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Introduction

● The previous discussion over clocks is aimed 
to solve problems related to processes 
coordination
● Processes coordination may be understood 
as the distributed equivalent to processes 
synchronization in centralized systems
● Therefore, before discussing coordination it is 
necessary to discuss mutual exclusion and 
elections



Distributed Mutual Exclusion

● Mutual exclusion is harder to accomplish in 
distributed systems by the existence of multiple 
processors and the lack of shared memory
● Solutions for distributed mutual exclusion 
may use centralized or distributed approaches
● Centralized approaches suffer, obviously, 
from the classical problems of concentrating 
control in a single place



Centralized algorithm 

● Uses a central server to control critical 
sections over shared resources
● Processes send requests to the central 
server, which attend the requests based on a 
FIFO queue
● After using a resource the process sends a 
release message to the server, which will then 
assign the resource to the next process in 
queue
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Distributed algorithms

● Several algorithms have been proposed to 
solve distributed mutual exclusion in a 
distributed approach
● We'll see two approaches here:

● Token Ring algorithm
● Ricart-Agrawala's algorithm
● Maekawa's algorithm



Token ring

● The idea is identical to token bus algorithm for 
medium access control
● The advantage is the absence of single point 
of failure
● The disadvantage is that it continuously 
consumes bandwidth and processing time, 
except when a process is in its critical section
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Ricart-Agrawala 

● This algorithm preserves bandwidth and 
processing while no process want to enter the 
critical section (CS)
● It uses logical clocks to establish the order of 
requisitions to access the CS
● When a process wants to enter the CS it 
sends messages to all other processes and 
waits until receiving replies from all of them



Ricart-Agrawala 

● Processes give the reply if they do not hold 
the CS and, in case they want to enter it, their 
clock are lower than the clock of the requesting 
process
● The full algorithm follows...



On initialization

state := RELEASED; 

To enter the section

state := WANTED;

Multicast request to all processes; request processing deferred here

T := request’s timestamp;

Wait until (number of replies received = (N – 1));

state := HELD;

Ricart-Agrawala 



On receipt of a request <Ti, pi> at pj (i  j)≠
if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))

then 

queue request from pi without replying; 

else 

reply immediately to pi;

end if

To exit the critical section

state := RELEASED;

reply to any queued requests;

Ricart-Agrawala 



● Maekawa reduces the amount of messagens 
exchanged between processes in R-A 
algorithm by creating overlapping subsets of 
processes
● The idea is to define a voting set Vi, 
associated with process Pi, where Vi is 
composed by a subset of processes containing 
Pi and some other processes

Maekawa's algorithm



● The sets are chosen so that:
– Pi ∈ Vi
– Vi ∩ Vj   ≠  ∅
– |Vi| = K
– Each process is in M of voting sets

● For the optimal solution for N processes we 
have N approximately equal to K2 and M=K

● The complete algorithm is shown next

Maekawa's algorithm



On initialization

state := RELEASED;

voted := FALSE;

For pi to enter the critical section

state := WANTED;

Multicast request to all processes in Vi;

Wait until (# of replies received = K);

state := HELD;

Maekawa's algorithm

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)

then 

queue request from pi without replying; 

else 

send reply to pi;

voted := TRUE;

end if



For pi to exit the critical section

state := RELEASED;

Multicast release to all processes in Vi;

Maekawa's algorithm

On receipt of a release from pi at pj

if (queue of requests is non-empty)

then 

remove head of queue – from pk , say; 

send reply to pk ;

voted := TRUE;

else 

voted := FALSE;

end if



Election algorithms

● A major problem in DS is the possibility of 
server crashes
● When a process in charge of any activity fails 
(crashes) the service becomes unavailable
● This unavailability may be overcome through 
the replacement of the faulty process
● This replacement can be done automatically 
through an election mechanism



Election algorithms

● An election algorithm must be activated by a process 
that identified the faulty server
● Therefore, it may happen to have several elections 
being conducted at the same time
● A correct election algorithm must assure that if more 
than one election is under way, all must result in the 
same elected process
● To simplify the election it is defined that the elected 
process is the one with highest identity value



Election requirements

● An election algorithm must guarantee that:
– A participant Pi has Ei = ⊥ or Ei = P (safety)
– All processes Pi participate and eventually 

either set Ei ≠ ⊥ or crash (liveness)
where ⊥ means that no process was chosen yet



