
Distributed Systems

Aleardo Manacero Jr.

Coordination
and Agreement

Introduction

● The previous discussion over clocks is aimed
to solve problems related to processes
coordination
● Processes coordination may be understood
as the distributed equivalent to processes
synchronization in centralized systems
● Therefore, before discussing coordination it is
necessary to discuss mutual exclusion and
elections

Distributed Mutual Exclusion

● Mutual exclusion is harder to accomplish in
distributed systems by the existence of multiple
processors and the lack of shared memory
● Solutions for distributed mutual exclusion
may use centralized or distributed approaches
● Centralized approaches suffer, obviously,
from the classical problems of concentrating
control in a single place

Centralized algorithm

● Uses a central server to control critical
sections over shared resources
● Processes send requests to the central
server, which attend the requests based on a
FIFO queue
● After using a resource the process sends a
release message to the server, which will then
assign the resource to the next process in
queue

Centralized algorithm
Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p4

p
3p2

p
1

Distributed algorithms

● Several algorithms have been proposed to
solve distributed mutual exclusion in a
distributed approach
● We'll see two approaches here:

● Token Ring algorithm
● Ricart-Agrawala's algorithm
● Maekawa's algorithm

Token ring

● The idea is identical to token bus algorithm for
medium access control
● The advantage is the absence of single point
of failure
● The disadvantage is that it continuously
consumes bandwidth and processing time,
except when a process is in its critical section

Token ring

p
n

p
2

p
3

p
4

Token

p
1

Ricart-Agrawala

● This algorithm preserves bandwidth and
processing while no process want to enter the
critical section (CS)
● It uses logical clocks to establish the order of
requisitions to access the CS
● When a process wants to enter the CS it
sends messages to all other processes and
waits until receiving replies from all of them

Ricart-Agrawala

● Processes give the reply if they do not hold
the CS and, in case they want to enter it, their
clock are lower than the clock of the requesting
process
● The full algorithm follows...

On initialization

state := RELEASED;

To enter the section

state := WANTED;

Multicast request to all processes; request processing deferred here

T := request’s timestamp;

Wait until (number of replies received = (N – 1));

state := HELD;

Ricart-Agrawala

On receipt of a request <Ti, pi> at pj (i j)≠
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))

then

queue request from pi without replying;

else

reply immediately to pi;

end if

To exit the critical section

state := RELEASED;

reply to any queued requests;

Ricart-Agrawala

● Maekawa reduces the amount of messagens
exchanged between processes in R-A
algorithm by creating overlapping subsets of
processes
● The idea is to define a voting set Vi,
associated with process Pi, where Vi is
composed by a subset of processes containing
Pi and some other processes

Maekawa's algorithm

● The sets are chosen so that:
– Pi ∈ Vi
– Vi ∩ Vj ≠ ∅
– |Vi| = K
– Each process is in M of voting sets

● For the optimal solution for N processes we
have N approximately equal to K2 and M=K

● The complete algorithm is shown next

Maekawa's algorithm

On initialization

state := RELEASED;

voted := FALSE;

For pi to enter the critical section

state := WANTED;

Multicast request to all processes in Vi;

Wait until (# of replies received = K);

state := HELD;

Maekawa's algorithm

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)

then

queue request from pi without replying;

else

send reply to pi;

voted := TRUE;

end if

For pi to exit the critical section

state := RELEASED;

Multicast release to all processes in Vi;

Maekawa's algorithm

On receipt of a release from pi at pj

if (queue of requests is non-empty)

then

remove head of queue – from pk , say;

send reply to pk ;

voted := TRUE;

else

voted := FALSE;

end if

Election algorithms

● A major problem in DS is the possibility of
server crashes
● When a process in charge of any activity fails
(crashes) the service becomes unavailable
● This unavailability may be overcome through
the replacement of the faulty process
● This replacement can be done automatically
through an election mechanism

Election algorithms

● An election algorithm must be activated by a process
that identified the faulty server
● Therefore, it may happen to have several elections
being conducted at the same time
● A correct election algorithm must assure that if more
than one election is under way, all must result in the
same elected process
● To simplify the election it is defined that the elected
process is the one with highest identity value

Election requirements

● An election algorithm must guarantee that:
– A participant Pi has Ei = ⊥ or Ei = P (safety)
– All processes Pi participate and eventually

either set Ei ≠ ⊥ or crash (liveness)
where ⊥ means that no process was chosen yet

Ring based election

● Processes are organized in a logical ring
● If one process recognizes a server's failure, it will start
the election, sending an election request token to its
neighbour
● The token contains the identification of the process
currently with the highest identification
● When receiving a token a process either forwards it,
discards it if or changes it to an elected message,
depending on token value and process participation

