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Abstract. The idea of extending univariate quadrature formulae to cubature

formulae that hold for spaces of polyharmonic functions is employed to obtain
in a new way bivariate trapezoidal cubature rules. The notion of univariate

monospline is extended to functions of two variables in terms of a solution of

Poisson’s equation. This approach allows us to characterize the error of the
trapezoidal cubature formulae. A Hermitian type cubature is also investigated.

1. Introduction and statement of results

Recently many results from the classical approximation theory have been ex-
tended to theorems treating approximation of multivariate functions by m-harmonic
functions (see [1] and [8], for example, and the references in the papers therein
which contain such results). The reason for this approach is the fact that, as null
spaces of the even-order differential operator ∆m, where ∆m is the m-th iterate of
the Laplace operator, the polyharmonic functions of order m inherit many of the
properties of the univariate algebraic polynomials of odd degree 2m − 1. Various
“extended” cubature formulae for approximate integration over the unit ball in IRn

that are exact for spaces of polyharmonic functions have been obtained. We refer to
[7], [2] and [4] for some results of this nature. In this paper we develop further the
idea of extending the univariate monosplines to the multivariate setting, which was
described in [7], in order to obtain a simple cubature formula for the unit square
in IR2. As an immediate consequence we obtain the bivariate cubature formula.
Though the bivariate trapezoidal cubature formula is known, our approach allows
to obtain its error estimates in the Lp norms as well as the error for the class of
twice differentiable bivariate functions with the best possible constant. The method
reveals the close relation between this cubature and Poisson’s differential equation.

Let us recall a simple calculation which yield the trapezoidal quadrature. If
f ∈ C2[0, 1] we can apply integration by parts twice to the integral on the right
below to obtain

(1.1)
∫ 1

0

f(x) dx =
1
2

(f(0) + f(1))−
∫ 1

0

1
2
x(1− x) f ′′(x) dx.

Thus we have the familiar trapezoidal approximation for the integral I(f) on the
left, together with an error term, and the integral over [0, 1] is approximated by the
mean value of the integrand on the “boundary” of [0, 1]. On using a simple change
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of variables which adapts (1.1) to the intervals [(j−1)h, jh], h := 1/n, j = 1, . . . , n
and summing the results we obtain the composite quadrature formula

(1.2)
∫ 1

0

f(x) dx ≈ h

{
1
2

(f(0) + f(1)) +
n−1∑
k=1

f(kh)

}
=: Qn(f)

and the error term

I(f)−Qn(f) =
∫ 1

0

Kn(x) f ′′(x) dx,

where

Kn(x) = −1
2
(jh− x)(x− (j − 1)h), x ∈ [(j − 1)h, jh], j = 1, . . . , n.

The function Kn(x) is the Peano kernel of the linear functional I−Qn and is called
the monospline associated with Qn (see [3]).

In order to derive the bivariate extensions of the trapezoidal quadrature formula
we follow a natural analogy between monosplines and the polyharmonic monos-
plines described in [7]. Note that the trapezoidal rule can be obtained by integrat-
ing the linear interpolant which matches the integrand at the end-points. Similarly,
integration over the unit square Ω̄ = [0, 1] × [0, 1] of the unique polynomial from
span{1, x, y, xy} which interpolates the data f(0, 0), f(0, 1), f(1, 0), f(1, 1) yields

I(f) :=
∫ 1

0

∫ 1

0

f(x, y)dxdy ≈ 1
4

(f(0, 0) + f(0, 1) + f(1, 0) + f(1, 1)) =: C1(f).

Denote by vij = (ih, jh), 0 ≤ i, j ≤ n the vertices of the partition δ of Ω̄ induced
by the grid lines x = ih and y = jh. Divide the set of all the vertices V into
three classes V0, V1 and V2. The vertices V0 = {v00, v0n, vn0, vnn} are those of Ω,
V1 consists of the remaining boundary vertices and V2 contains the ”inside” ones,
i.e. V2 = {vij 0 < i, j < n}, V1 = V \ {V0 ∪ V2}. Then the cubature formula

I(f) ≈ h2

{
1
4

∑
v∈V0

f(v) +
1
2

∑
v∈V1

f(v) +
∑
v∈V2

f(v)

}
=: Cn(f).

is an extension of (1.2).
A simple but key observation is the fact that the monospline K1(x) = − 1

2x(1−x)
is the unique solution in C2[0, 1] of the differential equation

y′′(x) ≡ 1 in [0, 1],
y(0) = y(1) = 0.

