
Session F3D

A flexible curriculum for computer science undergraduate major

Aleardo Manacero Jr., Rildo R. dos Santos, Norian Marranghello, Aledir S. Pereira, Adriano M. Cansian
and Jośe C. L. Ralha

Abstract—This paper describes an innovative approach to
establish a CS curriculum, aiming flexibility and minimization
of the time spent in the classrooms. This approach has been
developed at the Paulista State University - Unesp - at São
Jośe do Rio Preto, and is producing very interesting results.
The load reduction is achieved through a series of fundamen-
tal core and breadth courses that precede depth courses in
specific areas. The flexibility comes as a side effect of the
depth courses, which can be adapted without any changes in
the core courses. In the following pages we fully describe our
motivations, actions and results.

Index Terms— Computer Science Curriculum, Flexible
Curricula

Introduction
Every person involved with computers and/or computer sci-
ence (CS) knows that the body of knowledge in this area
changes at impressive speeds, both in hardware and in soft-
ware fields. As an example, ten years ago computer networks
were used basically for file transfers and remote login ses-
sions, being restricted mostly to university campuses. Nowa-
days we not only have the World Wide Web but also the In-
ternet is accessible by several millions of people. This kind
of evolution demands that CS programs change their curricu-
lum at the same pace, in order to keep an adequate level in
the professionals graduated from their classes. However, ev-
ery curriculum becomes a giant piece of knots just after few
changes, difficulting any later modification. In order to over-
come this problem it is mandatory that a curriculum has to be
flexible enough to absorb changes at any rate.

Another large demand that should be attended by CS pro-
grams is the gap between what is taught at academia and what
is needed in the businesses. This gap can be reduced through
design assignments more oriented to the technologies under
use in the enterprises. However this demands an improvement
in the time spent by the students in practical tasks. This could
be achieved through the reduction in the time taken by regular
classes, which are usually high in the Brazilian undergraduate
system (over six classroom hours per day).

At this point it is desirable to quickly describe the Brazilian
standards for naming majors related to computing. The gov-
ernment defines two different groups of majors in the comput-
ing field, one that comprises those that take the computer itself
as their goal and another comprising those that have the com-

All are with Department of Computer Science and Statis-
tics - Unesp, S˜ao Jos´e do Rio Preto, Brazil. E-mails:
aleardo,rildo,norian,aledir,adriano,ralha@dcce.ibilce.unesp.br

puter application as their goal. In other words, we classify the
BSc majors namedComputer Science andComputer Engi-
neering in the first group, where the development of comput-
ers or computing technologies are their goals. On the other
side we put in the second group the BSc majors onInforma-
tion Technology and a pre-serviceTeacher Education major
on computing, where the use or development of solutions for
non-computing problems are their goals. The curriculum de-
scribed here falls in the first group.

This curriculum was established with the goals of flexibil-
ity and practical works in mind. It was developed during the
reform process of the CS major offered by Paulista State Uni-
versity - Unesp - at S˜ao Jos´e do Rio Preto. This process took
five years to be concluded, going through two unsuccessful
attempts before completion. In the first two versions the cur-
riculum adopted a standard approach, with many courses and
few opportunities for changes. The third and final version re-
ceived university approval late in 1996, being implemented
for the 1997 class.

In the following pages we describe first the former curricu-
lum and the history behind the reform process. After that
a thorough description of the new curriculum is given, alto-
gether with results and conclusions drawn from its implemen-
tation.

Motivation and historic
The history of this curriculum starts in 1991, when a group of
faculty members decided that what they were teaching was too
outdated. They assembled a task force in order to study sev-
eral different curricula, including ACM’s [1] and its Brazilian
equivalent from the Brazilian Computer Society (SBC) [2].
The task force suggested two different curricula in 1992 and in
1994, but both were dismissed after preliminary discussions.
In the following paragraphs we describe the motivations for
change and what led to the current curriculum in a historical
perspective.

Why change

The main reason for the creation of a task force intended to the
modification of the original curriculum was a disagreement
about the orientation between those who were teaching at that
time and those who developed the curriculum. The original
group had mostly a mathematical background while the new
faculty members came from engineering programs. This dif-
ference originated a discussion about how much time should
be spent in each component of the curriculum (mathematics,
computer core and computer technologies). This discussion
took almost five years to come to an end.

