Introdução ao Cálculo Numérico 2005

Lista de Exercícios 2

Observação importante: Resolva o proplema para o dia da prova com a função $f(x) = \cos(\pi x/2)$ e não com $f(x) = \sin(\pi x)$!

Problema 1. Sejam $\{x_i, y_i\}_{i=0}^n$ números reais, com $x_0 < x_1 < \ldots < x_m$. Calcular o polinômio p(x) = Mx + B, para o qual a quantidade

$$S(M,B) = \sum_{i=0}^{n} (y_i - Mx_i - B)^2$$

seja mínima.

Problema 2. Encontrar o polinômio de grau um que melhos a aproxima, pelo método dos mínimos quadrados, a tabela $\{x_m, f(x_m)\}_{m=0}^n, x_m = m/n$.

Problema 3. Determinar o polinômio de grau dois que melhor aproxima, pelo método dos mínimos quadrados, a tabela

Problema 4. Determinar as parabolas que melhor aproximam, pelo método dos mínimos quadrados, as tabelas

	1	;	-2	?	- 3	1	l)		1	2	3	
	y		-4	1	1	5	-9		10		7	6	
	\overline{x}		-2		-1		1)		1	2	3	
	y		-4		15		1		10		7	6	
\boldsymbol{x}	;	-	-3	-	2	-	1	()	1	2	3)
y	7	7		4		-1		i	1	5	6	13	3

Problema 5. Encontrar a parabola que melhor aproxima, pelo método dos mínimos quadrados a tabela $\{x_i, y_i\}_{i=0}^n$, $x_i = x_0 + ih$.

Problema 6. Provar que, se f é uma função par (ímpar) e os pontos x_k , $k = 0, 1, \ldots, m$ são simétros com reaspeito à origem, isto é, $x_k = -x_{m-k}$, então o polinômio de grau n que melhos aproxima f(x), pelo método dos mínimos quadrados, nos pontos x_0, \ldots, x_m , é também par (ímpar).

Problema 7. Prova que, se f é uma função par (ímpar) em [-a, a], então o polinômio de grau n que melhos a aproxima em $L_2[-a,a]$ é também par (impar).

Problema 8. Pelo método dos mínimos quadrados, aproximar a função $\sin \pi x$, se os pontos são $x_0 = -1$, $x_1 = -1/2$, $x_2 = 0$, $x_3 = 1/2$, $x_4 = 1$.

Problema 9. Aproximar por polinômio de grau um, pelo método dos mínimos quadrados, a tabela

\boldsymbol{x}	x_0	x_1	 x_{n-1}	x_n	
y	y_0	y_1	 y_{n-1}	y_n	,
p	p_0	p_1	 p_{n-1}	p_n	

onde p_i são os pesos nos pontos x_i .

Problema 10. Seja

$$\sum_{i=1}^{n} a_{ki} x_i = b_k, \quad k = 1, 2, \dots, m, m \ge n,$$

um sistema linear sobre-determinando, com n incógnitas x_1, x_2, \ldots, x_n e m equações, $m \ge n$. Prove que o sistema $\partial s/\partial x_p = 0$, $p = 1, 2, \ldots, n$, onde

$$s(x_1, x_2, \dots, x_n) = \sum_{k=1}^m \left(b_k - \sum_{i=1}^n a_{ki} x_i \right)^2,$$

é equivalente ao sistema $A^TAx = ATb$. $Aqui, por A^T$ denotamos a matriz transposta de A.

Problema 11. Resolva o sistema sobre-determinando pelo método dos mínimos quadrados:

$$\begin{vmatrix} x - y = 1, \\ x + y = 1, \\ x + y = -1, \\ x - y = -1. \end{vmatrix}$$

Problema 12. Resolva os sistemas sobre-determinando pelo método dos mínimos quadrados:

$$\begin{vmatrix} x+z=1, \\ y+z=1, \\ x+z=1, \\ x-y+z=1; \end{vmatrix}$$

$$\begin{vmatrix} x+y=3, \\ 2x-y=0, 2, \\ x+3z=7, \\ 3x+y=5; \end{vmatrix}$$

$$\begin{aligned} x+y+z &= 1, \\ x+2y+z &= 2, \\ x+3y+z &= 3, \\ x-4y+z &= 4; \\ x+5y+z &= 4, \end{aligned}$$