Let Γ be the boundary of the unit square Ω and denote by M(x, y) the unique
solution in C2(Ω) of the following boundary value problem for Poisson’s equation:

∆M(x, y) ≡ 1 in Ω,(1.3)
M(x, y) = 0 on Γ.(1.4)

It is known [9, pp. 198, 332] that

M(x, y) =
1
2
x(x− 1)

+
4
π3

∞∑
k=0

sin((2k + 1)πx) {sinh((2k + 1)πy) + sinh((2k + 1)π(1− y))}
(2k + 1)3 sinh((2k + 1)π)
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Let us set

N(y) :=
∂M

∂x
|x=1 = −∂M

∂x
|x=0.

Then

(1.5) N(y) =
1
2
− 4

π2

∞∑
k=0

{sinh((2k + 1)πy) + sinh((2k + 1)π(1− y))}
(2k + 1)2 sinh((2k + 1)π)

.

Because of the symmetry we have

N(x) :=
∂M

∂y
|y=1 = −∂M

∂y
|y=0,

which implies the following equivalent representation of N(y):

(1.6) N(y) =
4
π2

∞∑
k=0

1
(2k + 1)2

tanh((2k + 1)π/2) sin((2k + 1)πy).

Let P (x) := x(x− 1)N(x)/2 and Pn(x) := h3P (nx + 1− i).
We define also the refinements of M(x, y) and of N(x) on δ:

Mn(x, y) := h2M(nx + 1− i, ny + 1− j), (x, y) ∈ [(i− 1)h, ih]× [(j − 1)h, jh],

Nn(x) := hN(nx + 1− i), x ∈ [(i− 1)h, ih],

for any i, j with 1 ≤ i, j ≤ n. Then obviously M1(x, y) ≡ M(x, y), N1(x) ≡ N(x)
and P1(x) ≡ P (x).

Theorem 1. Let for any n ∈ IN the functions Mn(x, y) and Nn(x) be defined as
above. Then the identity
(1.7)∫

Ω

f(x, y)dxdy =
∫ 1

0

f(x, 0)Nn(x)dx +
∫ 1

0

f(x, 1)Nn(x)dx

+
∫ 1

0

f(0, y)Nn(y)dy +
∫ 1

0

f(1, y)Nn(y)dy

+2
n−1∑
i=1

∫ 1

0

f(x, ih)Nn(x)dx + 2
n−1∑
j=1

∫ 1

0

f(jh, y)Nn(y)dy

+
∫

Ω

Mn(x, y)∆f(x, y)dxdy

=: CΓ,n(f) +
∫

Ω

Mn(x, y)∆f(x, y)dxdy

holds for every f ∈ C1(Ω̄) for which the integral over Ω on the right hand side of
(1.7) exists.

Note that CΓ,n is a linear method for the approximation of I(f) by 2n + 2
weighted integrals of f along the grid lines of the partition δ. The weight function
is Nn(x) on the boundary lines and 2Nn(x) on the remaining grid segments. It
follows immediately from Theorem 1 that this method is precise for every function
f which is harmonic on Ω. The errors of CΓ,n and Cn will now be discussed. In
order to do this we require some additional definitions. For any p ≥ 1 we denote



4 DIMITAR K. DIMITROV

by Lp(Ω) the Lp space on Ω equipped with the norm

‖f‖p :=
(∫

Ω

|f(x)|dx

)1/p

, 1 ≤ p < ∞,

‖f‖∞ := ess sup
x∈Ω

|f(x)|.

The Sobolev space is defined by

Hp(Ω) :=
{
f ∈ C1(Ω̄) : ∆f exists a.e. in Ω and ∆f ∈ Lp(Ω)

}
and let BHp(Ω) be the unit ball in Hp(Ω),

BHp(Ω) := {f ∈ Hp(Ω) : ‖∆f‖p ≤ 1} .

Denote by RΓ,n(f) := I(f) − CΓ,n(f) and Rn(f) := I(f) − Cn(f) the error func-
tionals of CΓ,n and Cn, respectively. Then

Rp,Γ,n := sup {|RΓ,n(f)| : f ∈ BHp(Ω)}

is the maximal error of CΓ,n in BHp(Ω).
In what follows, for any multiindex α = (α1, α2) and every sufficiently smooth

function f , we denote by fα the partial derivative (∂/∂x)α1(∂/∂y)α2f .

