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Abstract. Motivated by the recent solution of Karlin's conjecture, properties of functions

in the Laguerre{P�olya class are investigated. The main result of this paper establishes new

moment inequalities for a class of entire functions represented by Fourier transforms. The

paper concludes with several conjectures and open problems involving the Laguerre{P�olya

class and the Riemann �-function.

1. The Laguerre-P�olya class, Karlin's conjecture and the Tur�an inequalities.

A real entire function  (x) is said to be in the Laguerre-P�olya class, written  2 L-P,
if  (x) can be represented in the form

(1.1)  (x) = cxme��x
2
+�x

!Y
k=1

(1 + x=xk)e
�x=xk ; (0 � ! � 1);

where c; �; xk are real, � � 0;m is a nonnegative integer,
P
x�2k < 1 and where, by

the usual convention, the canonical product reduces to 1 when ! = 0. P�olya and Schur

[24] termed a real entire function '(x) as a function of type I in the Laguerre-P�olya class,

written  2 L-PI, if '(x) or '(�x) can be represented in the form

(1.2) '(x) = cxme�x
!Y

k=1

(1 + x=xk); (0 � ! � 1);

where c is real, � � 0;m is a nonnegative integer, xk > 0, and
P

1=xk <1. It is clear that

L-PI � L-P. The signi�cance of the Laguerre-P�olya class in the theory of entire functions

is natural, since functions in this class, and only these are the uniform limits, on compact

subsets of C , of polynomials with only real zeros (see, for example, Levin [18, Chapter 8]).

Thus, it follows from this result that the class L-PI is closed under di�erentiation; that is,
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2 GEORGE CSORDAS AND DIMITAR K. DIMITROV

if ' 2 L-PI, then '(n) 2 L-PI for n � 0. Another fact cogent to our presentation is the

following important observation of P�olya and Schur [24]. If a function

(1.3) '(x) :=

1X
k=0

k
xk

k!

is in L-P and its Maclaurin coe�cients k; k = 0; 1; : : : ; are nonnegative, then ' 2 L-PI.
In the literature, the sequence fkg

1

0 of Maclaurin coe�cients of a function in L-PI is

called a multiplier sequence (cf. P�olya and Schur [24]). For the various properties of

functions in Laguerre-P�olya class we refer the reader to [3], [4], [18, Chapter VIII], [20,

Kapitel II], [21] and the references contained therein. Finally, in the sequel we will adopt

the following notation.

Notation. For any 2m�2 times continuously di�erentiable function f , the m�m Hankel

determinant Hm(f ;x) is de�ned by

Hm(f ;x) := det(f (i+j)(x))m�1i;j=0 =

���������

f(x) f 0(x) � � � f (m�1)(x)

f 0(x) f 00(x) � � � f (m)(x)
...

...
...

...

f (m�1)(x) f (m)(x) � � � f (2m�2)(x)

���������
:

With the foregoing terminology, Karlin's conjecture ([17, p. 390] see also [3, p. 258]

regarding a misprint in [17, p. 390]) is as follows.

Karlin's Conjecture. (Karlin [17, p. 390]) Let '(x) :=
P
1

k=0 k
xk

k!
2 L-P and suppose

that the Maclaurin coe�cients k � 0 for k = 0; 1; 2; : : : . Then for any q = 0; 1; 2; : : : and

m = 2; 3; 4; : : : ,

(1.4) (�1)m(m�1)=2Hm('
(q);x) � 0 for all x � 0:

For the motivation and interesting history of Karlin's conjecture we refer the reader to

[15], [14] and [5]. In these papers, the authors have independently obtained counterexam-

ples to Karlin's conjecture and have answered an old, related question of P�olya (c. 1934).

Moreover, in [15] and [5] the authors have demonstrated that Karlin's conjecture is valid

for several subclasses of functions in L-P! As a concrete illustration, we cite here the

following result of Dimitrov [15, Theorem 5] (see also, [5, Theorem 4.5]).

