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Extremal Positive Trigonometric Polynomials

Dimitar K. Dimitrov ∗

In this paper we review various results about nonnegative trigono-
metric polynomials. The emphasis is on their applications in Fourier
Series, Approximation Theory, Function Theory and Number The-
ory.

1. Introduction

There are various reasons for the interest in the problem of constructing
nonnegative trigonometric polynomials. Among them are: Cesàro means
and Gibbs’ phenomenon of the the Fourier series, approximation theory,
univalent functions and polynomials, positive Jacobi polynomial sums, or-
thogonal polynomials on the unit circle, zero-free regions for the Riemann
zeta-function, just to mention a few.

In this paper we summarize some of the recent results on nonnegative
trigonometric polynomials. Needless to say, we shall not be able to cover all
the results and applications. Because of that this short review represents
our personal taste. We restrict ourselves to the results and problems we
find interesting and challenging.

One of the earliest examples of nonnegative trigonometric series is the
Poisson kernel

1 + 2
∞∑

k=1

ρk cos kθ =
1− ρ2

1− 2ρ cos θ + ρ2
, −1 < ρ < 1, (1.1)

which, as it was pointed out by Askey and Gasper [8], was also found but
not published by Gauss [30]. The problem of constructing nonnegative
trigonometric polynomials was inspired by the development of the theory
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of Fourier series and by the efforts for giving a simple proof of the Prime
Number Theorem. This area of research reached its efflorescence in the
beginning of the twentieth century due to the efforts of many celebrated
mathematicians.

2. Fourier Series

Let ρ to tend to one in (1.1). We obtain the formal Fourier series

1 + 2
∞∑

k=1

cos kθ (2.2)

of the Dirac delta function δ(θ). Now Poisson’s formula

f(ρeiθ) =
1
2π

∫ π

−π

f(eiϕ)
1− ρ2

1− 2ρ cos(θ − ϕ) + ρ2
dϕ (2.3)

and the theory of generalized functions strongly suggest that some suffi-
ciently “good” functions can be recovered by its convolutions with certain
kernels. It is already known what “good” and ”certain” means but it was
not so in the beginning of the nineteenth century, for instance, when Pois-
son himself, using his formula (2.3), produced a faulty convergence proof
for Fourier series.

Let us concentrate on the properties of the kernels. It is intuitively
clear from the above observation that these must inherit some of the prop-
erties of the Poisson kernel and of the Dirac delta functions. Then an even
positive kernel is any sequence {kn(θ)} of even, nonnegative continuous 2π-
periodic functions if kn(θ) are normalized by (1/2π)

∫ π

−π
kn(θ)dθ = 1 and

they converge uniformly to zero in any closed subset of (0, 2π). Nowadays
it is known that the convolutions

Kn(f, x) = kn ∗ f(x) =
1
2π

∫ π

−π

kn(θ)f(x− θ)dθ

of such kernels converge in Lp[−π, π], 1 ≤ p ≤ ∞, (p = ∞ means, of course,
uniformly), almost everywhere and in mean provided the function f(x) is
2π-periodic and belongs to an adequate space of functions (see [38]). More
precisely, f ∈ Lp[−π, π] yields the Lp convergence, the requirements that
f(x) is integrable in [−π, π] guarantees the almost everywhere convergence,
and when, in addition to the integrability of f(x), for x ∈ [−π, π], the limit
limh→0(f(x+ h) + f(x− h)) exists, then

Kn(f ;x) −→ (1/2) lim
h→0

(f(x+ h) + f(x− h)) as n diverges.
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To the best of our knowledge, Fejér [22] was the first to realize the above
facts in 1900. He proved that the cosine polynomials

Fn(θ) = 1 + 2
n∑

k=1

(
1− k

n+ 1

)
cos kθ (2.4)

are nonnegative establishing the simple closed form

Fn(θ) =
sin2(n+ 1)θ/2
(n+ 1) sin2 θ/2

.

This immediately yields that {Fn(θ)} is a summability kernel. It is known
that the corresponding convolutions

Fn(f ;x) =
1
2π

∫ π

−π

f(x− θ)Fn(θ)dθ

coincide with the Cesàro means of the Fourier series of f(x),

Fn(f ;x) = σn(f ;x) =
S0(f ;x) + · · ·+ Sn(f ;x)

n+ 1
.