Theorem 2. For any n ∈ IN and p ≥ 1 we have

(1.8) Rp,Γ,n = ‖Mn‖q,

where 1/p + 1/q = 1.
If n ∈ IN and f(x) is such that f ∈ C1(Ω̄) and f (2,0), f (0,2) ∈ C(Ω̄), then there

exist points x1,x2 ∈ Ω̄ for which

(1.9) Rn(f) = −h2

12

{
f (2,0)(x1) + f (0,2)(x2)

}
.

Hence

(1.10) |Rn(f)| ≤ h2

12

{
‖f (2,0)‖∞ + ‖f (0,2)‖∞

}
.

Moreover, 1/12 is the smallest possible constant for which (1.10) holds.

We consider also a cubature formula of Hermitian type and obtain its error.

Theorem 3. For the cubature formula
(1.11)∫

Ω

f(x, y)dxdy = Cn(f)

+
h3

48

(
−f (1,0)(0, 0)− f (0,1)(0, 0) + f (1,0)(1, 0)− f (0,1)(1, 0)

)
+

h3

48

(
−f (1,0)(0, 1) + f (0,1)(0, 1) + f (1,0)(1, 1) + f (0,1)(1, 1)

)
+

h3

24

n−1∑
k=1

(
−f (1,0)(0, kh) + f (1,0)(1, kh)

)
+

h3

24

n−1∑
k=1

(
f (0,1)(kh, 0)− f (0,1)(kh, 1)

)
=: Cn,H(f),
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the error estimate

|I(f)− Cn,H(f)| ≤ h2

24

(
‖f (2,0)‖∞ + ‖f (0,2)‖∞

)
+

h3

60

(
‖f (2,1)‖∞ + ‖f (1,2)‖∞

)
holds for every f ∈ C3(Ω̄).

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let us recall that the first Green’s formula reads as

(2.1)
∫

Γ

(
u

∂

∂ν
v − v

∂

∂ν
u

)
dσ +

∫
Ω

(u∆v − v∆u) dxdy = 0,

where ∂
∂ν is the inner normal derivative and dσ is the element of the intrinsic

measure σ on Γ. It holds for every u, v ∈ C1(Ω̄) for which the above integral over
Ω exists. Applying (2.1) to u = f and v = M and taking into account (1.3) and
(1.4) we obtain∫

Ω

f(x, y)dxdy = −
∫

Γ

f
∂

∂ν
Mdσ +

∫
Ω

M(x, y)∆f(x, y)dxdy.

Since ν is the intrinsic normal to Γ we have
∂

∂ν
M(x, 0) = ∂M

∂y |y=0 = −N(x),

∂

∂ν
M(x, 1) = −∂M

∂y |y=1 = −N(x),

∂

∂ν
M(0, y) = ∂M

∂x |x=0 = −N(y),

∂

∂ν
M(0, y) = −∂M

∂x |x=1 = −N(y).

Hence ∫
Ω

f(x, y)dxdy =
∫ 1

2

f(x, 0)N(x)dx +
∫ 1

0

f(x, 1)N(x)dx

+
∫ 1

0

f(0, y)N(y)dy +
∫ 1

0

f(1, y)N(y)dy

+
∫

Ω

Mn(x, y)∆f(x, y)dxdy.

An appropriate change of variables transforms the latter to each cell of the partition
δ. The summation of the resulting equalities yields (1.7). �

Lemma 1. For any x ∈ (0, 1) and y ∈ (0, 1)

M(x, y) < 0

and

(2.2) N(x) > 0, N(y) > 0.

Moreover N(x) is continuous on [0, 1] and is even with respect to x = 1/2.

Proof. We need some basic facts about subharmonic functions. The function v is
subharmonic in Ω if for any circle B ⊂ Ω the solution U of the Dirichlet’s problem
∆U = 0 on B, U |∂B = v|∂B , satisfies the inequality v < U on B. It is well known
that v ∈ C2(Ω) is subharmonic in Ω if and only if ∆v > 0 there. If v ∈ C(Ω̄) is
subharmonic and U is harmonic in Ω such that U ≥ v on ∂Ω then U > v in Ω.
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Since ∆M ≡ 1 on Ω then M is subharmonic. Moreover M ∈ C(Ω̄) and M |Γ = 0.
Therefore M(x, y) < 0 in Ω.

In order to prove that N(x) is continuous and is even with respect to x = 1/2,
recall that

N(x) = 1/2− T (x),

where

(2.3) T (x) =
4
π2

∞∑
k=0

{sinh((2k + 1)πx) + sinh((2k + 1)π(1− x))}
(2k + 1)2 sinh((2k + 1)π)

.