Theorem 1.1. ([15, Theorem 5]) Suppose
P
1

k=0 kx
k 2 L-PI, where k � 0 for k =

0; 1; 2; : : : : Then the entire function '(x) :=
P
1

k=0 k
xk

k!
is also in L-PI and for any

q = 0; 1; 2; : : : and m = 2; 3; 4; : : : ,

(1.5) (�1)m(m�1)=2Hm('
(q);x) � 0 for all x � 0:
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A noteworthy special case of inequalities (1.5) arises when x = 0:

(1.6) (�1)m(m�1)=2

��������

q q+1 � � � q+m�1
q+1 q+2 � � � q+m
...

...
...

...

q+m�1 q+m � � � q+2m�2

��������
� 0:

These inequalities can be readily deduced from the following beautiful characterization of

functions in L-PI. Let '(x) :=
P
1

k=0 kx
k, k � 0, be an entire function. Then ' 2 L-PI

if and only if fkg
1

0 is a totally positive sequence (see [17, p. 412, Theorem 5.3] or [15]).

It has been known for a long time that Karlin's conjecture is true in certain special

cases. Indeed, if m = 2, inequalities (1.4) reduce to the well-known Laguerre inequalities

(see, for example, [3] or [8])

(1.7) Lq('(x)) := ('(q)(x))2 � '(q�1)(x)'(q+1)(x) � 0; (q = 1; 2; 3 : : : );

which hold for all real x and for all functions ' 2 L-P. Thus, if '(x) :=
P
1

k=0 k
xk

k!
is an

entire function of order at most 2, then (substituting x = 0 in inequality (1.7)) a necessary

condition that '(x) have only real zeros is that

(1.8) Tk := 2k � k�1k+1 � 0; k = 1; 2; 3; : : : :

While the inequalities (1.8) are today commonly referred to as the Tur�an inequalities

(associated with the entire function '(x)), they may be more precisely called the Euler-

Laguerre-P�olya-Schur-Tur�an inequalities. Karlin's conjecture is also valid in the case when

m = 3. In [3] Craven and Csordas investigated certain polynomial invariants and used them

to prove the following theorem.

Theorem 1.2. ([3, Theorem 2.13]) If

(1.9) '(x) :=

1X
k=0

k
xk

k!
2 L-PI; where k � 0 for k = 0; 1; 2; : : : ;

then

(1.10) H3('
(q);x) � 0 for all x � 0 and q = 0; 1; 2; : : : :

In particular,

(1.11) �k�2 :=

������
k�2 k�1 k
k�1 k k+1

k k+1 k+2

������ � 0; k = 2; 3; 4; : : : :

An examination of the inequalities (1.11) suggests the following extension of the Tur�an

inequalities (1.8). We will say that a sequence of nonnegative real numbers fkg
1

k=0 satis�es

the double Tur�an inequalities, if

(1.12) Ek := T 2
k � Tk�1Tk+1 � 0; k = 2; 3; 4; : : : :

Now a calculation shows that (cf. (1.11)) Ek = �k�k�2; (k = 2; 3; : : : ), and thus as an

immediate consequence of Theorem 1.2 we have the following corollary.
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Corollary 1.3. ([3, Corollary 2.14]) If

(1.13) '(x) :=

1X
k=0

k
xk

k!
2 L-PI; where k � 0 for k = 0; 1; 2; : : : ;

then the sequence fkg
1

k=0 satis�es the double Tur�an inequalities

(1.14) Ek = T 2
k � Tk�1Tk+1 = �k�k�2 � 0; k = 2; 3; 4; : : : ;

where �k�2 is de�ned by (1.11).

For other types of generalizations of the Tur�an inequalities we refer to [16] or [8].

2. The Tur�an and double Tur�an inequalities for Fourier transforms.

In this section we establish a new su�cient condition that guarantees that the dou-

ble Tur�an inequalities (see (1.14) of Corollary 1.3) hold for a class of entire functions

represented by Fourier transforms. While the moment inequalities derived here are of in-

dependent interest, our investigation is motivated by the theory of L-P functions and its

intimate connection with the Riemann �-function. For the reader's convenience and for

the sake clarity of exposition, we begin with a brief review of some terminology and facts

that will be needed in the sequel.

