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Introduction

● Distributed computers cannot keep their local 
clocks perfectly synchronized
● However, DS must offer some kind of event 
ordering in order to function properly
● Two different actions can be performed to 
achieve this restriction:

● Actual clock synchronization
● Use of logical clocks



Basics

● Differences in clocks are due to clock skew and 
clock drift
● Skews are instantaneous differences among 
clocks
● Drifts are rates of error acceleration in the clock
● Usual drift values range in 10-6 to 10-8 sec/sec,
 what is equivalent to drifting 10ms in something 

between 3 hours up to 11 days



Clock skew



Basics

● Astronomical time X Atomic time
●  Atomic time is based on Cs-133 transitions
●  Astronomical time is based on Earth's 

revolutions
● UTC (Coordinated Universal Time) is the 
current standard for time keeping. It follows the 
atomic time with leap seconds inserted/deleted 
every few years to keep up with astronomical 
time



Drift and leap seconds in UTC



Clock synchronization

● Physical clocks may be regularly 
synchronized in two ways:

● Externally, where

● Internally, where

∣S (t )−C i(t)∣<D , for i=1...N

∣C i(t)−C j(t)∣<D , for all pairs of i , j=1...N



Techniques to reduce skew – Christian's method

● Christian's method uses a time server that 
reads UTC time
● Uses also the round-trip time to update a local 
clock
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Techniques to reduce skew – Christian's method

● In Christian's method each host requests the 
current time from the time server
● The server answers with a message 
containing the current time (inserted in the very 
last moment)
● The host measures the message's round-trip 
and adjusts the received time with half of this 
value



Techniques to reduce skew – Berkeley's algorithm

● Berkeley's algorithm is an internal technique 
where a master checks out the other clocks 
periodically
● It averages the clock values, eliminating 
outliers, and sending back the difference 
between local and average time
● Each host adjusts its clock with this difference



Techniques to reduce skew - NTP

● NTP (Network Time Protocol) is aimed to 
global networks
● Uses a hierarchical tree to synchronize local 
clocks to UTC
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Note: Arrows denote synchronization control, 
numbers denote strata.



Techniques to reduce skew - NTP

● Server synchronize in one of three modes:
● Multicast, used in high-speed LANs
● Procedure-call, which is similar to Christian's 

method. It is more accurate than multicast
● Symmetric, which is performed by pairs of 

servers in the higher part of the tree



Logical time and clocks

● Although the relevance of physical clocks, 
most applications need only to know the order 
in which events occur
● In these cases one can use logical clocks to 
establish an event ordering
● Lamport suggested the principal technique for 
logical clocks



Logical time and clocks

● Lamport clock is based in two points:
● If two events occurred at the same process, 

then they occurred in the order seen by this 
process

● If a message is sent between processes, the 
event of sending it precedes the event of 
receiving it

● The generalization of these points is called 
the happened-before relation



Happened-before relation

● This relation (denoted by → ) is defined as:
HB1: if exists process p

i
: e →

i
 e', then e → e'

HB2: for any message m, send(m) → recv(m)
HB3: if e, e' and e'' are events such that e → e' 

and e' → e'', then e → e''



Lamport's clock

 It is implemented considering that:
Li is increased before every event ocurrence 

in process Pi

Every time that Pi sends a message, Li 's 
value (t) is added to the message m

Every time that Pi receives a message (m,t), 
its clock is adjusted in order that the new 
value becomes Li = max(Li, t), before 
applying the first rule



Lamport's clock

 It is verifiable that with these rules the 
ordering relationship between events is 
preserved, that is:

If e → e', then L(e)< L(e')

It must be observed, however, that if 
L(e)< L(e') we cannot assure that e → e'



Lamport's clock progression



Total order in logical clocks

● The problem with events in different 
processes having the same timestamp can be 
corrected using the process identifier to untie 
the timestamps. 
● Then we have:
(Ti , i)< (Tj , j) if and only if Ti < Tj  or Ti = Tj  and 

i < j



Vector clocks

● Fix the indetermination with L(e) and L(e') 
creating vector clocks in each process. The rules 
to update clocks are:

VC1: Vi[j] = 0, for all i,j = 1, 2, … , N
VC2: Vi[i] is incremented before any event in Pi
VC3: Pi includes Vi[i] in every message it sends
VC4: When Pi receives a message from j it sets 

Vi[j] = max (Vi[j], t[j])



Vector clocks

● To compare vectors the rules are:
V = V' iff V[j] = V'[j] for j= 1, 2, … , N
V ≤ V' iff V[j] ≤ V'[j] for j= 1, 2, … , N
V < V' iff V ≤ V' ∧ and V ≠ V'



Global states and properties

● The use of clocks in a DS is demanded by 
applications where events change its state and 
may imply in corrupted actions
● These applications include garbage collection 
and deadlock detection, for example
● They demand what is called global states 
determination (or global properties detection)



Global states and properties

● The evaluation of global properties enable the 
validation of distributed algorithms through 
predicate analysis
●To do so one has to define consistent cuts and 
determine the system's status in these cuts

A consistent cut is one where for each event 
that it contains, it also contains all events 
that happened-before it, or:

∀ all events e ∈ C, f → e ⇒ f ∈ C



Global states and properties

● The analysis over consistent cuts is 
performed through predicates built following 
techniques such as Hoare Logic, where 
safe/unsafe states are defined and evaluated in 
order to prove correctness.
● This kind of analysis can be applied in several 
problems, such as deadlock detection, 
termination detection, and garbage collection



Parenthesis : Hoare Logic

● Hoare Logic defines predicate rules, formed 
by triples for programming events, such as 
assignments, decisions, and so on.
● It allows the evaluation of program 
correctness, and even program design, through 
the establishment of desired/undesired 
program's status



Parenthesis : Hoare Logic

● Examples of Hoare Logic rules:
● Assignment

{Q[E/id]}  id=E; {Q}
● If-then-else

{P E} S1 {Q}   {P ¬E} S2 {Q}∧ ∧
     {P} if (E) S1 else S2 {Q}



Distributed garbage collection

● An object is garbage if there are no 
references to it anywhere in the DS
● Problems with this include finding all 
references to an object



Deadlock detection

● Occurs when a waits-for cycle is created 
● The problem is to determine which process is 
waiting for messages from who



Termination detection

● It is similar to deadlock detection
● The problem is to determine that every 
process in a task actually arrived at the end 
and is not simply waiting for a new job



THAT'S IT FOR TODAY !!
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