Ring based election

● Processes are organized in a logical ring
● If one process recognizes a server's failure, it will start 
the election, sending an election request token to its 
neighbour
● The token contains the identification of the process 
currently with the highest identification
● When receiving a token a process either forwards it, 
discards it if or changes it to an elected message, 
depending on token value and process participation



Ring based election

● Upon receiving an election message each process mark itself 
as “participant” and forwards the message with the higher value 
between the received one and its own
● If it was already “participant”, it forwards the message if the 
value is higher than its own, or discards it if smaller
● If it was already “participant” and the value is equal to its own, 
then it changes its status to “non-participant” and sends an 
elected message
● Upon receiving an elected message each process changes it 
status to “non-participant”



Ring based election
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Bully algorithm

● In the Bully algorithm the idea is to allow for 
processes to crash during the election 
procedure
● It is supposed that each process knows its 
rank and the rank of other processes too
● It uses time-outs to detect crashed processes



Bully algorithm

● The messages in the algorithm are:
● Election, where a process announces the election for 

processes with higher ranks
● Answer, where a process replies to the election 

messages
● Coordinator, where a process assumes the 

coordination position
● If a process do not get the coordinator message in a 

given period it assumes that all higher-ranked 
processes crashed and becomes the new coordinator
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Coordination and agreement

● Coordination and agreement among 
processes in group communication is needed in 
order to assure correct event ordering and 
system reliability
● Reliability is viewed in terms of validity, 
integrity and agreement
● Ordering is viewed from FIFO, causal and 
total ordering perspectives



Basic multicast

● B-multicast guarantees that a message gets 
delivered if the sender does not crash
● It executes as:

– To B-multicast(g,m): for each process p ∈ g, 
send(p,m)

– On receive(m) at p: B-deliver(m) at p
 The problem with this approach is the 
possibility of losing ack messages



Reliable multicast

● A reliable multicast is defined as one that 
attends the following properties:

– Integrity, where a process delivers a message 
at most once

– Validity, where if a correct process multicasts 
a message, then it will eventually deliver m

– Agreement, where if a correct process delivers 
m, then all other correct process will also 
deliver m



Reliable multicast

 A reliable solution may be built over B-
multicast by:



Reliable multicast over IP multicast

 A sounder implementation may be 
achieved using piggybacking and negative 
acknowledgments

 Positive acks are piggybacked into other 
messages, in order to enable a process to 
identify a lost message, requesting it by a 
negative acknowledge

 It may use a hold-back queue to facilitate 
the protocol
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Reliable multicast over IP multicast

 Ordering events in multicast may follow one of 
these semantics: 

  FIFO, where if a process issues multicast(g,m) 
before multicast(g,m'), then every correct 
process that delivers m' will deliver m before m'

  Causal, where if multicast(g,m) → 
multicast(g,m'), then any correct process 
delivering m' will deliver m first

  Total, where if a correct process delivers m 
before m', then every process that delivers m' 
will deliver m before m'
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Implementing ordering

● The ordering semantics can be implemented 
by the enforcement of sequence numbers
● To implement FIFO ordering is enough to use 
an array of sequence numbers and enforcing 
the delivering of received messages be made 
in strictly sequential order, storing out-of-order 
messages in a hold-back queue



Consensus

● Consensus is one form of agreement between 
processes, where all processes involved in a 
group must agree on a value proposed by one 
of them
● The Byzantine generals problem falls in this 
category and will be discussed further here



Requirements for consensus

● Consensus is reached if attends these 
conditions:

● Termination – when every correct process sets 
its decision variable (the decided state)

● Agreement – when the decision variable of 
every correct process is the same at the 
decided state

● Integrity – if all correct processes proposed 
the same value, then any correct process in 
the decided state has that value
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Byzantine generals problem

● Here one process proposes a value and the 
others must agree with it. The problem is to 
identify faulty processes that may provide false 
values
● If the faulty process is the commander, then 
some generals will receive a different value
● If the faulty process is one of the generals, 
then he will deliver different values to his peers



Byzantine agreement
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Lamport's clock progression
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Consensus in synchronous systems

● Consensus may be reached in synchronous 
systems with f faulty processes through a 
sequence of multicast messages
● After f+1 rounds it is expected that all correct 
processes have agreed on a decision value
● An algorithm for this is given in the next slide



Consensus algorithm



THAT'S IT FOR TODAY !!
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