
Distributed Systems

Aleardo Manacero Jr.

Time and
Clocks

Introduction

● Distributed computers cannot keep their local
clocks perfectly synchronized
● However, DS must offer some kind of event
ordering in order to function properly
● Two different actions can be performed to
achieve this restriction:

● Actual clock synchronization
● Use of logical clocks

Basics

● Differences in clocks are due to clock skew and
clock drift
● Skews are instantaneous differences among
clocks
● Drifts are rates of error acceleration in the clock
● Usual drift values range in 10-6 to 10-8 sec/sec,
 what is equivalent to drifting 10ms in something

between 3 hours up to 11 days

Clock skew

Basics

● Astronomical time X Atomic time
● Atomic time is based on Cs-133 transitions
● Astronomical time is based on Earth's

revolutions
● UTC (Coordinated Universal Time) is the
current standard for time keeping. It follows the
atomic time with leap seconds inserted/deleted
every few years to keep up with astronomical
time

Drift and leap seconds in UTC

Clock synchronization

● Physical clocks may be regularly
synchronized in two ways:

● Externally, where

● Internally, where

∣S (t)−C i(t)∣<D , for i=1...N

∣C i(t)−C j(t)∣<D , for all pairs of i , j=1...N

Techniques to reduce skew – Christian's method

● Christian's method uses a time server that
reads UTC time
● Uses also the round-trip time to update a local
clock

mr

m t
p Time server,S

Techniques to reduce skew – Christian's method

● In Christian's method each host requests the
current time from the time server
● The server answers with a message
containing the current time (inserted in the very
last moment)
● The host measures the message's round-trip
and adjusts the received time with half of this
value

Techniques to reduce skew – Berkeley's algorithm

● Berkeley's algorithm is an internal technique
where a master checks out the other clocks
periodically
● It averages the clock values, eliminating
outliers, and sending back the difference
between local and average time
● Each host adjusts its clock with this difference

Techniques to reduce skew - NTP

● NTP (Network Time Protocol) is aimed to
global networks
● Uses a hierarchical tree to synchronize local
clocks to UTC

1

2

3

2

3 3

Note: Arrows denote synchronization control,
numbers denote strata.

Techniques to reduce skew - NTP

● Server synchronize in one of three modes:
● Multicast, used in high-speed LANs
● Procedure-call, which is similar to Christian's

method. It is more accurate than multicast
● Symmetric, which is performed by pairs of

servers in the higher part of the tree

Logical time and clocks

● Although the relevance of physical clocks,
most applications need only to know the order
in which events occur
● In these cases one can use logical clocks to
establish an event ordering
● Lamport suggested the principal technique for
logical clocks

Logical time and clocks

● Lamport clock is based in two points:
● If two events occurred at the same process,

then they occurred in the order seen by this
process

● If a message is sent between processes, the
event of sending it precedes the event of
receiving it

● The generalization of these points is called
the happened-before relation

Happened-before relation

● This relation (denoted by →) is defined as:
HB1: if exists process p

i
: e →

i
 e', then e → e'

HB2: for any message m, send(m) → recv(m)
HB3: if e, e' and e'' are events such that e → e'

and e' → e'', then e → e''

Lamport's clock

 It is implemented considering that:
Li is increased before every event ocurrence

in process Pi

Every time that Pi sends a message, Li 's
value (t) is added to the message m

Every time that Pi receives a message (m,t),
its clock is adjusted in order that the new
value becomes Li = max(Li, t), before
applying the first rule

Lamport's clock

 It is verifiable that with these rules the
ordering relationship between events is
preserved, that is:

If e → e', then L(e)< L(e')

It must be observed, however, that if
L(e)< L(e') we cannot assure that e → e'

Lamport's clock progression

Total order in logical clocks

● The problem with events in different
processes having the same timestamp can be
corrected using the process identifier to untie
the timestamps.
● Then we have:
(Ti , i)< (Tj , j) if and only if Ti < Tj or Ti = Tj and

i < j

Vector clocks

● Fix the indetermination with L(e) and L(e')
creating vector clocks in each process. The rules
to update clocks are:

VC1: Vi[j] = 0, for all i,j = 1, 2, … , N
VC2: Vi[i] is incremented before any event in Pi
VC3: Pi includes Vi[i] in every message it sends
VC4: When Pi receives a message from j it sets

Vi[j] = max (Vi[j], t[j])

Vector clocks

● To compare vectors the rules are:
V = V' iff V[j] = V'[j] for j= 1, 2, … , N
V ≤ V' iff V[j] ≤ V'[j] for j= 1, 2, … , N
V < V' iff V ≤ V' ∧ and V ≠ V'

Global states and properties

● The use of clocks in a DS is demanded by
applications where events change its state and
may imply in corrupted actions
● These applications include garbage collection
and deadlock detection, for example
● They demand what is called global states
determination (or global properties detection)

Global states and properties

● The evaluation of global properties enable the
validation of distributed algorithms through
predicate analysis
●To do so one has to define consistent cuts and
determine the system's status in these cuts

A consistent cut is one where for each event
that it contains, it also contains all events
that happened-before it, or:

∀ all events e ∈ C, f → e ⇒ f ∈ C

Global states and properties

● The analysis over consistent cuts is
performed through predicates built following
techniques such as Hoare Logic, where
safe/unsafe states are defined and evaluated in
order to prove correctness.
● This kind of analysis can be applied in several
problems, such as deadlock detection,
termination detection, and garbage collection

Parenthesis : Hoare Logic

● Hoare Logic defines predicate rules, formed
by triples for programming events, such as
assignments, decisions, and so on.
● It allows the evaluation of program
correctness, and even program design, through
the establishment of desired/undesired
program's status

Parenthesis : Hoare Logic

● Examples of Hoare Logic rules:
● Assignment

{Q[E/id]} id=E; {Q}
● If-then-else

{P E} S1 {Q} {P ¬E} S2 {Q}∧ ∧
 {P} if (E) S1 else S2 {Q}

Distributed garbage collection

● An object is garbage if there are no
references to it anywhere in the DS
● Problems with this include finding all
references to an object

Deadlock detection

● Occurs when a waits-for cycle is created
● The problem is to determine which process is
waiting for messages from who

Termination detection

● It is similar to deadlock detection
● The problem is to determine that every
process in a task actually arrived at the end
and is not simply waiting for a new job

THAT'S IT FOR TODAY !!

	Slide 1
	Slide 2
	Troca de mensagens
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Relógios lógicos (Lamport)
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