It is easy to see that for any k ∈ IN the function sinh((2k + 1)πx) + sinh((2k +
1)π(1−x)) is positive on (0, 1), is convex and is even with respect to x = 1/2. Then
for every x ∈ (0, 1) we have

0 < sinh((2k + 1)πx) + sinh((2k + 1)π(1− x)) < sinh((2k + 1)π).

Thus the series on the right hand side of (2.3) is absolutely and uniformly con-
vergent. Hence T is a continuous function. Furthermore the latter inequality and
the equality

∑∞
k=0 1/(2k + 1)2 = π2/8 yield T (x) < 1/2, which is equivalent to

(2.2). �

Corollary 1. The function P is continuous and negative on (0, 1) and is even with
respect to 1/2.

Lemma 2. We have

(2.4)
∫ 1

0

N(x)dx =
8
π3

∞∑
k=0

tanh((2k + 1)π/2)
(2k + 1)3

=
1
4

and ∫ 1

0

xN(x)dx =
1
8

Proof. We proved in Lemma 1 that the series which represent N(x) are uniformly
convergent so that N(x) can be integrated termwise. It is easily seen that∫ 1

0

sin((2k + 1)πx)dx =
2

(2k + 1)π
.

Then the second expression (1.6) for N(x) yields

(2.5)
∫ 1

0

N(x)dx =
8
π3

∞∑
k=0

tanh((2k + 1)π/2)
(2k + 1)3

.

Similarly, on using the fact that∫ 1

0

sinh((2k + 1)πx) + sinh((2k + 1)π(1− x))dx =
2

(2k + 1)π
(cosh((2k + 1)π)− 1)

and the first representation (1.5) of N(x), we obtain

(2.6)
∫ 1

0

N(x)dx =
1
2
− 8

π3

∞∑
k=0

tanh((2k + 1)π/2)
(2k + 1)3

.
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Now the average of (2.5) and (2.6) implies (2.4). It is also easily seen by integration
of x sin((2k + 1)πx) that∫ 1

0

xN(x)dx =
4
π3

∞∑
k=0

tanh((2k + 1)π/2)
(2k + 1)3

which is exactly the half of the integral of N(x). �

Now we shall obtain Cn from CΓ,n. For this purpose the trapezoidal quadrature
formula for weighted integrals will be applied to the integrals which appear in
CΓ,n. The method is demonstrated first on the interval y = 0, 0 ≤ x ≤ h. Let
Ñ(x) = Nn(x) for x ∈ [0, h]. Then

Ñ(x) =
4h

π2

∞∑
k=0

1
(2k + 1)2

tanh((2k + 1)π/2) sin((2k + 1)πnx).

The integrand f(x, 0) is approximated on [0, h] by its Lagrange interpolating poly-
nomial at 0 and h:

f(x, 0) = f(0, 0)(1− nx) + f(h, 0)nx + f [0, h, x; 0]x(x− h),

where f [0, h, x; 0] is the divided difference of f at (0, 0), (h, 0) and (x, 0). Multiplying
the latter by Ñ(x) and integrating over [0, h] we obtain∫ h

0

f(x, 0)Nn(x)dx =
∫ h

0

Ñ(x)(1− nx)dx f(0, 0) +
∫ h

8

Ñ(x)nxdx f(h, 0)

+
∫ h

0

f [0, h, x; 0]Ñ(x)x(x− h)dx.

Lemma 2 implies ∫ h

0

Ñ(x)(1− nx)dx =
∫ h

0

Ñ(x)nxdx = h2/8.

We obtained the formula∫ h

0

f(x, 0)Nn(x)dx =
h2

8
{f(0, 0) + f(h, 0)}+ R(h;x; f).

Proof of Theorem 2 It follows immediately from Theorem 1 that

RΓ,n(f) =
∫

Ω

Mn(x, y)∆f(x, y)dxdy.

On applying Hölder’s inequality we obtain

|RΓ,n(f)| = ‖Mn‖q‖∆f‖p.