Problema 13. Usnado o resultado obtido na solução do Problema 5, isto é, a parabola que melhor aproxima, pelo método dos mínimos quadrados a tabela

$${x_i, y_i}_{i=k-2}^{k+2}, \ x_{k+i} = x_{k-2} + (i+2)h, \ i = -2, -1, \dots, 2,$$

obter as fórmulas

$$y(x_{k-2}) \approx y_{k-2} + \frac{1}{5}\Delta^3 y_{k-2} + \frac{3}{35}\Delta^4 y_{k-2};$$

$$y(x_{k-1}) \approx y_{k-1} + \frac{2}{5}\Delta^3 y_{k-2} + \frac{1}{7}\Delta^4 y_{k-2};$$

$$y(x_k) \approx y_k - \frac{3}{35}(y_{k-2} - 4y_{k-1} + 6y_k - 4y_{k+1} + y_{k+2});$$

$$y'(x_k) \approx \frac{1}{10h}(-2y_{k-2} - y_{k-1} + y_{k+1} + 2y_k + 2)$$

Problema 14. Usando a parabola, construida pelo método dos mínimos quadrados, para a tabela $\{x_i, y_i\}_{i=0}^3$, $x_i = x_0 + ih$, obter as fórmulas para diferenciação aproximada

$$y_0' \approx \frac{1}{20h}(-21y_0 + 13y_1 + 17y_2 - 9y_3);$$

$$y_1' \approx \frac{1}{20h}(-11y_0 + 3y_1 + 7y_2 - y_3);$$

$$y_2' \approx \frac{1}{20h}(-11y_3 + 3y_2 + 7y_1 - y_0);$$

$$y_3' \approx \frac{1}{20h}(-21y_3 + 13y_2 + 17y_1 - 9y_0);$$

Problema 15. Usando a expansão em série da função integrada, calculem aproximadamente a integral

$$I = \int_0^{0.5} \frac{tgx}{x} dx.$$

Problema 16. Usando a expansa o de Maclaurin da função integrada, determine u numero dos termos que devem ser usados para calcular, com erro

que não exede $\varepsilon \leq 10^{-5}$, as integrais:

a)
$$\int_0^1 \sqrt{x} \sin x \, dx;$$
b)
$$\int_0^1 \frac{\sin x}{x} \, dx;$$
c)
$$\int_0^{0.5} \frac{dx}{\sqrt{1+x^4}};$$
d)
$$\int_0^1 \exp(-x^2) dx.$$

Problema 17. Calcular os limites:

$$\lim_{n \to \infty} \left\{ \frac{1}{n+1} + \dots + \frac{1}{2n} \right\}$$

$$\lim_{n \to \infty} \left\{ \frac{1}{n^2 + 1} + \frac{1}{n^2 + 4} \dots + \frac{1}{2n^2} \right\}$$

Problema 18. Mostrar que

a) a fórmula de quadratura dos paralelogramos

$$\int_{a}^{b} f(x)dx \approx (b-a)f(\xi) =: Q_{P}(f), \ a \leq \xi \leq b$$

possui grau de precisão algébrica um quando $\xi=(a+b)/2$ e zero, caso contrário.

b) a fórmula de quadratura dos trapézios

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2}[f(a)+f(b)] =: Q_{T}(f)$$

possui grau de precisão algébrica um.

c) a fórmula de quadratura de Simpson

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} [f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)] =: Q_{S}(f)$$

tem grau de precisão algébrica três.

Problema 19. Mostrar que

$$Q_S(f) = \frac{1}{3} Q_T(f) + \frac{2}{3} Q_P(f), \quad quiando \quad \xi = (a+b)/2.$$

Problema 20. Construir a fórmula de quadratura da forma

$$\int_0^{2h} f(x)dx \approx h[Af(0) + Bf(h) + Cf(2h)]$$

com o maior possível grau de precisão algébrica.

Problema 21. Determinar as constantes a e c, de modo que a fórmula de quadratura

$$\int_{-h}^{h} f(x)dx \approx c[f(ah) + f(bh)]$$

tenha o maior grau de precisão algébrica.

Problema 22. Determinar a, b, c, d e A de modo que a fórmula de quadratura

$$\int_{-2}^{2} f(x)dx \approx A[f(a) + f(b) + f(c) + f(d)]$$

tenha o maior grau de precisão algébrica.