Let

(2.1) H(x) :=
1

8
�
�x
2

�
:=

Z
1

0

�(t) cos(xt)dt ;

where

(2.2) �(t) :=

1X
n=1

�n2
�
2�n2e4t � 3

�
exp

�
5t� �n2e4t

�
:

Then it is well known that Riemann Hypothesis is equivalent to the statement that all the

zeros of H(x) are real (cf. [26, p. 255]). We remark parenthetically that, today, there

are no known explicit necessary and su�cient conditions which a function must satisfy in

order that its Fourier transform have only real zeros (see, however, [23, p. 17] or [22, p.

292]). Nevertheless, the raison d'être for investigating the kernel �(t) is that there is a

connection (the precise meaning of which is unknown) between the properties of �(t) and

the distribution of the zeros of its Fourier transform.

Some of the known properties of �(t) de�ned by (2.2) are summarized in the following

theorem.
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Theorem 2.1. ([9, Theorem A]) Consider the function �(t) of (2.2) and set

(2.3) �(t) =

1X
n=1

an(t) ;

where

(2.4) an(t) := �n2
�
2�n2e4t � 3

�
exp

�
5t� �n2e4t

�
(n = 1; 2; : : : ) :

Then, the following are valid:

(i) for each n � 1, an(t) > 0 for all t � 0, so that �(t) > 0 for all t � 0;

(ii) �(z) is analytic in the strip ��=8 < Im z < �=8;

(iii) �(t) is an even function, so that �(2m+1)(0) = 0 (m = 0; 1; : : : );

(iv) �0(t) < 0 for all t > 0;

(v) for any " > 0 ,

lim
t!1

�(n)(t) exp
�
(� � ")e4t

�
= 0

for each n = 0; 1; : : : :

Thus,

(2.5) H(x) =
1

2

Z
1

�1

�(t)eixtdt =

Z
1

0

�(t) cos(xt)dt

is an entire function of order one
�
[26, p. 16]

�
of maximal type (cf. [10, Appendix A])

whose Taylor series about the origin can be written in the form

(2.6) H(z) =

1X
m=0

(�1)mbm
(2m)!

z2m ;

where

(2.7) bm :=

Z
1

0

t2m�(t)dt (m = 0; 1; 2; : : : ) :

The change of variable, z2 = �x in (2.6), gives

(2.8) F (x) :=

1X
k=0

k
xk

k!
=

1X
k=0

bk
xk

(2k)!
; k :=

k!

(2k)!
bk:

Then it is easy to see that F (x) is an entire function of order 1=2 and that the Riemann

Hypothesis is equivalent to the statement that all the zeros of F (x) are real and negative,

that is, F (x) 2 L-PI. Thus, a necessary condition for F (x) to have only real zeros is that

the 
k
's satisfy the Tur�an inequalities. Whence, in terms of the moments bm (cf. (2.7)),

the Tur�an inequalities can be expressed in the form

(2.9) b2m �
2m� 1

2m+ 1
bm�1bm+1 � 0 (m = 1; 2; 3; : : : ) :

Di�erent proofs of these inequalities may be found in [9] and [7].

Preliminaries aside, we next turn to a class of kernels whose properties parallel those of

�(t) listed in Theorem 2.1.
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De�nition 2.2. A function K : R �! R is called an admissible kernel, if it satis�es the

following properties:

(i) K(t) > 0 for t 2 R,

(ii) K(t) is analytic in the strip
��Im z

�� < � for some � > 0,

(iii) K(t) = K(�t) for t 2 R,

(iv) K 0(t) < 0 for t > 0, and

(v) for some " > 0 and n = 0; 1; 2; : : : ,

K(n)(t) = O
�
exp
�
� jtj2+"

��
as t �!1 :

Now it can be readily veri�ed that the Fourier transform of an admissible kernel, K(t),

represents an even entire function whose moments

(2.10) bk :=

Z
1

0

t2kK(t)dt; k = 0; 1; 2; : : :

all exist. The proof of the main theorem of this section (see Theorem 2.4 below) requires

a preparatory result. This result provides a remarkable relationship that was discovered

by the authors, thanks to a bit of serendipity, in the course of their investigation of loga-

rithmically concave functions.

