitted by multicast
messages and must be received in a form
satisfying to:

● Order
● Integrity
● Non-triviality

View-synchronous communication

● View-synchronous group communication
adds other requirements to member views:

● Agreement, where if a correct process
delivers m in view v(g), then all other correct
processes deliver m in v(g)

● Integrity, where if a process delivers m, then it
will not do it again

● Validity (closed groups), where if the system
fails to deliver to a process q, then the next
view will exclude q

View-synchronous group communication

p

q

r

p crashes

view (q, r)view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

a (allowed). b (allowed).

p

q

r

view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

c (disallowed). d (disallowed).
p crashes

view (q, r)

Fault-tolerant services

● The goal of fault-tolerant services is to
provide the service even in presence of
some processes failures

● This is achieved by replicating data and
functionality at replica managers

● Even with this scheme, inconsistencies may
occur if naive update techniques are used

Linearizability

● Is a strict approach to guarantee
correctness

● A replicated object is linearizable if, for any
execution, the interleaving of the series of
operations satisfies to:

● Interleaved sequence of operations meets
the specification of a single copy

● The order of operations is consistent with
the real times that they occurred

Models for fault tolerance

● Two different models are used with
replication for fault-tolerance

● Passive replication, also known as primary-
backup, uses a single primary manager and
secondary managers (slaves or backups)

● Active replication considers all managers as
peers, organized as a group

Passive replication

● In passive replication the front-end sends
the request to the primary replica manager

● If the request is an update in the object, the
primary sends it to all the backups, who
acknowledge to that

Passive model for fault tolerance

FEC

FEC

RM

Primary

Backup

Backup

RM

RM

Active replication

● In passive replication the front-end
multicasts the request to the group of
replica managers

● The use of multicast avoids the need for
coordination and agreement

● The front-end must deal with crashes
among the managers, possibly through the
Byzantine algorithm

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 18.4
Active replication

FE CFEC RM

RM

RM

Almost done !!

Programming with message-passing libraries

Message-passing libraries make the task of
programming parallel or distributed
applications running in distributed systems
easier

One of such libraries is the MPI

The MPI

Message Passing Interface, or MPI, was
developed to be a standard for parallel
programming, and allows for different actual
implementations of the library standard, such
as openmpi and mpich2
It can be used in environments ranging from
multicore machines, to massively parallel
machines, including distributed systems,
clusters, and so on

The MPI

It was delevoped based on other existing
libraries and languages, such as PVM
The parallel programming model is
restricted to the SPMD model, that is, to a
single program, multiple data model
MPI libraries can be used by programs
written in C, C++, Fortran or Java

Libray escope

In a parallel program MPI functions can be
used in the interval marked by the
instructions

MPI_Init (&argc, &argv)
 e
MPI_Finalize

Initializing MPI

MPI_Init receives a copy of the arguments
passed by the program call (argc e argv)
During its execution it initializes a variable
called MPI_COMM_WORLD, which stores
data about the processes started

Programming with MPI

Control functions

MPI_Comm_size(MPI_COMM_WORLD, &size)
/* returns the number of processes started */

MPI_Comm_rank(MPI_COMM_WORLD, &myid)
/* returns the identity (rank) of the process */

MPI_Cart_create(COMM,dims,dsize,wrap,reorder,cart)
/* creates a cartesian topology of dims dimensions */

Programming with MPI

 Simple communication functions
MPI_Send(msg, length, type, id, tag, comm)
/* sends msg to process id */

MPI_Recv(msg, length, type, id, tag, comm, status)
/* receives msg from process id */

MPI_Sendrecv(smsg, slength, stype, dest, stag,
rmsg, rlength, rtype, source, rtag, comm, status)

/* sends smsg to process dest and receives rmsg
from process source */

Programming with MPI

Meaning of communication parameters

 msg is the data (in a buffer)
 length is the size of the data
 type identifies the data type
 id identifies the processes communicating
 tag identifies the message
 status stores the result of the communication

Predefined data types

Programming with MPI

 More functions

MPI_Barrier(group)
/* makes every process in group wait for the

remaining processes in the group */

MPI_Bcast(msg, count, type, root, comm)
/* Communication by broadcast, started by

process with rank root, and must be executed in
all processes from group comm */

Programming with MPI

 Continuing
MPI_Scatter(msg, count, type, rmsg, rcount,

rtype, root, comm)
/* sends a segment (of size count) of msg to each

process in comm, which receives the segment
in rmsg */

MPI_Gather(msg, count, type, rmsg, rcount,
rtype, root, comm)

/* receives a segment (msg) from each process
and stores them in rmsg)

Programming with MPI

 More functions

MPI_Reduce(operand,result,count,type,op,root,comm)
/* same as MPI_Gather, but executing an operation (op) over all

received data */
MPI_Allreduce(operand, result, count, type, op, comm)
/* same as MPI_Reduce, but returning the final result to all

processes */
op can be one of the reduction operations presented in the next

table

Reduction operators

Other functions

Besides the functions seen so far MPI provides
several other functionalities, such as:
– Definition of the groups of communicating

processes (communicators)
– Manipulation of communicators topology
– Synchronous and assynchronous

communication
– Definition of structured data types

References

ftp://info.mcs.anl.gov/pub/mpi contains the
mpich implementation
http://www.mcs.anl.gov/mpi MPI website at
Argonne Natl Lab, with lots of extra data
http://www.usfca.edu/~peter/ppmpi
contains the sources of code examples in
the “Parallel Programming with MPI’’ of
Peter Pacheco

THAT'S IT FOR TODAY !!

	Slide 1
	Slide 2
	Troca de mensagens
	Slide 4
	Slide 5
	Figure 18.1 A basic architectural model for the management of replicated data
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Figure 18.2 View-synchronous group communication
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Figure 18.3 The passive (primary-backup) model for fault tolerance
	Slide 23
	Figure 18.4 Active replication
	Slide 25
	Ambientes de troca de mensagens
	O MPI
	Slide 28
	Escopo de programação
	Iniciando o MPI
	Programando com MPI
	Slide 32
	Slide 33
	Tipos de dados pré-definidos
	Slide 35
	Slide 36
	Slide 37
	Operadores de redução
	Outras funções
	Referências
	Slide 41