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

F3D-20

Session F3D

Indeed, although our former students were well recognized
by prospective employers and graduate programs, that cur-
riculum needed urgent modifications in order to have a bet-
ter balance between core and technological courses. Its ma-
jor flaw was an excessive load on math courses, which took
a large amount of time, to the detriment of technological
courses. Besides everyone certainly assures that math is im-
portant, the problem in those courses was that their contents
could be easily packed in less time than what was reserved to
them. Table shows the load distribution for that curriculum,
spread along math, computer core, computer professional and
design courses.

Area Percentage of time

Math 48.3
Computer core 14.3
Computer professional 28.6
Design 8.8

TABLE I

LOAD DISTRIBUTION IN THE FORMER CURRICULUM.

Another major flaw in that curriculum was that it did not give
the exact importance to some emerging technologies, such as
computer networks, or put some others too late in the courses
schedule, such as operating systems. Those details were a di-
rect consequence of the mathematical background of the cur-
riculum developers. At that time, the task force started the
work developing a new curriculum following a more tech-
nological orientation. This orientation was kept through the
three versions presented to the departments in charge of the
CS major. Here we have to explain that our university follows
a hierarchy where majors are offered by colleges and some of
the departments inside a college have the duty of manage the
major and its courses.

What had to be changed

As stated earlier, the previous curriculum had several critical
points that had to be changed. Most of them were related
with the unbalanced load distribution between professional
and math courses. Others were related with the modernization
of professional courses, bringing up recent topics that were
not covered by the older courses. Table lists critical issues
with some of the courses in the former curriculum.

From Table it is easy to notice that the math courses pre-
sented an excessive load to the students. We have already
mentioned that this load was inappropriated mostly due to the
time spent in the classroom and not by the content taught in
each course. As an example, the calculus course was spread
along two years, compromising 300 hours of time, but did not
cover differential equations. In the new structure it covers ev-
ery topic of the old structure plus differential equations, but in
just three semesters and 240 hours.

In the technological courses the problem was their expected

Course Problem

Calculus Excessive load and lack of cer-
tain topics

Linear algebra Excessive load
Algebra Excessive load and content mis-

direction
Physics Coming late on the program
Introduction to Pro-
gramming

Inadequate contents

Compiler Design Coming too late
Operating Systems Coming too late and lack of de-

sign
Computer Networks Was optional

TABLE II

CRITICAL ISSUES OF SPECIFIC COURSES.

schedule, with courses coming too late in the program in some
cases. That made almost impossible to provide in-depth stud-
ies (through follow-up courses) on the topics covered there or
even specific design courses. As an example,Compiler De-
signwas scheduled for the last semester, which prevented of-
fering an in-depth course about non-conventional compilers.

The problems with core courses were similar to those with
math courses, that is, their complexity demanded less time
than what was devoted to them. With a careful reformulation
the core courses could be taught in less time or could have its
contents augmented if we kept the same load. We choose the
later solution for the new curriculum.

The early proposals

The first attempt for a new curriculum aimed a reduction on
the amount of time spent studying mathematics, without any
prejudice on its contents, and an increment on the time spent
on professional and design courses. It never got an unani-
mous approval, even inside the computer science department,
because it introduced too many new courses, demanding an
extra year for a student to fulfill the curriculum requirements.
The work over this version came to an end when several of the
faculty members in the task force left the university.

A new task force started trying to remove the drawbacks in
the first version and proposed a shorter one in 1994. Then,
the task force started a discussion process with the involved
departments, which proved to be rather slow. Finally, early
in 1995, this version was abandoned when a third, and more
attractive, proposal came into discussion.

The third proposal is the one described in this paper and
added a flexible approach that was not present in the previous
versions. We will not describe the two former proposals here
since they never got implemented, what turns impossible any
objective comparison between them and the current curricu-
lum.

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

F3D-21

Session F3D

......
Field 1

Technical

Field 2

Technical

Field 3

Technical

Field n

Technical

Computer Technological core

Computer core

Mathematics, Physics

Freshman and

Sophomore

Phase 2

Phase 1

Junior and

Senior

Fig. 1. Curriculum structure split in basic and technological phases

The new curriculum

The curriculum implemented has two main directives: a tech-
nological orientation and a flexible structure. The first one
came directly from the original motivations for change and the
second was the heart of the third proposal, coming up as a so-
lution to avoid constant modifications in the whole structure.
Some of the ideas behind the curriculum flexibilization came
from the Electrical and Computer Engineering major from
Carnegie-Mellon University [3], with several adaptations to
the Brazilian higher education laws [2], [4] and university re-
quirements.