Lemma 2.3. Let K(t) be an admissible kernel. For t > 0, set s(t) := K(
p
t), f(t) :=

s0(t)2 � s(t)s00(t) and

w(t) :=

�������

�
K0(t)

tK(t)

�
0

�
K0(t)

tK(t)

�
00

�
(K0

(t)=t)
0

tK(t)

�
0
�
(K0

(t)=t)
0

tK(t)

�
00

�������
:

If f(t) > 0 and g(t) := (log(f(t)))00 < 0 for t > 0, then

(2.11) w(t) =
64 t3 g(t2) f(t2)

2

K(t)
4

< 0; (t > 0):

Proof. Using the properties of an admissible kernel, the veri�cation of (2.11) involves only

routine, straightforward calculations and thus we omit the details here. However, the

calculations are rather lengthy and consequently the reader may wish to use a symbol-

manipulating program to check the validity of the expression for w(t) given in (2.11).

�

Theorem 2.4. Let K(t) be an admissible kernel and let bk denote its moments de�ned by

(cf. (1.10)).

(a) If logK(
p
t) is concave for t > 0, that is,

(2.12) (logK(
p
t)00 < 0 for t > 0;
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then the Tur�an inequalities (2.9) hold.

(b) Let s(t) := K(
p
t) and f(t) := s0(t)2� s(t)s00(t): If both logK(

p
t) and log f(t) are

concave for t > 0, that is, if the inequalities (2.12) and

(2.13) (log f(t)))00 < 0 for t > 0;

hold, then the double Tur�an inequalities (1.14) also hold, where k := (k!=(2k)!)bk.

Proof. Part (a) of the theorem was proved in [7, Proposition 2.2]. Here we �rst provide a

slightly di�erent proof of (a) and then, by generalizing the technique, we proceed to prove

part (b).

Since Tk = 2k � k�1k+1 (cf. (1.8)), it is clear that

�Tk = ck

���� (2k � 1)bk�1 bk
(2k + 1)bk bk+1

���� ;
where ck := 2 k!(k + 1)!=((2k)!(2k + 2)!). If we integrate by parts (see (2.10)) and use

property (v) (cf. De�nition 2.2) of the admissible kernel, K(t), then we obtain

(2k � 1)bk�1 =

Z
1

0

t2k(�K 0(t)=t)dt:

Hence, by a problem of P�olya and Szeg}o [25, Part II, Problem 68], we can express �Tk as

�Tk =
ck

2

Z
1

0

Z
1

0

x2k1 x
2k
2 (x1+x2)K(x1)K(x2)

8<
:(x2 � x1)

������
�K0(x1)

x1K(x1)

�K0(x2)

x2K(x2)

1 1

������

9=
; dx1dx2:

Now, by the mean value theorem, the expression in braces is equal to

(x2 � x1)
2

�
d

dt

�
K 0(t)

tK(t)

��
t=�

; where � 2 (minfx1; x2g;maxfx1; x2g):

Since an easy calculation shows that the assumption (2.12) is equivalent to

d

dt

�
K 0(t)

tK(t)

�
< 0 for t > 0:

and since the kernel K(t) > 0, (t 2 R), we conclude that the integrand, in the integral

representation of �Tk, is negative. Thus, the proof of part (a) is complete.

Turning to the proof of part (b), we �rst note that, (i) f(t) > 0, (t > 0), by (2.12) and

(ii) in view of the relations (1.14), it su�ces to prove inequalities (1.11). Since 
k
= k!