Here Sn(f ;x) denotes the n-th partial sum of the Fourier series of f(x).
Another reason for which Fejér was interested in nonnegative trigono-

metric sums is the Gibbs’ phenomenon, called also the Gibbs-Wilbraham
phenomenon. We refer the reader to Zygmund’s classical book [63, Chap-
ter II, §9] and a nice review paper of E. Hewitt and R. E. Hewitt [34] for
more information about this topic. Fejér’s interest led him to conjecture
in 1910 that the partial sums

∑n
k=1(1/k) sin kθ of the sine Fourier series of

(π − θ)/2, 0 < θ < π, extended as an odd function, are positive in (0, π).
Jackson [35] and Gronwall [33] proved Fejér’s conjecture independently,

but only within a few months. Nowadays the inequality

n∑
k=1

sin kθ
k

> 0 for θ ∈ (0, π) (2.5)

is called the Fejér-Jackson-Gronwall inequality.
In 1953 Turán [59] established the following important fact:

Theorem 1. If

n∑
k=1

bk sin(2k − 1)θ ≥ 0, θ ∈ (0, π),
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then
n∑

k=1

bk
k

sin kθ > 0 θ ∈ (0, π).

This theorem immediately yields the Fejér-Jackson-Gronwall inequality be-
cause it is very easy to prove that

∑n
k=1 sin(2k − 1)θ ≥ 0 for θ ∈ (0, π).

Recently Turán’s result was used in [19] to provide some new nonnega-
tive sine polynomials

Theorem 2. The sine polynomials
n∑

k=1

(
1
k
− k − 1
n(n+ 1)

)
sin kθ, (2.6)

n∑
k=1

(
1
k
− 2(k − 1)

n2 − 1

)
sin kθ, (2.7)

and
n∑

k=1

1
k

sin kθ − 1
2n

sinnθ,

are non-negative in (0, π).

The graphs of the polynomials (2.6) and (2.7) show that their Gibb’s
phenomenon is much smaller than the Gibb’s phenomenon of Fejér-Jackson-
Gronwall’s polynomials. Moreover, (2.6) and (2.7) approximate the func-
tion (π−θ)/2 uniformly on every compact subset of (0, π] much better than
(2.5) does.

There are still many interesting nonnegative trigonometric polynomials
which are related to Fourier series but we shall stop here in order to recall
some well-known results concerning a general approach to obtaining such
polynomials and review some of the interesting examples.

3. Construction of positive trigonometric polyno-
mials

Fejér and Riesz (see Fejér’s paper [24] of 1915) proved the following repre-
sentation of nonnegative trigonometric polynomials: For every non-negative
trigonometric polynomial T (θ),

T (θ) = a0 +
n∑

k=1

(ak cos kθ + bk sin kθ),
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there exists an algebraic polynomial R(z) =
∑n

k=0 ckz
k of degree n such

that T (θ) = |R(eiθ)|2. Conversely, for every algebraic polynomial R(z) of
degree n, the polynomial |R(eiθ)|2 is a nonnegative trigonometric polyno-
mial of order n.

An equivalent form of the Fejér-Riesz representation is:

Theorem 3. The trigonometric polynomial

T (θ) = a0 +
n∑

k=1

(ak cos kθ + bk sin kθ)

of order n is nonnegative for every real θ if and only if there exist complex
numbers ck, k = 0, 1, . . . , n, such that

a0 =
n∑

k=0

|ck|2, ak − ibk = 2
n−k∑
ν=0

ck+ν c̄ν , for k = 1, . . . , n.

Szegő [55] observed that in the Fejér-Riesz’s representation of the non-
negative cosine polynomials the parameters ck can be chosen to be real

Theorem 4. Let

Cn(θ) = a0/2 +
n∑

k=1

ak cos kθ

be a cosine polynomial of order n which is nonnegative for every real θ.
Then there exists an algebraic polynomial with real coefficients R(z) =∑n

k=0 ckz
k of degree n such that T (θ) = |R(eiθ)|2. Thus, the cosine polyno-

mial Cn(θ) of order n is nonnegative if and only if there exist real numbers
ck, k = 0, 1, . . . , n, such that

a0 =
n∑

k=0

c2k,

ak =
n−k∑
ν=0

ck+νcν for k = 1, . . . , n.

The corresponding Fejér-Riesz type representation of the nonnegative
sine polynomials was obtained recently in [19] and reads as follows:

Theorem 5. The sine polynomial of order n

Sn(θ) =
n∑

k=1

bk sin kθ
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is nonnegative if and only if there exist real numbers d0, . . . , dn−1, such that

b1 =
n−1∑
k=0

d2
k,

bk =
n−k∑
ν=0

ck+ν−1cν −
n−k−2∑

ν=0

ck+ν+1cν , for k = 2, . . . , n− 2,

bn−1 = c0cn−2 + c1cn−1,
bn = c0cn−1,

where the parameters c are represented in terms of the parameters d by

ck = ([k/2] + 1)
[n/2]−[k/2]−(n,2)(k,2)∑

ν=0

√
2

([k/2] + ν + 1)([k/2] + ν + 2)
dk+2ν ,

where [s] denotes the integer part of s, and (s, 2) is the rest of the division
of s by 2.