The model adopted here was based on the concept that com-
puter science is a wide and rapidly moving area and that it is
impossible to know all of its subtleties. The range of topics
demand many courses to cover them, turning the curriculum
too large. The speed of changes age the curriculum continu-
ously, demanding modifications too often. Finally, due to its
wideness, its virtually impossible for a student to deeply un-
derstand every topic and for a graduate to work in any area
since the professional specialization is almost mandatory in
this field.

These concepts lead to the anchors of this curriculum: flex-
ibility, speciality, responsibility. The flexibility attacks the ag-
ing of the course contents, avoiding constant modifications.
The speciality enables that only few topics have to be exam-
ined in its gory details, while the others are examined just
through their main concepts. At last, but not least, the re-
sponsibility is demanded from the students since they have to
choose which topics they will study in details (although they
may do this with the help of a tutor assigned by the major’s
council).

We introduced these anchors in the curriculum by a time
division. In the freshman and sophomore years the curricu-
lum grid is spread along mandatory math, physics, computer
core and technological core courses. In the junior and se-
nior years the grid is spread along technological and design
courses grouped into areas of concentration (five in our cur-
riculum). In Figure , we show how to perform the time divi-
sion and the split in areas of concentration for technological
courses during the final years.

As told in the previous paragraph, in the first two years
we concentrate the mandatory courses. Although this is a
commonplace in several curricula, here we introduce a set of
courses classified as technological core courses, which are, in
essence, the heart of this curriculum. They are introductory
courses to all topics inside the technological fields covered in
the final years, comprising the main concepts of each subject.
This is made possible through a merge between similar topics
inside a single course, like the one that links computer net-
works and operating systems [5].

These introductory courses are taught in the sophomore
year and have three goals: give the basic concepts for most
of the technological subjects, reduce the number of mandatory
courses, and give the guidance to the students for choosing the
field of computer science in which they will specialize. The
third goal is a consequence of the responsibility anchor, since
we cannot ask that students have it without giving them the
support to do so. The first will be justified in the next section.
Finally, the second goal is intended to the reduction on the
time that students have to spend in classrooms, leaving spare
time for laboratory work, library studies and leisure.

With this structure we are also capable of modifying parts
of the curriculum without changes in the whole piece. This
means flexibility since any subject can be inserted or removed
from the curriculum through just two steps: a minor modifi-
cation in the introductory course that approaches the subject’s
field and its own insertion or removal. Therefore, the grid of
courses becomes flexible and easily manageable by the fac-
ulty and by the students.

Curriculum grid

The grid established for this curriculum is eight semesters
long, with all but three mandatory courses spread along the
first four semesters, as shown in Figure . Two of these three
courses are in the fifth (Linear Algebra) and sixth (Graph The-
ory) semester just to get a better load balance along the cur-
riculum. The last one is a capstone design course intended to
be executed during the senior year.

The topics taught in most of the mandatory courses are the
conventional ones, such asCalculus I, II andIII , Physics Iand
II , andDigital Systems. The differences appear in the courses
named“Foundations in ...”, which comprises the technologi-
cal core courses (one for each concentration area) and a spe-
cial freshman course (Foundations in Computer Science) in-
tended to make students recognize that math is there because it
is necessary to get a better understanding of computer science
technologies. A short description of the Foundations courses
is given now.
� Foundations in Computer Science: an introductory
course that shows what computer science is and the mathe-
matical concepts need in technological fields [6];
� Foundations in Languages and Computing Theory: a
course that presents the concepts of algorithm complexity and
computability, formal languages and automata, and language

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

F3D-22

Session F3D

Semester 1 Semester 2 Semester 3 Semester 4
Calculus I Calculus II Calculus III Probabilities
Analytic Geometry Linear Algebra Numerical Analysis Foundations in Scientific