(2k)!
bk,

it follows from an elementary, albeit tedious, calculation that, for k � 2,

�k�2 = c1(k)

������
(2k � 1)(2k � 3)bk�2 (2k � 1)bk�1 bk
(2k + 1)(2k � 1)bk�1 (2k + 1)bk bk+1

(2k + 3)(2k + 1)bk (2k + 3)bk+1 bk+2;

������
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where

c1(k) :=
1

(2k + 1)2(2k + 3)

�
k!

(2k)!

�3

:

In order to express �k�2 in terms of integrals, we integrate (1.10) by parts twice and

obtain

(2k + 3)(2k + 1)bk =

Z
1

0

t2k+3

�
K 0(t)

t

�
0

dt:

Thus,

�k�2 = c1(k)

���������

R
1

0
t2k�1

�
K0(t)

t

�
0

dt
R
1

0
t2k�1(�K 0(t))dt

R
1

0
t2k�1(tK(t))dt

R
1

0
t2k+1

�
K0(t)

t

�
0

dt
R
1

0
t2k+1(�K 0(t))dt

R
1

0
t2k+1(tK(t))dt

R
1

0
t2k+3

�
K0(t)

t

�
0

dt
R
1

0
t2k+3(�K 0(t))dt

R
1

0
t2k+3(tK(t))dt

���������
:

Now, another application of [25, Part II, Problem 68] (with P�olya and Szeg}o's notation,

f1(t) := t2k�1, f2(t) := t2k+1, f3(t) := t2k+3, '1(t) := (K 0(t)=t)0, '2(t) := �K 0(t) and
'3(t) := tK(t)) yields the triple integral representation

�k�2 =
c1(k)

3!

Z
1

0

Z
1

0

Z
1

0

x2k�11 x2k�12 x2k�13 V (x21; x
2
2; x

2
3)V (K;x1; x2; x3)dx1dx2dx3;

where

V (x21; x
2
2; x

2
3) :=

������
1 1 1

x21 x22 x23
x41 x42 x43

������ = (x23 � x22)(x
2
3 � x21)(x

2
2 � x21)

is the Vandermonde determinant of x21; x
2
2 and x

2
3 and

V (K;x1; x2; x3) :=

����������

�
K0(x1)

x1

�
0
�
K0(x2)

x2

�
0
�
K0(x3)

x3

�
0

�K 0(x1) �K 0(x2) �K 0(x3)

x1K(x1) x2K(x2) x3K(x3)

����������
:

Consider the above triple integral over the �rst octant and represent it as a sum over

the regions Rijs := f0 < xi < xj < xs < 1g, where the summation extends over all

permutations of the indices i; j and s. For a �xed, but arbitrary permutation (i; j; s), we

consider the triple integral Iijs over the region Rijs,

Iijs :=

ZZZ
Rijs

x2k�11 x2k�12 x2k�13 V (x21; x
2
2; x

2
3)V (K;x1; x2; x3)dx1dx2dx3:

The permutation (i; j; s) applied to the columns of both determinants V (x21; x
2
2; x

2
3) and

V (K;x1; x2; x3) yields
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(2.14) Iijs =

ZZZ
Rijs

x2k�1i x2k�1j x2k�1s V (x2i ; x
2
j ; x

2
s)V (K;xi; xj; xs)dxidxjdxs:

We will now proceed to show that Iijs is negative. To this end, with the aid of elementary

operations (multiply V (K;xi; xj; xs) by minus one, interchange the �rst and the third rows

of V (K;xi; xj; xs), and then divide each column by its �rst element and �nally multiply

the last two rows by �1), we express V (K;xi; xj ; xs) in the form

V (K;xi; xj; xs) = xixjxsK(xi)K(xj)K(xs)W (K;xi; xj; xs);

where

W (K;xi; xj ; xs) :=

����������

1 1 1

� K0(xi)

xiK(xi)
�

K0(xj)

xjK(xj)
� K0(xs)

xsK(xs)

�
(K0(xi)=xi)

0

xiK(xi)
�
(K0(xj)=xj)

0

xjK(xj)
�
(K0(xs)=xs)

0

xsK(xs)

����������
:

Next, we set

h1(t) := 1 and h2(t) :=
�K 0(t)

tK(t)
::