4. Some extremal positive trigonometric polynomi-
als

Fejér-Riesz’ type representations (see Theorems 3, 4 and 5 above) show
that a variety of nonnegative trigonometric polynomials can be obtained by
setting different values for the parameters ck. However, the most natural
and beautiful examples arise as solutions of some extremal problems for the
coefficients of T (θ). For example, it is easily seen that Fejér’s kernel (2.4)
is the only solution of the extremal problem

max{a1 + · · ·+ an : 1 + 2
n∑

k=1

ak cos kθ ≥ 0}.

Indeed, using the Fejér-Riesz representation for cosine polynomials, the
above result is equivalent to the inequality between the arithmetic and the
square means of the corresponding parametric sequence.

In 1915 Fejér [24] determined the maximum of
√
a2
1 + b21 provided T (θ)

is nonnegative and a0 = 1. He showed that√
a2
1 + b21 ≤ 2 cos(π/(n+ 2)) (4.8)

and that this bound is sharp.
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Szegő [54], in 1926, and independently Egerváry and Szász [21], in 1928,
extended Fejér’s result (4.8), finding estimates for the means

√
a2

k + b2k,
for k = 1, 2, . . . , n, of nonnegative trigonometric polynomials, subject to
a0 = 1. More precisely, they proved that

Theorem 6. If

T (θ) = 1 +
n∑

k=1

(ak cos kθ + bk sin kθ)

is nonnegative , then for any k, 1 ≤ k ≤ n,√
a2

k + b2k ≤ 2 cos
π

[n/k] + 2
.

Moreover, equality is attained if and only if T (θ) is of the form

τ(θ)

{
1 +

2
p+ 2

p∑
ν=1

(
(p− ν + 1) cos να+

sin(ν + 1)α
sinα

)
cos(νk(θ − ψ))

}
,

where τ is an arbitrary nonnegative trigonometric polynomial of order q,
α = π/(p + 2), p = [n/k], n = pk + q, (0 ≤ q < k) and ψ is an arbitrary
constant.

In particular, one obtains, for any k, 1 ≤ k ≤ n, the sharp estimates

|ak| ≤ cos
π

[n/k] + 2

for the coefficients of the nonnegative cosine polynomial

1
2

+
n∑

k=1

ak cos kθ.

It was pointed out in [19] that the nonnegative sine polynomial

m∑
k=0

sin(2k + 1)θ =
sin2((m+ 1)θ)

sin θ
,

which is a multiple of Fejér’s kernel, turns out to be the only sine polynomial
of odd order 2m + 1 with coefficient 1 of sin θ for which the maximum of
the moment bn, n = 2m+ 1, is attained.
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There are only a few results about nonnegative sine polynomials with
extremal coefficients. Since sine polynomials are odd functions, in what
follows we shall call

Sn(θ) =
n∑

k=1

bk sin kθ

a nonnegative sine polynomial if Sn(θ) ≥ 0 for every θ ∈ [0, π].
In 1950 Rogosinski and Szegő [51] observed that, if Sn(θ) is non-negative,

then b1 ≥ 0 and b1 = 0 if and only if Sn is identically zero and considered
the following extremal problem for nonnegative sine polynomials:

Problem 1. Determine the minimum and maximum values of bk pro-
vided the sine polynomial Sn(θ) is in

Sn =

{
Sn(θ) = sin θ +

n∑
k=2

bk sin kθ : Sn(θ) ≥ 0 f or θ ∈ [0, π]

}
.

For each of these values, find the extremal sine polynomial which belongs
to Sn and whose coefficient bk coincides with the corresponding extremal
value.

Rogosinski and Szegő suggested two methods for obtaining the extrema
of the moments bk and found the minimal and maximal values of b2, b3, bn−1

and bn. More precisely, these limits are:

|b2| ≤
{

2 cos(2π/(n+ 3)), n odd,
2 cos θ0, n even,

where θ0 is the smallest zero of the function

(n+ 4) sin((n+ 2)θ/2) + (n+ 2) sin((n+ 4)θ/2);

|b3 − 1| ≤ 2 cos
π

[(n− 1)/2] + 3
, [(n− 1)/2] even,

1− 2 cos θ1 ≤ b3 ≤ 1 + 2 cos
π

[(n− 1)/2] + 3
, [(n− 1)/2] odd,

where θ1 is the smallest zero of the function

([
n− 1

2
] + 4) cos

([(n− 1)/2] + 2)θ
2

+ ([
n− 1

2
] + 2) sin

([(n− 1)/2] + 4)θ
2

;

|bn−1| ≤ 1, n odd,
−(n− 2)/(n+ 2) ≤ bn−1 ≤ 1, n even;
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and
−(n− 1)/(n+ 3) ≤ bn ≤ 1, n odd,

|bn| ≤ n/(n+ 2), n even.

However, in none of the cases the corresponding extremal sine polyno-
mials were determined explicitly. The method suggested in [19] allowed us
to obtain the extremal sine polynomials in various cases. Here are some of
the results obtained in [19]:

Theorem 7. Let n = 2m + 2 be an even positive integer. Then for
every Sn(θ) ∈ Sn

(i)

−m+ 1
m+ 2

≤ bn ≤
m+ 1
m+ 2

.