Problema 23. Determinar A, B, C, D e E de modo que a fórmula de quadratura

$$\int_0^{2h} f(x)dx \approx h[Af(0) + Bf(h) + Cf(2h)] + h^2[Df'(0) + Ef'(2h)]$$

tenha o maior possível grau de precisão algébrica.

Problema 24. Determinar A e B, de modo que a fórmula de quadratura

$$\int_{0}^{h} \frac{f(x)}{1+x^{2}} dx \approx Af(0) + Bf(h)$$

tenha o maior possível grau de precisão algébrica.

Problema 25. Detreminar os coeficientes $a_i, b_i, i = 1, 2, 3, de modo que$

$$\int_{-h}^{h} f(x)dx \approx h[a_1f(-h) + a_2f(0) + a_3f(h)] + h^2[b_1f'(-h) + b_2f'(0) + b_3f'(h)]$$

possua o maior possível grau de precisão algébrica.

Problema 26. Mostrar que a fórmula de quadratura

$$\int_0^h f(x)dx \approx \frac{h}{2}[f(0) + f(h)] - \frac{h^3}{24}[f''(0) + f''(h)]$$

é exata para todos os polinômios de grau três.

Problema 27. Provar que a fórmula de quadratura

$$\int_0^h f(x)dx \approx \frac{h}{2}[f(0) + f(h)] + \frac{h^2}{10}[f'(0) - f'(h)] + \frac{h^3}{120}[f''(0) + f''(h)].$$

possiu grau de precisão algébrica cinco.

Problema 28. Mostrar que a fórmula de quadratura

$$\int_0^1 f(x)dx \approx \frac{3}{8} f(\frac{1}{6}) + \frac{27}{56} f(\frac{11}{18}) + \frac{1}{7} f(1)$$

tem grau de precisão algébrica dois.

Problema 29. Seja Q(f) uma fórmula de quadratura para aproximação da integral $\int_0^1 f(x) dx$. Provar que a n-ésima fórmula de quadratura composta, baseada em Q(f) pode ser representada como $Q(\varphi_n)$, onde

$$\varphi_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k+x}{n}\right).$$

Problema 30. Mostre que, para $t \in [a,b]$, os núcleos de Peano $K_r(Q;t)$ para o erro da fórmula de quadratura

$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} a_{k} f(x_{k}),$$

cujo grau de precisão algébrica é m-1, pode ser representado como:

a)
$$K_r(Q;t) = \frac{(b-t)^r}{r!} - \sum_{k=1}^n a_k \frac{(x_k - t)^{r-1}}{(r-1)!}$$

ou

b)
$$K_r(Q;t) = (-1)^r \left[\frac{(t-a)^r}{r!} - \sum_{k=1}^n a_k \frac{(t-x_k)^{r-1}}{(r-1)!} \right],$$

para r = 1, 2, ..., m.

Problema 31. Provar que os coeficientes a_i da fórmula de quadratura

$$Q(f) = \sum_{j=1}^{n} a_j f(x_j)$$

podem ser representados através das fórmulas

$$a_j = (-1)^r [K_r^{(r-1)}(Q; x_j + 0) - K_r^{(r-1)}(Q; x_j - 0)], \ j = 1, \dots, n.$$

Problema 32. Mostrar que

$$\frac{d}{dt}K_r(Q;t) = -K_{r-1}(Q;t)$$

Problema 33. Mostrar que, para o erro da fórmula de trapézio composta

$$I(f) := \int_{a}^{b} f(x)dx \approx \frac{b-a}{n} \left[\frac{1}{2} (f(a) + f(b)) + \sum_{k=1}^{n-1} f\left(a + k \frac{b-a}{n}\right) \right] := Q_{T}^{n}(f),$$

vale a estimativa

$$|I(f) - Q_T^n(f)| \le (b - a)\omega\left(f; \frac{b - a}{n}\right),$$

onde

$$\omega(f;\delta) := \sup\{|f(t') - f(t'')| : t', t'' \in [a, b], |t' - t''| \le \delta\}$$

é o módulo de continuidade da função f(x).

Problema 34. Seja

$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} a_{k} f(x_{k}) =: Q(f)$$

uma fórmula de quadratura simétrica, isto é,

$$x_k - a = b - x_{n+1-k}, \quad a_k = a_{n+1-k}, \quad k = 1, \dots, [(n+1)/2].$$

Provar que

$$K_r(Q; a + b - t) = (-1)^r K_r(Q; t)$$

para todo $t \in [a, b]$.