Then ����h1(t) h01(t)

h2(t) h02(t)

���� > 0; for t > 0;

is equivalent to (2.12). Hence, we can apply a generalized mean-value theorem [25, Part

V, Problem 99] to conclude that there exists �, xi < � < xs, such that

signW (K;xi; xj ; xs) = sign

�������

�
K0(�)

�K(�)

�
0

�
K0(�)

�K(�)

�
00

�
(K0(�)=�)

0

�K(�)

�
0
�
(K0(�)=�)

0

�K(�)

�
00

�������
=: signw(�):

Since by Lemma 2.3 (cf. (2.11)) w(t) < 0, (t > 0), W (K;xi; xj ; xs) < 0 and a fortiori

V (K;xi; xj; xs) < 0 in Rijs. Therefore, the integral Iijs (cf. (2.14)) is negative. This

completes the proof of the theorem. �

Remark 2.5. We remark that an examination of the proof of Theorem 2.4 shows that it

remains valid under less restrictive assumptions on the kernel K(t).

3. Open problems and conjectures.

We conclude this paper with a brief survey of some open problems and conjectures

pertaining to functions in the Laguerre-P�olya class (L-P) and the Riemann �-function.
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Problem 3.1. (Higher order Tur�an inequalities.) Let fkg
1

0 , k � 0, k � 0, be a multi-

plier sequence, so that '(x) :=
P
1

k=0 k
xk

k!
2 L-PI. Set

T1(k) := T1(k;') := 2k � k�1k+1 (k � 1) and

Tn(k) := Tn(k;') := Tn�1(k;')
2 � Tn�1;(k � 1;')Tn�1(k + 1;') (k � n � 2):

Then, is it true that

(3.1) Tn(k) = Tn(k;') � 0 for k � n � 2?

An a�rmative answer to (3.1) would provide a set of strong necessary conditions for an

entire function to have only real negative zeros. We have seen (cf. (1.14) of Corollary 1.3))

that the double Tur�an inequalities hold (i.e. the inequalities (3.1) are true when n = 2).

Recently, Craven and the �rst author have shown, in a manuscript under preparation, that

(3.1) has an a�rmative answer for certain subclasses of multiplier sequences.

Problem 3.2. (The double Tur�an inequalities for the Riemann �-function.) Let

(3.2) H(x) :=
1

8
�
�x
2

�
:=

Z
1

0

�(t) cos(xt)dt =

1X
m=0

(�1)mbm
(2m)!

x2m ;

where the kernel, �(t), and the moments, bm, are de�ned by (2.2) and (2.7) respectively.

Let k := k!
(2k)!

bk. Then we conjecture that the sequence fkg
1

0 satis�es the double Tur�an

inequalities

(3.3) T2(k) = T2(k;H) � 0; (k � 2):

In light of Corollary 1.3, the failure of inequalities (3.3) would imply that the Riemann

Hypothesis is false. There are, however, more compelling reasons for the validity of this

conjecture. First, in 1983, Varga et al. [9] have computed the �rst 120 moments with

high degree of precision. (Since then these computations have been signi�cantly extended

by Varga et al. in the Department of Mathematical Sciences at Kent State University.)

Numerical experiments, using these computed values of the moments, show that T2(k) > 0,

at least for 2 � k � 500. Second, since the sequence f k!
(2k)!

g can be shown to satisfy (3.3)

and since the moments, bk, do not grow \too fast", we expect that (3.3) is true.

A di�erent strategy for proving (3.3) could make use of Theorem 2.4. This approach

requires, however, a careful examination of the concavity properties of the kernel �(t) in

(3.2) as the next problem suggests.

Problem 3.3. (A concavity condition for �(t).) Let s(t) := �(
p
t) and f(t) = s0(t)2 �

s(t)s00(t). Then we conjecture that

(3.4) (log(f(t)))00 < 0 for t > 0:
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We hasten to remark that in [7, Theorem 2.1] it was shown that log �(
p
t) is concave

for t > 0, so that f(t) > 0 for t > 0. Our initial investigation suggests that a proof of (3.4)

may also require the fact that the function �(
p
t) is convex for t > 0 [6, Theorem 2.12].