The equality bn = (m+1)/(m+2) is attained only for the nonnegative sine
polynomial
m∑

k=0

(
(m+ k + 2)(m− k + 1)

(m+ 1)(m+ 2)
sin(2k + 1)θ +

(k + 1)2

(m+ 1)(m+ 2)
sin(2k + 2)θ

)
.

The equality bn = −(m + 1)/(m + 2) is attained only for the nonnegative
sine polynomial
m∑

k=0

(
(m+ k + 2)(m− k + 1)

(m+ 1)(m+ 2)
sin(2k + 1)θ − (k + 1)2

(m+ 1)(m+ 2)
sin(2k + 2)θ

)
.

(ii)

− m

m+ 2
≤ bn−1 ≤ 1.

The equality bn−1 = 1 is attained only for the nonnegative sine polynomials

sin θ +
m∑

k=1

(2pq sin 2kθ + sin(2k + 1)θ) + pq sin(2m+ 2)θ,

where the parameters p and q satisfy p2 + q2 = 1.
The equality bn−1 = −m/(m+ 2) is attained only for the nonnegative sine
polynomials

sin θ +
m∑

k=1

2pq
(

1− 2k2

m(m+ 2)

)
sin 2kθ

+
m∑

k=1

(
1− 2k(k + 1)

m(m+ 2)

)
sin(2k + 1)θ

− pq sin(2m+ 2)θ,
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where p and q satisfy the relation p2 + q2 = 1.

Theorem 8. Let n = 2m+1 be an odd positive integer. Then for every
Sn(θ) ∈ Sn

(i)
−m
m+ 2

≤ bn ≤ 1.

The equality bn = 1 is attained only for the nonnegative sine polynomial

m∑
k=0

sin(2k + 1)θ.

The equality bn = −m/(m+ 2) is attained only for

m∑
k=0

(
(1− 2k(k + 1)

m(m+ 2)
) sin(2k + 1)θ

)
.

(ii)
−1 ≤ bn−1 ≤ 1.

The equality bn−1 = 1 is attained only for the nonnegative sine polynomial

2m∑
k=1

sin kθ +
1
2

sin(2m+ 1)θ.

The equality bn−1 = −1 is attained only for the nonnegative sine polynomial

2m∑
k=1

(−1)k+1 sin kθ +
1
2

sin(2m+ 1)θ.

In the same paper [51] of 1950 Rogosinski and Szegő found the highest
possible derivative of the nonnegative sine polynomials at the origin. They
proved that

s′n(0) = 1+2b2+· · ·+nbn ≤
{
n(n+ 2)(n+ 4)/24, n even,
(n+ 1)(n+ 2)(n+ 3)/24, n odd, (4.9)

provided bk are the coefficients of a sine polynomial sn(θ) in the space
Sn. The sine polynomials for which the above limits are attained were not
determined explicitly. It was done recently in [2], where the main result
reads as:
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Theorem 9. The inequality (4.9) holds for every sn(θ) ∈ Sn. More-
over, if n = 2m + 2 is even, then the equality S′2m+2(0) = (m + 1)(m +
2)(m+ 3)/3 is attained only for the nonnegative sine polynomial

S2m+2(θ) =
m∑

k=0

{(
1− k

m+ 1

) (
1− k

m+ 2

) (
2k + 1 +

k(k − 1)
m+ 3

)
sin(2k + 1)θ

+(k + 1)
(

1− k

m+ 1

) (
2− k + 3

m+ 2
− k(k + 1)

(m+ 2)(m+ 3)

)
sin(2k + 2)θ

}
,

and, if n = 2m+1 is odd, the equality S′2m+1(0) = (m+1)(m+2)(2m+3)/6
is attained only for the nonnegative sine polynomial

S2m+1(θ) =
m∑

k=0

{(
1− k

m+ 1

) (
1 + 2k − k(k + 2)

m+ 2
− k(k + 1)(2k + 1)

(m+ 2)(2m+ 3)

)
sin(2k + 1)θ

+2(k + 1)
(

1− k

m+ 1

) (
1− k + 2

m+ 2

) (
1 +

k + 1
2m+ 3

)
sin(2k + 2)θ

}
.