Computing
Technical Writing Formal Aspects of

Computing
Digital Systems Foundations in Computer

Systems
Physics I Physics II Data Structures Foundations in Information

Systems
Programming I Programming II Foundations in Languages and

Computing Theory
Foundations in Automation
Systems

Foundations in Computer
Science

Semester 5 Semester 6 Semester 7 Semester 8
Linear optimization Graph theory Capstone Design
+ 4 courses + 4 courses + 4 courses + 2 courses
The 14 courses listed for semesters 5 to 8 refer to a set of 6 mandatory courses indicated for a specific area, 4 elementary
courses and 4 courses of free choice

Fig. 2. Suggested grid for this curriculum

paradigms;
� Foundations in Scientific Computing: a course that
presents the hazards and solutions related to the application
of computers into scientific problems;
� Foundations in Computer Systems: a course that dis-
cusses systems that control computers and serve as interfaces
between hardware and software, such as operating systems
[5];
� Foundations in Information Systems: a course that deals
with the treatment of information inside the computer and
techniques to develop solutions for user applications;
� Foundations in Automation Systems: a course that
presents topics related to hardware, mainly those on digital
systems design and industrial automation.

These courses covers all the main technologies in computer
science. The topics inside each one were chosen due their cor-
relation. For example, we put language paradigms together
with computability since they have a set of formalisms ori-
ented to proofs in common. None of these topics can be
deeply covered here in order to accommodate all of them. The
density in each topic is defined by its relevance and by the un-
derstanding that if a student will need a deeper knowledge on
a topic he/she will have it in the junior/senior level courses.

After the completion of the mandatory courses the student
has to choose an area of concentration, following one of the
kernels provided by the Foundations courses. This is required
to fill in the grid for the junior and senior years and is intended
to allow the definition of the minimal set of courses that have
to be taken by the student.

This minimal set comprises six mandatory courses about
subjects inside the chosen area, four courses taken from a list
of elementary courses, one from each one of the other areas

and four more courses chosen from any technological subject.

The six mandatory courses are designed to provide an
early specialization for the student. They are separated into
three elementary and three advanced courses. The elemen-
tary courses covers the main subjects inside the area, likeOp-
erating Systems Design, Computer NetworksandConcurrent
Programmingin the computer systems’ area. Table lists the
mandatory courses in each of the five concentration areas. No-
tice that some courses are mandatory in two areas, being clas-
sified sometimes as elementary in one and as advanced in the
other.

The four courses taken from the list of elementary courses
are required to provide in-depth knowledge at least in some
of the subjects inside the areas that did not attracted the stu-
dent. This requirement avoids an ultra-specialization that
could come from the freedom given to the students about what
courses they will take. The courses marked with� in Table
are the elementary ones on each area. Notice here that if a
course is mandatory for two areas, it cannot be picked as the
elementary course for a student completing the area where it
is classified as advanced.

Finally, the four courses taken from any technological area
are an opportunity either for diversity or for more specializa-
tion. They also provide room for experimentation with new
subjects, before any decision about its insertion as a manda-
tory course in one area is done.

With all of these choices made available, we demand from
the students some degree of responsibility, first in the tran-
sition between sophomore and junior level, when an area of
study has to be defined, and later in the choice of the eight
courses that are not mandatory for his/her area. This respon-
sibility is partially shared with a tutor, who is assigned to the

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

F3D-23

Session F3D

Area Courses

- Automata and Formal Languages�
- Compiler Design�

Languages and Computing Theory - Algothims Complexity�
- Computability
- Design of Programming Languages
- Topics on Programming Languages
- Numerical Software�
- Nonlinear Optimization�

Scientific Computing - Numeric Resolution of Differential Equations�
- Finite Elements
- Numerical Resolution of Partial Differential Equations
- Topics on Scientific Computing
- Operating Systems Design�
- Computer Networks�

Computer Systems - Concurrent Programming�
- Real-Time Systems
- Computer Architecture and Organization
- Topics on Computer Systems
- Database I�
- Software Engineering�

Information Systems - Information Organization and Retrieval�
- Database II
- Design and Implementation of Information Systems
- Topics on Information Systems
- Assembly Languages�
- Computer Architecture and Organization�

Automation Systems - Systems Modelling�
- Systems Simulation
- Microprocessors and Microcontrollers
- Topics on Automation Systems

TABLE III

L IST OF MANDATORY COURSES ON EACH CONCENTRATION AREA

student as soon as the area definition is made. The tutor is
usually a researcher in the chosen area, acting as a curriculum
advisor.