Problem 3.4. (Theorem 2.4 and the Laguerre-P�olya class.) State and prove an analogue

of Theorem 2.4 for an arbitrary function in the Laguerre-P�olya class.

Since, in general, an arbitrary function '(x) 2 L-P is not the Fourier transform of

a \nice" function, a solution of Problem 3.4 might involve a di�erent kind of integral

representation of functions in L-P. One such representation, due to de Bruijn [1, Theorem

2] (which deserves to be better known) may be stated as follows. If '(x) is any function

in L-P, then there is a unique, C1 function, K(t), such that

(3.5) e�x
2=2'(x) =

1

2�

Z
1

�1

e�t
2=2K(t)eixtdt:

Thus, the de Bruijn representation (3.5), together with the observation (see Remark 2.5)

that Theorem 2.4 remains valid if we relax some of the assumptions on the kernel K(t),

may well make this problem tractable.

We have seen in Section 1 that, while Karlin's conjecture is not true in general (the

characterization of the class of functions in L-PI for which it is valid remains open), it is

true, however, in the special cases m = 2 (cf. (1.7)) and m = 3 (cf. (1.10)).

Problem 3.5. (The Laguerre inequalities and the Riemann-� function.) Let

(3.6) F (x) :=

1X
k=0

k
xk

k!
=

1X
k=0

bk
xk

(2k)!
; k :=

k!

(2k)!
bk;

where the moments bk are de�ned by (2.7). Then, prove that

(3.7)

Lq(F (x)) := (F (q)(x))2 � F (q�1)(x)F (q+1)(x) � 0; (q = 1; 2; 3 : : : ); for all x 2 R:

In [13, Corollary 3.4] it was shown, as a consequence of the concavity properties of �(t),

that (3.7) holds for all x � 0.

In order to formulate the next problem, we require some additional notation and back-

ground information. Let

(3.8) Ht(x) =

Z
1

0

etu
2

�(u) cos(xu)du; (t 2 R);

so that H0(x) = H(x) and the Riemann �-function are related by (2.1). In 1950, de Bruijn

[2] established that Ht has only real zeros for t � 1=2 and that if Ht has only real zeros
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for some real t, then Ht0 has only real zeros for any t0 � t. In 1976, C. M. Newman [19]

showed further that there is a real constant �, which satis�es �1 < � � 1=2, such that

(3.9) Ht has only real zeros if and only if t � �:

In the literature, this constant � is now called the de Bruijn-Newman constant. This

brings us to the following open problem conjectured by C. M. Newman [19].

Problem 3.6. (The de Bruijn-Newman constant.) Is it true that

(3.10) � � 0?

The de Bruijn-Newman constant � has been investigated extensively because the truth

of the Riemann Hypothesis is equivalent to the assertion that � � 0. The research activity

in �nding lower bounds for �, have been summarized in [11]. In particular, in [11] it was

shown, with the aid of a spectacularly close pair of consecutive zeros of the Riemann zeta

function, that �5:895 � 10�9 < �:

The introduction of the function Ht(x) (see (3.8)) suggests several other interesting

questions, which, for the sake of brevity we will only mention in passing. Thus, one

problem is the determination of the supremum of the values of t such that the Laguerre

inequalities (3.7) fail for Ht(x). (Note that in [12] it was shown that when t := �0:0991,
then the Laguerre inequalities (3.7) fail for x := �830:512 : : : .) Another problem, which

parallels Problem 3.2 and whose solution may shed light on the determination of the de

Bruijn-Newman constant �, is as follows. For k � 0 set

(3.11) k(t) :=
k!bk(t)

(2k)!
where bk(t) :=

Z
1

0

etu
2

u2k�(u)du; (t 2 R):

Then determine the values of t, if any, for which the sequence fk(t)g
1

0 fails to satisfy the

double Tur�an inequalities (cf. Problem 3.2).
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