Problema 35. Provar que, se

$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} a_{k} f(x_{k}) =: Q(f)$$

é uma fórmula de quadratura simétrica, então

$$\int_{a}^{b} |K_r(Q;t)| dt = 2 \int_{a}^{(a+b)/2} |K_r(Q|tx)| dt.$$

Problema 36. Sejam

$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} a_{k}f(x_{k}) =: Q(f)$$

e $Q_m(f)$ a m-ésima fórmula de quadratura composta, baseada na Q(f). Mostre que

$$K_r(Q_m; t) = \frac{1}{m^r} K_r(Q; mt - j) \quad para \quad t \in \left[\frac{j}{n}, \frac{j+1}{n}\right), j = 0, \dots, n-1.$$

Problema 37. Seja $m \in \mathbb{N}$ e Q(f) uma fórmula de quadratura com grau de precisão algébrica m-1, para cálculo aproximado da integral $\int_a^b f(x)dx$. Se para o erro desta fórmula em W_{∞}^r , $1 \le r \le m$, vale a designaldade

$$\sup_{f \in W_{\infty}^{r}[a,b]} \left| \int_{a}^{b} f(x)dx - Q(f) \right| \le A,$$

prove que para a n-ésima fórmula composta $Q_n(f)$, obtida através de Q(f), vale a estimativa

$$\sup_{f \in W_{\infty}^{r}[a,b]} \left| \int_{a}^{b} f(x) dx - Q_{n}(f) \right| \le \frac{A}{n^{r}}.$$

Problema 38. Seja

$$\int_0^1 f(x)dx \approx \sum_{k=1}^n a_k f(x_k) := Q(f)$$

uma fórmula de quadratura com grau de precisão algébrica $m-1 \ge 1$. Se o núcleo de Peano do seu erro $K_r(Q;t)$, $1 \le r \le m$ possui um zero $\tau \in (0,1)$, prove que esta fórmula é exata para a função $f(x) = (x-\tau)_+^{r-1}$.

Prove a seguinte afirmação mais geral: Se $\tau \in (0,1)$ é um zero com multiplicidade s de $K_r(Q;t)$, onde $1 \le s \le r-1$, a fórmula de quadratura Q(f) é exata para as funções

$$(x-\tau)_{+}^{r-1}, (x-\tau)_{+}^{r-2}, \dots, (x-\tau)_{+}^{r-s}.$$

Problema 39. Calcular os erros das fórmulas de quadratura do ponto médio, do trapézio e de Simpson, para o espaço $W^1_{\infty}[a,b]$. Quais os erros das correspondentes fórmulas compostas?

Problema 40. Calcular os erros das fórmulas de quadratura do ponto médio, do trapézio e de Simpson, para o espaço $W^2_{\infty}[a,b]$. Quais os erros das correspondentes fórmulas compostas?

Problema 41. Seja $f \in C^2[a,b]$. Provar que esistem pontos ξ_1 e ξ_2 no intervalo [a,b], tais que

$$\int_{a}^{b} f(x)dx - (b-a)f\left(\frac{a+b}{2}\right) = \frac{f(\xi_1)}{24}(b-a)^3,$$

$$\int_{a}^{b} f(x)dx - \frac{b-a}{2}[f(a) + f(b)] = -\frac{f(\xi_2)}{12}(b-a)^3.$$

Problema 42. Provar que, se f(x) é uma função convexa em [a,b], então

$$Q_P(f) \le \int_a^b f(x) dx \le Q_T(f).$$

Problema 43. Provar que a seguinte estimativa para a fórmula de quadratura de Simpson em $W^3_{\infty}[a,b]$ é válida:

$$\sup_{f \in W_{\infty}^{r}[a,b]} \left| \int_{a}^{b} f(x) dx - Q_{S}(f) \right| = M \frac{(b-a)^{4}}{576}.$$

Problema 44. Estimar os erros das fórmulas de Simpson simples e composta para a classe $W^4_{\infty}[a,b]$.