Results achieved with this curriculum
Despite that the first class officially enrolled in this curricu-
lum started in 1997, we allowed that students of the 95 and 96
classes could integralize the new curriculum with some adap-
tations. This decision led to the adoption of the new curricu-
lum by 100% of the 96 class and around 60% of the 95 class.
The consequences were an early dismissal of courses that ex-
isted only in the old curriculum and an early offering of some
courses introduced by the new one. This situation became
useful by enabling an early development of all modifications
planned for this curriculum.

At the time that this article was written, most of the adapted
classes and some of the students in the 97 class have gradu-
ated, completing the curriculum cycle as it was planned. From

assessment of these classes, we have obtained interesting re-
sults, proving some of the predicted remarks and providing
some insights about flaws in certain situations. We start list-
ing the identified problems:
(a) Need for more design works, especially in the “Founda-

tions” courses;
(b) Need to strengthen the requirements for approval in the

core courses;
(c) Need to change the schedule of some courses in the grid

(the Formal Aspects of Computingcourse, moved from the
first to the second semester);
(d) Need to add a pre-capstone design course.

The first two problems are already under work, resulting in
an increase of the retention rates in the core courses and in an
increase in the level of knowledge achieved after approval on
them. The last problem will be dealt during the curriculum
reform that will be necessary to be performed in 2002, due to
modifications in the Brazilian higher education laws. As an

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

F3D-24

Session F3D

aside comment, the curriculum presented here accomplishes
almost all requirements of those laws and will need only the
addition of few more hours of load.

Beyond these problems several favorable conclusions can
be drawn. They are:
(a) Decrease in the average turnaround time for graduation,

which was 4.8 years until December of 1999 and is down to
4.5 years now. This average should get lower since most of
the students are now graduating in four years;
(b) Decrease in the abandon rates, mainly due to theFoun-

dations in Computer Sciencecourse that motivates the need
for the mathematics introduced early in the curriculum;
(c) Increase in the students satisfaction through the large

range of choices they have;
(d) Increase in the quality of the capstone design works,

since the students have a deeper knowledge on the field they
choose to develop their work.

From all these results it is possible to conclude that this cur-
riculum offers a better model for CS majors, since it provides
flexibility for changes and the possibility for early specializa-
tion (closing the gap with the so-called real world).

The advantages provided largely overcome the problems
observed, and since most of the problems have easy solutions,
it is expected that they will disappear in a near future.

As a final remark we believe that this approach for curricu-
lum implementation is strongly indicated to any major that
have characterists similar to those present in the computer sci-
ence field, i.e., fast modification and wide range of subjects.

Acknowledgements
We want to acknowledge the Research Support Foundation of
State of S˜ao Paulo, which supported the divulgation of this
curriculum, the administration of Paulist State University -
Unesp, which granted us with freedom to implement a ex-
perimental curriculum, and all the students that went through
the experimentation process.

References
[1] ACM/IEEE-CS, “ACM Curricula Recommendations Volume I: Com-

puting Curricula 1991”, ACM Press, 1991.
[2] Brazilian Computer Society, “Reference Curriculum - 1996”, available

(on 03/02/2001) atwww.sbc.org.br/cr/crf96.html(in portuguese), 1996.
[3] Dept. of Electrical and Computer Engineering, “Electrical and Com-

puter Engineering Undergraduate Primer”, available (on 03/02/2001) at
www.ece.cmu.edu/undergrad/primer, 1995.

[4] Ministry of Education, “Curricula Directives for Com-
puter Majors”, available for download (on 03/02/2001) at
www.mec.gov.br/Sesu/ftp/curdiretriz/Computacao/
co diretriz.rtf (in portuguese), 1999.

[5] Manacero, A. Jr., “Merging Operating Systems and Computer Net-
works: Why and How”, inProc. of Internation Conference on Engi-
neering Education - ICEE’98, CD-ROM, Rio de Janeiro - Brazil, 1998.

[6] Manacero, A. Jr. and Marranghello, N., “Turning Math Attractive to
computer science students: an application to model approach”, inProc.
of 29th Frontiers In Education Conference, FIE’99, v.1, pp 13B24 -
13B29, San Juan - Puerto Rico, 1999.

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

F3D-25