Ring based election

● Upon receiving an election message each process mark itself
as “participant” and forwards the message with the higher value
between the received one and its own
● If it was already “participant”, it forwards the message if the
value is higher than its own, or discards it if smaller
● If it was already “participant” and the value is equal to its own,
then it changes its status to “non-participant” and sends an
elected message
● Upon receiving an elected message each process changes it
status to “non-participant”

Ring based election

24

15

9

4

3

28

17

24

1

Bully algorithm

● In the Bully algorithm the idea is to allow for
processes to crash during the election
procedure
● It is supposed that each process knows its
rank and the rank of other processes too
● It uses time-outs to detect crashed processes

Bully algorithm

● The messages in the algorithm are:
● Election, where a process announces the election for

processes with higher ranks
● Answer, where a process replies to the election

messages
● Coordinator, where a process assumes the

coordination position
● If a process do not get the coordinator message in a

given period it assumes that all higher-ranked
processes crashed and becomes the new coordinator

Bully election process

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C
coordinator

Stage 4

C

election

election
Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3

p
4

election

answer

Coordination and agreement

● Coordination and agreement among
processes in group communication is needed in
order to assure correct event ordering and
system reliability
● Reliability is viewed in terms of validity,
integrity and agreement
● Ordering is viewed from FIFO, causal and
total ordering perspectives

Basic multicast

● B-multicast guarantees that a message gets
delivered if the sender does not crash
● It executes as:

– To B-multicast(g,m): for each process p ∈ g,
send(p,m)

– On receive(m) at p: B-deliver(m) at p
 The problem with this approach is the
possibility of losing ack messages

Reliable multicast

● A reliable multicast is defined as one that
attends the following properties:

– Integrity, where a process delivers a message
at most once

– Validity, where if a correct process multicasts
a message, then it will eventually deliver m

– Agreement, where if a correct process delivers
m, then all other correct process will also
deliver m

Reliable multicast

 A reliable solution may be built over B-
multicast by:

Reliable multicast over IP multicast

 A sounder implementation may be
achieved using piggybacking and negative
acknowledgments

 Positive acks are piggybacked into other
messages, in order to enable a process to
identify a lost message, requesting it by a
negative acknowledge

 It may use a hold-back queue to facilitate
the protocol

Hold-back queue

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

Reliable multicast over IP multicast

 Ordering events in multicast may follow one of
these semantics:

 FIFO, where if a process issues multicast(g,m)
before multicast(g,m'), then every correct
process that delivers m' will deliver m before m'

 Causal, where if multicast(g,m) →
multicast(g,m'), then any correct process
delivering m' will deliver m first

 Total, where if a correct process delivers m
before m', then every process that delivers m'
will deliver m before m'

Ordering of multicast messages

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

Implementing ordering

● The ordering semantics can be implemented
by the enforcement of sequence numbers
● To implement FIFO ordering is enough to use
an array of sequence numbers and enforcing
the delivering of received messages be made
in strictly sequential order, storing out-of-order
messages in a hold-back queue

Consensus

● Consensus is one form of agreement between
processes, where all processes involved in a
group must agree on a value proposed by one
of them
● The Byzantine generals problem falls in this
category and will be discussed further here

Requirements for consensus

● Consensus is reached if attends these
conditions:

● Termination – when every correct process sets
its decision variable (the decided state)

● Agreement – when the decision variable of
every correct process is the same at the
decided state

● Integrity – if all correct processes proposed
the same value, then any correct process in
the decided state has that value

Requirements for consensus

● Consensus is reached if attends these
conditions:

● Termination – when every correct process sets
its decision variable (the decided state)

● Agreement – when the decision variable of
every correct process is the same at the
decided state

● Integrity – if all correct processes proposed
the same value, then any correct process in
the decided state has that value

Byzantine generals problem

● Here one process proposes a value and the
others must agree with it. The problem is to
identify faulty processes that may provide false
values
● If the faulty process is the commander, then
some generals will receive a different value
● If the faulty process is one of the generals,
then he will deliver different values to his peers

Byzantine agreement

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown coloured

Lamport's clock progression

p1 (Commander)

p2 p3

1:v1:v

2:1:v
3:1:u

Faulty processes are shown coloured
p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u
3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

Consensus in synchronous systems

● Consensus may be reached in synchronous
systems with f faulty processes through a
sequence of multicast messages
● After f+1 rounds it is expected that all correct
processes have agreed on a decision value
● An algorithm for this is given in the next slide

Consensus algorithm

THAT'S IT FOR TODAY !!

	Slide 1
	Slide 2
	Troca de mensagens
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Relógios lógicos (Lamport)
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