The method developed in [19, 2] permitted the construction of various
nonnegative cosine polynomials. Some of the interesting ones, obtained in
[19], are:

1 + 2
n∑

k=1

(
1− k

n+ 1

) (
1− 2k(n+ k + 1)

n(n+ 2)

)
cos kθ, (4.10)

1 + 2
n∑

k=1

(
1− k

n+ 1

) (
1− k

n+ 2

) (
1 +

k

2n+ 3

)
cos kθ, (4.11)

1 + 2
n−1∑
k=1

(
1− k + 1

n+ 1/2

)
cos(k + 1)θ. (4.12)

Sufficient conditions in terms of the coefficients in order that sine and
cosine polynomial are positive were given by Vietoris [61] in 1958. He
proved that

n∑
k=1

ak cos kθ > 0, 0 < θ < π,

and
n∑

k=1

ak sin kθ > 0, 0 < θ < π,

whenever a0 ≥ a1 ≥ . . . ≥ an > 0 and 2kak ≤ (2k − 1)a2k−1. Askey and
Steinig [9] provided a simpler proof of this result.
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5. Approximation Theory

Since this volume is designed to experts in Approximation Theory, we out-
line only the principal application of the positive trigonometric polynomials
to this area and pose an open problem.

The short discussion in Section 2 shows that the clue for constricting
a very good explicit approximation tool for the 2π-periodic function is to
find a “good” positive summability kernel. It was already mentioned in the
beginning of the previous section that the most famous of the kernels, the
Fejér’s one, obeys certain extremal properties.

In 1912 Jackson [36, 37] proved his celebrated approximation result:

Theorem 10. Let
Jn(θ) = αnF

2
n(θ),

where αn is chosen in such a way that (1/2π)
∫ π

−π
Jn(θ)dθ = 1. Then there

exists a constant C, such that, for any f ∈ C[−π, π] which is 2π-periodic,

‖f − Jn ∗ f‖∞ ≤ Cω(f ; 1/n),

where ‖ ‖∞ is the uniform norm in [−π, π] and ω(f ; δ) denotes the modulus
of continuity of f(x) in the same interval.

Bernstein [10] (see also [58, Chapter 6]) proved that ω(f ; 1/n) is the best
possible rate of uniform approximation of continuous functions by trigono-
metric polynomials of order n.

There are different ways of proving Jackson’s approximation. We are
interested mainly in the constructive one. A nice simple proof of Jackson’s
theorem was given in Korovkin’s [41] and Rivlin’s [49, Chapter I] books. It
uses essentially Fejér’s result about the extremal nonnegative cosine poly-
nomial of the form

1 + 2
n∑

k=1

ak cos kθ,

whose coefficient a1 is the largest possible, i.e. the cosine polynomial for
which the equality in (4.8) is attained. It was mentioned in the previous
section that Fejér’s kernel is the nonnegative cosine polynomial of the above
form whose sum of the coefficients is the largest possible. The nonnegative
cosine sums (4.10), (4.11) and (4.12) also appeared as a consequence of the
solution of some extremal problems concerning the coefficients of sine poly-
nomials. It was proved in [19] that they are positive summability kernels.
It would be of interest to find the best one.
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Problem 2. Denote by K the set of all positive summability kernels
{kn(θ)}∞n=0 and let

C̃ = {f ∈ C[−π, π] : f(−π) = f(π), f(t) 6= const.}.

Determine

inf
kn∈K

sup
f∈C̃

sup
n∈IN

‖f − kn ∗ f‖∞
ω(f, 1/n)

and the positive summability kernel for which the infimum is attained.

This problem might be called the problem about the best Jackson’s constant
for approximation by convolutions. It is worth mentioning that the smallest
value of the constant in the Jackson inequality for approximation of periodic
functions was found by Korneichuk [39] (see also [40]). Denote by En(f) the
best approximation of the function f(θ) ∈ C̃ by trigonometric polynomials
of order n, namely

En(f) = infτ∈Tn‖f − τ‖,

where Tn is the set of the trigonometric polynomials of order n. Korneichuk
proved in [39] that the smallest value of the of the constant M , independent
of f ∈ C̃ and n ∈ IN , for which the inequalities

En(f) ≤Mω(f ;π/(n+ 1)), f(θ) ∈ C̃ n = 1, 2, . . . ,

hold, is equal to 1. However, Problem 2 could be of interest on its own. The
corresponding general question about the smallest value of the constant in
Jackson’s theorem for approximation by algebraic polynomials is one of the
most challenging open problems in Approximation Theory. The approach
suggested by Bojanov [12, 13] seems to trace a promising path towards
solving this classical enigma.

6. Univalent functions and polynomials

In 1915 Alexander [1] proved that the polynomials

n∑
k=1

ak
zk

k

and
n∑

k=1

a2k−1
z2k−1

2k − 1
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are univalent in the unit disc of the complex plane provided a1 ≥ · · · ≥
an > 0.

In 1931 Dieudoneé [18] revealed the connection between Alexander’s
result and Fejér-Jackson-Gronwall’s inequality. He proved that the polyno-
mial

n∑
k=1

akz
k

is univalent in the unit disc if and only if

n∑
k=1

akz
k−1 sin kθ

sin θ
6= 0 for |z| < 1, 0 ≤ θ ≤ π.