If f ∈ BHp(Ω) then |RΓ,n(f)| ≤ ‖Mn‖q. Hence |Rp,Γ,n(f)| ≤ ‖Mn‖q. Let 1 < p ≤
∞. Equality (6) will be proved if we indicate a function f ∈ BHp(Ω) for which
|RΓ,n(f)| = ‖Mn‖q. Every function f ∈ Hp, such that

∆f(x) =
(∫

B

|M(x)|q dx

)−1/p

|M(x)|q−1 signM(x)

belongs to BHp(Ω) and obviously |RΓ,n(f)| = ‖M‖q‖∆2f‖p. For p = 1 we let q
tend to infinity in the equality |Rp,Γ,n| = ‖Mn‖q. This yields |R1,Γ,n| = ‖Mn‖∞.
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Bearing in mind that, if x ∈ [0, h], then 2f [0, h, x; 0] = f (2,0)(ξ, 0) for some
ξ ∈ (0, h) we conclude that, for every f for which f (2,0) ∈ C(Ω̄),

|R(h;x; f)| ≤ ‖f (2,0)‖∞
∫ h

0

|Pn(x)|dx.

On applying the same approach to all the edges of the partition δ we obtain Cn

and the error estimate

|CΓ,n(f)− Cn(f)| ≤ 2n‖f (2,0)‖∞
∫ 1

0

|Pn(x)|dx + 2n‖f (0,2)‖∞
∫ 1

0

|Pn(y)|dy.

The simple observation that ‖∆f‖∞ ≤ ‖f (2,0)‖∞ + ‖f (0,2)‖∞ yields the error esti-
mate

(2.7) |Rn(f)| ≤
{

2n

∫ 1

0

|Pn(x)|dx + ‖Mn‖1
}{

‖f (2,0)‖∞ + ‖f (0,2)‖∞
}

.

In view of (2.7), for the proof of (1.10) we need only to find the L1 norms of Pn

and Mn. It follows from their definitions, (2.2) and Corollary 1 that

(2.8)
∫ 1

0

|Pn(x)|dx = −h3

∫ 1

0

P (x)dx

and

(2.9) ‖Mn‖1 = −h2

∫
Ω

M(x, y)dxdy.

Since the series which participate in the representations of P and M are uniformly
convergent then the integrals on the right hand side of (2.8) and (2.9) can be
calculated by termwise integration of these series. We omit the technical details.
The results are ∫ 1

0

P (x)dx = − 8
π5

∞∑
k=0

tanh((2k + 1)π/2)
(2k + 1)5

and ∫
Ω

M(x, y)dxdy = − 1
12

+
16
π5

∞∑
k=0

tanh((2k + 1)π/2)
(2k + 1)5

.

On using (2.8) and (2.9) we obtain

2n

∫ 1

0

|Pn(x)|dx + ‖Mn‖1 = 2nh3 8
π5

∞∑
k=0

tanh((2k + 1)π/2)
(2k + 1)5

+h2

{
1
12
− 16

π5

∞∑
k=0

tanh((2k + 1)π/2)
(2k + 1)5

}

=
1
12

h2.

In order to prove the sharpness of the constant 1/12 we observe that the error
estimate (1.10) is attained for the simple function g(x, y) = x2, namely we have

(2.10) |Rn(g)| = h2/12
{
‖g(2,0)‖∞ + ‖g(0,2)‖∞

}
.

Indeed, obviously I(g) = 1/3 and simple calculations show that Cn(g) = 1/3+h2/6.
Hence |Rn(g)| = h2/6 which is equivalent to (2.10). �
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We conclude this section with some remarks. There are some other ways to
obtain error estimates for Cn. The first of these is to pass through uniform bounds.
Recall the method used to obtain Cn in the introduction. Let sn(f ;x, y) be the
unique piecewise continuous spline which reduces to span{1, x, y, xy} on every cell
and interpolates f at the vertices of δ. Then Cn(f) =

∫
Ω

sn(f ;x, y)dxdy. On
the other hand, employing the quasi-interpolation technique [5] we conclude that
‖f−sn(f)‖∞ = O(h2). This gives |Rn(f)| = O(h2). The double reduction approach
provides the best constant. Finally we mention that just like Qn(f) −→ I(f)
for every Riemann integrable function f(x) on [0, 1], Cn(f) −→ I(f) for every
Riemann integrable function f(x, y) on Ω̄. The proofs are very simple. Recall that
for the proof of the convergence of the quadrature formula one only observes that
Qn(f) is a Riemann sum of f(x) on the partition δQ of [0, 1] induced by the points
(1/2 + i)h, i = 0, . . . , n − 1. Similarly Cn(f) is a Riemann sum of f(x, y) on the
partition of Ω̄ which is the Descartes product of δQ.

3. Hermitian type cubature formulae

Proof of Theorem 3. In what follows we suppose that

M(x, y) = (1/4)(x(x− 1) + y(y − 1)).