Problema 45. Seja $f \in C^4[a,b]$. Provar que existe um ponto $\xi_3 \in [a,b]$, tal que

$$\int_{a}^{b} f(x)dx - \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] = -\frac{f^{(4)}(\xi_3)}{2880} (b-a)^5.$$

Problema 46. Seja $f \in C^3[0,1]$ e $0 < m \le |f'''(x)| \le M$ para todo $x \in [0,1]$. De acordo com o Problema 41, existem $\xi_1, \xi_2 \in [a,b]$, tais que

$$\int_0^1 f(x)dx - f(1/2) = \frac{f(\xi_1)}{24}, \quad \int_0^1 f(x)dx - \frac{1}{2}[f(0) + f(1)] = -\frac{f(\xi_2)}{12}.$$

Prove que $|\xi_1 - \xi_2| \le \min\{1, M/(16m)\}.$

Problema 47. Usando a afirmação do Problema 41, prove que existem pontos $\eta_1, \eta_2 \in [0, 1]$, tais que

$$\int_0^1 f(x)dx - 2f(1/2) + \frac{1}{2}[f(0) + f(1)] = \frac{f(\eta_1)}{6};$$
$$\int_0^1 f(x)dx - \frac{3}{4}f(1/2) + \frac{1}{6}[f(0) + f(1)] = \frac{f(\eta_2)}{12}.$$

Problema 48. Se $f \in C^2[0,1]$, prove que existe um ponto $\xi \in [0,1]$, tal que

$$\int_0^1 f(x)dx - \frac{1}{2}[f(1/4) + f(3/4)] = \frac{f(\xi)}{96}.$$

Problema 49. Se $f \in C^2[0,1]$, prove que existe um ponto $\xi \in [0,1]$, tal que

$$\int_0^1 f(x)dx - \frac{1}{2}[f(1/3) + f(2/3)] = \frac{f(\xi)}{36}.$$

Problema 50. Resolver o Problema 40 para o espaço $W_2^2[a,b]$.

Problema 51. Seja $f \in C^2[0,1]$. Prove que

$$\int_{a}^{b} f(x)dx = \frac{3}{8}h[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)] - \frac{3}{80}f^{(4)}(\xi)h^5,$$

onde $a < \xi < b$, $x_k = a + kh$, k = 0, 1, 2, 3 e h = (b - a)/3.

Problema 52.

$$\int_{a}^{b} f(x)dx = \frac{4}{3}h[2f(x_1) + f(x_2) + 2f(x_3)] + \frac{14}{45}f^{(4)}(\xi)h^5,$$

$$a < \xi < b, x_k = a + kh, \ k = 0, 1, 2, 3h = (b - a)/4.$$

Problema 53. Seja f(x) uma função cuja derivada é integrável e com módulo que não exede um em [0,1]. Determinar o menor número de nós da fórmula de quadratura composta do ponto médio (trapézio, Simpson) para calcular $\int_0^1 f(x)dx$ com erro menos que 0.001.

Problema 54. Seja $f \in C^4[a,b]$. Prove que

$$\int_{a}^{b} f(x)dx = \frac{3}{8}h[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)] - \frac{3}{80}f^{(4)}(\xi)h^5,$$

onde
$$a < \xi < b$$
, $x_k = a + kh$, $k = 0, 1, 2, 3$, $e h = (b - a)/3$.

Problema 55. Seja $f \in C^4[a,b]$. Prove que

$$\int_{a}^{b} f(x)dx = \frac{4}{3}h[2f(x_1) + f(x_2) + 2f(x_3)] - \frac{14}{45}f^{(4)}(\xi)h^5,$$

onde
$$a < \xi < b$$
, $x_k = a + kh$, $k = 1, 2, 3$, $e h = (b - a)/4$.

Problema 56. Seja f(x) uma função cuja primeira derivada existe, é inegrável e o seu módulo não exede um em [0,1]. Determinar o número dos subintervalos para aplicação da fórmula do paralelogramo (trapézio, Simpson) composta para cálculo aproximado da integral $\int_0^1 f(x)dx$ com precisão 0.001.

Problema 57. Determinar o menor número dos subintervalos para aplicação da fórmula do paralelogramo (trapézio, Simpson) composta para cálculo aproximado das seguintes integrais com erro que nao exede 0.00001:

a)
$$\int_0^1 \frac{dx}{1+x};$$

b)
$$\int_0^1 \frac{dx}{1+x^2}.$$

Problema 58. Determinar o menor número dos subintervalos para aplicação da fórmula de Simpson composta para cálculo aproximado da integral

$$\int_{\pi/4}^{\pi/2} \frac{\sin x}{x} dx$$

com erro que nao exede 0.001