In two consecutive papers, [25] of 1934, and [26] of 1936, Fejér ex-
tended the ideas of Alexander initiating the study of the so-called “verti-
cally convex” functions. His approach provides one more connection be-
tween nonnegative trigonometric polynomials and univalent algebraic poly-
nomials. This idea appeared in its final form in a joint paper of Fejér and
Szegő [27] in 1951. The main result there states that an analytic function
f(z) = u(z) + iv(z) with real Maclaurin coefficients is univalent in the unit
disc if ∂u(θ)/∂θ ≤ 0 for 0 ≤ θ ≤ π.

Another result which related positive trigonometric polynomials and
univalent functions was obtained by Pólya and Schoenberg [47] in 1958.
Before we formulate it, recall that the function f(z) =

∑∞
k=0 akz

k is called
convex in the unit disc D = {z : |z| < 1} if the image of D under f(z) is
a convex set. Pólya and Schoenberg proved that, if f(z) is univalent and
convex in D, then for any n ∈ IN , the polynomial

pn(z) =
1
2π

∫ 2π

0

Vn(θ − ξ)f(reiξ)dξ, z = reiθ,

is also convex, where

Vn(θ) = 1 + 2
n∑

k=1

(n!)2

(n− k)!(n+ k)!
cos(kθ) ≥ 0

is the de la Vallée Poussin kernel.
We refer to the recent nice survey of Gluchoff and Hartmann [31], for

these and other interesting results on the interplay of univalent functions
and non-negative trigonometric series.

The above result of Fejér and Szegő can be reformulated immediately
as follows:
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Theorem 11. If the sine polynomials with real coefficients

sin θ + b2 sin 2θ + · · ·+ bn sinnθ

is nonnegative in [0, π], then the polynomial

z +
b2
2
z2 + · · ·+ bn

n
zn

is univalent in D.

Theorem 5 provides a complete characterization of the nonnegative sine
polynomials in terms of the relations of the parameters b, a, c and d. Thus,
it might be of interest to discuss some extremal problems for univalent
polynomials. In particular, if we restrict ourselves to the subset of polyno-
mials which satisfy the conditions of the latter theorem, the corresponding
extremal problem would reduce to a question about extremal nonnegative
sine polynomials. Some of the problems we find challenging follow.

Dieudoneé [18] found some upper bounds for the modulae of the coeffi-
cients of the polynomials in Un. Since p′n(z) 6= 0 in D, then |an| ≤ 1/n and
this upper bound is attained for the last coefficients of various univalent
polynomials. Obviously none of the polynomials from Un vanishes in D,
except for the the simple zero at the origin, and the bound for an shows
that the product of the modulae of the remaining zeros zk, k = 1, . . . , n−1,
is at least n. Moreover, for the polynomials for which |an| = 1/n, at least
one of the zeros must satisfy |zk| ≤ n1/(n−1). It would be curious to know
which is the univalent polynomial of degree n with the smallest zero outside
the unit disc. Formally we state

Problem 3. For every n ∈ IN , determine

inf
pn∈Un

inf{|zk| : pn(zk) = 0, zk 6= 0}

and the polynomial from Un for which the infimum is attained.

Various extremal problems of this nature can be formulated. For example,
one may look for the univalent polynomials, for which the sum the mudulae
of the zeros, or the sum of the squares of the modulae of the zeros, is the
smallest possible.

Another question is:

Problem 4. Among all the polynomials from

Un = {p(z) = z + α2z
2 + · · ·+ αnz

n, p(z) is univalent in D}.

find the one with the smallest and with largest possible area, i.e., determine
min{A(p(D)) : p ∈ Un} and max{A(p(D)) : p ∈ Un}, where A(p(D)) is
the area of the image of D via p(z).
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One of the reasons why this problem is natural is the celebrated Kobe (1/4)-
theorem. It states that the image of the unit disc via any univalent function
of the form z+ a2z

2 + · · · contains the disc with radius 1/4. Moreover, this
result is sharp because for the Kobe function

k(z) :=
z

(1− z)2
=

∞∑
k=1

kzk

we have k(−1) = −1/4. Another interesting question which arises in con-
nection with Kobe’s (1/4)-theorem is:

Problem 5. For any n ∈ IN find the polynomial pn(z) ∈ Un, for which
the

inf{|pn(z)| : z = eiθ, 0 ≤ θ < 2π}

is attained.

Obviously the above infimums are bounded from below by 1/4. Córdova
and Ruscheweyh [14] studied the polynomial

qn(z) = (1/π)
n∑

k=1

(n+ 1− k) sin(kπ/(n+ 1))zk.

It is univalent in D, qn(−1) goes to −1/4 and its coefficient a1 goes to
1 as n diverges. Hence this polynomial solves the latter problem at least
asymptotically. Is it the extremal one for every fixed n?