Since ∆M(x, y) ≡ 1, on applying Green’s formula (2.1) to the refinement Mn(x, y) =
(1/4)(x(x− h + y(y− h) of M and to f on the square [0, h]× [0, h] of the partition
δ, we obtain

∫ h

0

∫ h

0

f(x, y)dxdy = −
∫

Γ

∂M

∂ν
f dσ(ξ) +

∫
Γ

∂f

∂ν
M dσ(ξ) +

∫
Ω

M∆fdxdy

=
h

4

(∫ h

0

f(0, y)dy +
∫ h

0

f(x, 0)dx

)

+
h

4

(∫ h

0

f(h, y)dy +
∫ h

0

f(x, h)dx

)

+
∫ h

0

y(y − h)
4

f (1,0)(0, y)dy −
∫ h

0

y(y − h)
4

f (1,0)(h, y)dy

+
∫ h

0

x(x− h)
4

f (0,1)(x, 0)dx−
∫ h

0

x(x− h)
4

f (0,1)(x, h)dx

+
∫

Ω

M(x, y)∆f(x, y)dxdy.

Now we use the representation

f(x) = (h− x)/hf(0) + x/hf(h) + f [0, h, x]x(x− h)

in order to approximate the first eight integrals in the above representation by the
trapezoidal quadrature formula. Bearing in mind that for any x ∈ [0, h] there is
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η ∈ [0, h], such that f [0, h, x] = f ′′(η), we obtain∫ h

0

∫ h

0

f(x, y)dxdy =
h2

4
(f(0, 0) + f(h, 0) + f(0, h) + f(h, h))

−h4

48

(
f (2,0)(η1, 0) + f (2,0)(η2, h) + f (0,2)(0, η3)

)
−h4

48

(
f (0,2)(h, η4) + f (1,0)(0, 0) + f (0,1)(0, 0)

)
+

h3

48

(
f (1,0)(h, 0) + f (0,1)(0, h) + f (1,0)(h, h)

)
+

h3

48

(
f (0,1)(h, h)− f (0,1)(h, 0)− f (1,0)(0, h)

)
+

h5

120

(
f (1,2)(0, η5)− f (1,2)(h, η6)

)
+

h5

120

(
f (2,1)(η7, 0)− f (2,1)(η8, h)

)
−h4

12
∆f(η9, η10),

where ηj ∈ [0, h] for j = 1, . . . , 10. We sum the corresponding integrals over the
cells of δ and take into account that the derivatives of order two and three are
continuous in Ω. The result is∫

Ω

f(x, y)dxdy = Cn,H(f) + Rn,H(f),

with

Rn,H(f) = −h2

24

(
f (2,0)(ξ1, ξ2) + f (0,2)(ξ3, ξ4)

)
+

h3

120

(
f (1,2)(ξ5, ξ6)− f (1,2)(ξ7, ξ8) + f (2,1)(ξ9, ξ10)− f (2,1)(ξ11, ξ12)

)
−h2

12
∆f(ξ13, ξ14),

where ξj ∈ [0, 1] for j = 1, . . . , 14. Therefore

|Rn,H(f)| ≤ h2

24

(
‖f (2,0)‖∞ + ‖f (0,2)‖∞

)
+

h3

60

(
‖f (2,1)‖∞ + ‖f (1,2)‖∞

)
.

�
The proof of Theorem 3 shows once again that the relation between cubature

formulae and polyharmonic monosplines, as developed in [7] generates various inter-
esting cubature formulae even if the monospline is relatively simple. We conclude
the paper with an example of a cubature formula of Hermitian type we consider
very natural. It was proved in [6] that, for any square and for any smooth function
f(x, y), there exists a unique bivariate polynomial p(f ;x, y) from

span{1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, xy3},

such that, for the four vertices Vk, k = 1, 2, 3, 4, of the square

p(i,j)(f ;Vk) = f (i,j)(Vk) 0 ≤ i + j ≤ 1.
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An integration of the interpolating polynomial p(f ;x, y) over the squares of δ yields
the cubature formula∫

Ω

f(x, y)dxdy = Cn(f)

+
h3

24

n∑
k=0

(
f (1,0)(0, kh)− f (1,0)(1, kh)

)
+

h3

24

n∑
k=0

(
f (0,1)(kh, 0)− f (0,1)(kh, 1).

)
The general theory of quasi interpolants yields that its error must be a linear
combination of the norms of f (4,0), f (2,2) and f (0,4). The problem of determining
the best possible constants is of interest. We shall return to this question elsewhere.
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