Relatively very recently, in 1994, Andrievskii and Ruscheweyh [3] proved
the existence of a universal real constant c > 0 with the following property:
For each f which is univalent in D and for any n ≥ 2c there exists a
polynomial pn of degree n, which is also univalent in D, with f(0) = pn(0)
and

f(κnD) ⊂ pn(D) ⊂ f(D), where κn = 1− c/n.

An important ingredient of the proof is a construction proposed by Dz-
jadyk [20] which involves powers of Jackson’s kernel, or equivalently, even
powers of the Fejér’s kernel. A consideration of the Kobe function shows
that c ≥ π. Greiner [32] proved that c < 73 and stated that numerical
experiments showed that the number 73 could eventually be replaced by
62. The problem of finding sharper bounds for c is of interest.

There is another, pretty unexpected connection between positive trigono-
metric sums and univalent functions. In 1912 W. H. Young [62] proved that
the cosine polynomials

1 +
n∑

k=1

cos kθ
k
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are nonnegative. Rogosinski and Szegő [50] considered inequalities of the
form

1
1 + α

+
n∑

k=1

cos kθ
k + α

≥ 0 n = 1, 2, . . . . (6.13)

For α = 0 these reduce to Young’s result and Rogosinski and Szegő showed
the existence of a constant A, 1 ≤ A ≤ 2(1 +

√
2), such that (6.13) hold

for every α, −1 < α ≤ A, and at least one of the latter inequalities fails for
some x when α > A. In 1969 G. Gasper [29] determined the exact value of
A as the positive root of an algebraic equation of degree 7 and its numerical
value is A = 4.56782. Denote by P (α,β)

n (x), α, β > −1, the Jacobi polyno-
mial of degree n, which is orthogonal in (−1, 1) to the polynomials of degree
n− 1 with respect to the weight function (1− x)α(1 + x)β and normalized
by P (α,β)

n (1) = (α+ 1)n/n!. Here (a)k is the Pochhammer symbol. Bering
in mind that

P
(−1/2,−1/2)
n (cos θ)

P
(−1/2,−1/2)
n (1)

= cosnθ,
P

(1/2,1/2)
n (cos θ)

P
(1/2,1/2)
n (1)

=
sin(n+ 1)θ
(n+ 1) sin θ

,

and
P

(1/2,−1/2)
n (cos θ)

P
(1/2,−1/2)
n (1)

=
sin(n+ 1/2)θ

(2n+ 1) sin(θ/2)
,

one can conjecture that some of the known results on trigonometric polyno-
mials may be generalized to sums of Jacobi polynomials. Fejér [23] was the
first to do this. He proved that the Legendre polynomials Pk(x) = P

(0,0)
k (x)

satisfy the inequalities
n∑

k=0

Pk(x) > 0, x ∈ [−1, 1].

Feldheim [28] established the corresponding extensions for the Gegenbauer
polynomials,

n∑
k=0

P
(α,α)
k (x)

P
(α,α)
k (1)

> 0, x ∈ [−1, 1], α ≥ 0.

In the sixties and the seventies of the previous century Askey and his coau-
thors extended most of the above mentioned classical trigonometric poly-
nomials obtaining various results on positive sums of Jacobi polynomials.
It turned out that one of the natural candidates to be such a positive sum,
for various values of the parameters α and β, is

D(α,β)
n (x) =

n∑
k=0

P
(α,β)
k (x)

P
(β,α)
k (1)

, x ∈ [−1, 1].
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The reason why the parameters α and β interchange in the numerator and
denominator comes from the problem of constructing positive quadrature
rules and a detailed explanation was given by Askey in [6]. In 1976 Askey
and Gasper [7] proved, among the other results, that D(α,β)

n (x) ≥ 0, x ∈
[−1, 1] provided β = 0 and α ≥ −2. In 1984 Louis de Branges [15] used this
result, in the particular case when α is an even integer, in the final stage
of his celebrated proof of the Bieberbach conjecture. Recall that the latter
result, which might be called de Branges-Bieberbach theorem, states that
the Maclaurin coefficients of any function

z + a2z
2 + a3z

3 + · · ·+ anz
n + · · · ,

which is univalent in the unit disc, satisfy |an| ≤ n for every n ∈ IN . We
refer to the paper of Askey and Gasper [8] for more information about
positive sums of Jacobi polynomials.

7. Number Theory

Positive trigonometric polynomials played an essential role in some impor-
tant problems both in analytic and algebraic number theory.

Probably the most famous use of such polynomials was made by de
la Vallée Poussin [16] in his proof of the Prime number theorem. Recall
that, if π(x) denotes the number of primes less than x, the Prime number
theorem states that

π(x) log x
x

→ 1 as n diverges.

In order to prove it, de la Vallée Poussin needed to verify that the Riemann
zeta-function ζ(z) does not vanish on the boundary of its critical strip
0 < Re(z) < 1. For this purpose he used the simple inequality

3 + 4 cos θ + cos 2θ ≥ 0, θ ∈ IR.

Later on de la Vallée Poussin [17] made another use of this inequality to
prove that

ζ(σ + it) 6= 0 for σ ≥ 1− (R log t)−1 and t ≥ T (7.14)

with T = 12 and certain large value of R and

π(x)−
∫ ∞

2

(log u)−1du = O(x exp(−K
√

log x)) (7.15)
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with K = 0.186. Landau [43, 44] developed further the ideas of de la Vallée
Poussin aiming to describe subregions of the critical strip which are free of
zeros of ζ(z) and to obtain better limits for the error in the prime number
theorem. Denote

C+
n = {cn(θ) =

n∑
k=0

ak cos kθ ≥ 0, ak ≥ 0, k = 0, . . . , n, a0 < a1}.

Landau considered the quantities

V (cn) =
cn(0)− a0

(
√
a1 −

√
a0)2

=
a1 + · · ·+ an

(
√
a1 −

√
a0)2

and formulated the following interesting extremal problem about nonnega-
tive cosine sums:

Problem 6. For any n ∈ IN determine

Vn = inf{V (cn) : cn(θ) ∈ C+
n }.

Find the limit V∞ = limn→∞ Vn.

Landau justified the importance of this problem establishing two funda-
mental results. The first one concerns a zero-free region for the Riemann
ζ-function. It states that the inequality (7.14) holds for any ε > 0 with
R = V∞/2 + ε and T = T (ε). The second result of Landau states that
(7.15) remains true for any K <

√
2/V∞.

An auxiliary question related to the latter problem is:

Problem 7. Let

V (cn) =
cn(0)
a1 − a0

=
a0 + · · ·+ an

a1 − a0
.

For any n ∈ IN , determine

Un = inf{U(cn) : cn(θ) ∈ C+
n }.

Find the limit U∞ = limn→∞ Un.

The behaviour of the sequence has attracted the interest of many celebrated
mathematicians. Landau [45] calculated U2 and U3, and Tchakaloff [56, 57]
found the values of Un for n = 4, 5, 6, 7, 8, 9. Landau and Schur (see [44])
and Van der Waerden [60] obtained lower bounds for U∞ which are close to
U9, calculated by Tchakaloff. Stechkin [53] established the limits 32.49 <
V∞ < 34.91. Since then these limits have been improved many times by
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Reztsov [48], Arestov [4], Arestov and Kondratev [5]. To the best of our
knowledge the sharpest known limits are 34.4689 < V∞ < 34.5036 and are
due to Arestov and Kondratev [5].

Though Stechkin wrote in [53] that the possibilities for extending the
zero-free regions for ζ(s) had been exhausted, we think that the problem
of determining the exact values of V∞ is still challenging in itself.

The complex number α is called an algebraic integer of degree n if it is
a zero of a monic algebraic polynomial of degree n with integer coefficients,
say

pn(z) = zn + an−1z
n−1 + · · ·+ a0 = 0, ak are integers.

Suppose that pn(z) is the polynomial of the smallest degree with this prop-
erty and denote by α1 = α, α2, . . . , αn the conjugates of α, i.e., all the zeros
of pn(z). Introduce the denotations

|α|∞ = max
1≤j≤n

|αj |, |α|1 =
n∏

j=1

max{1, |αj |}.

The quantity |α|1 is sometimes called the Mahler measure of pn(z) and is
denoted by M(f). In 1857 Kronecker [42] proved that |α|∞ = 1 if and
only if α is a root of unity. There are another two problems which had
been motivated by Kronecker’s result. In 1933 Lehmer [46] asked if there
exists a constant c1 > 0 such that the condition |α|1 ≤ 1 + c1 implies that
α is a root of unity, and in 1965 Schinzel and Zessenhaus [52] posed the
question of the existence of a constant c∞ > 0 such that |α|∞ ≤ 1 + c∞/n
yields that α is a root of unity. It is not difficult to see that the statement
of Lehmer’s conjecture implies the statement of the Schinzel-Zessenhaus
conjecture. In 1971 Blanksby and Montgomery [11] made an important
contribution towards the answers of these questions. They proved that
each of the conditions

|α|∞ ≤ 1 + (30n2 log 6n)−1 and |α|1 ≤ 1 + (52n log 6n)−1

implies that α is a root of unity. Blanksby and Montgomery provided also a
new proof of Dirichlet’s theorem and used the positivity of the Fejér kernel
in their proofs. It has been of interest to determine the extremal non-
negative cosine polynomial which would allow improvements of the above
results.
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[21] E. Egerváry and Szász, Einige Extremalprobleme im Bereiche der trigo-
nome-tri-schen Polynome, Math. Z. 27 (1928), 641–652.

[22] L. Fejér, Sur les functions bornées et integrables, C. R. Acad. Sci. Paris
131 (1900), 984–987.
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