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Abstract. A challenging conjecture of Stephen Smale on geometry of polyno-
mials is under discussion. We consider an interpretation which turns out to be
an interesting problem on equilibrium of an electrostatic field that obeys the
law of the logarithmic potential. This interplay allows us to study the quanti-
ties that appear in Smale’s conjecture for polynomials whose zeros belong to
certain specific regions. A conjecture concerning the electrostatic equilibrium
related to polynomials with zeros in a ring domain is formulated and discussed.

1. Introduction

There are two challenging problems which inspire the development of the Geom-
etry of Polynomials. They are due to the celebrated Bulgarian mathematician
Blagovest Sendov and to the Fields Medal winner Steve Smale. Sendov’s conjec-
ture states that for every nonconstant polynomial p(z) of degree n ≥ 2 with zeros
in the closed unit disc, and for each of its zeros zk, there is a critical point ξj of p(z)
(zeros of p′(z)) such that |zk − ξj | ≤ 1. As Academician Sendov uses to confess, he
posed this conjecture in 1959 because he was asked to formulate a beautiful and
difficult problem to himself, and eventually solve it, by his tutor Nikola Obrechkoff.
It turned out the problem was so beautiful and so difficult that it is still open
despite the nearly one hundred publications devoted to it.

In his 1981 paper [9] Steve Smale investigated thoroughly Newton’s method for
approximate calculation of zeros of a complex polynomial. He showed that the cost
of solving this fundamental problem does not grow too fast, when the degree of the
polynomial increases, in a certain statistical sense. Denote by πn the set of complex
algebraic polynomials of degree n. If f ∈ πn, then ξ ∈ C is said to be a critical
point of f if f ′(ξ) = 0. The main tools employed by Smale in this investigation
were results of the nature of the following theorem:

Theorem A. For any n ∈ N and each f ∈ πn the inequality

(1.1)
|f(ξ) − f(z)|
|ξ − z||f ′(z)| ≤ 4

holds for at least one critical point ξ of f(z) and all z ∈ C for which f ′(z) 6= 0.
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A straightforward transformation shows that, an equivalent statement of Theo-
rem A, is to consider polynomials from

π0
n := {f ∈ πn : f(0) = 0, f ′(0) 6= 0}

and, for any such a polynomial, prove that

(1.2) min

{ |f(ξ)|
|ξ||f ′(0)| : f ′(ξ) = 0

}

≤ 4

for at least one critical point ξ. The natural question of determining the smallest
possible bound of the quantity which appears on the left-hand side of (1.2), when
f ∈ π0

n, arose. Thus, Smale stated the following conjecture (see Problem 1F in [9]):

Conjecture 1. (Smale) Let f ∈ π0
n. Then

(1.3) min

{ |f(ξ)|
|ξ||f ′(0)| : f ′(ξ) = 0

}

≤ K,

where K = 1 or possibly K = (n − 1)/n.

Observe that the statement of Theorem A, or equivalently the inequality (1.2), is
nothing but (1.3) with K = 4. The polynomials f(z) = a1z +anzn, a1an 6= 0, show
that K cannot be less than (n − 1)/n. There exist strong indications that these
are the only “extremal polynomials” for Conjecture 1, which allows the following
speculation which is sometimes called “strengthened form of Smale’s conjecture”:

Conjecture 2. (Smale, strengthened form) Let f ∈ π0
n. Then the inequality

(1.3) holds with K = (n − 1)/n and equality is attained if and only if f(z) =
a1z + anzn, where a1 and an are any complex numbers with a1an 6= 0.

Nice recent surveys on Sendov’s and Smale’s conjectures and further open prob-
lems were given by Sendov himself [6, 7] and by Schmeisser [4]. Smale’s conjecture
was established in the special case when all the zeros of f(z) lie on a circumference
centered at the origin by Tischler [11] who proved that for such polynomials the
extremal value (n − 1)/n as attained only for the polynomials from Conjecture 1.
Beardon, Minda and Ng [1] proved that

sup
f∈π0

n

min

{ |f(ξ)|
|ξ||f ′(0)| : f ′(ξ) = 0

}

≤ 4(n−2)/(n−1).

Recently Dubinin [2] developed a method which allows an improvement of this
results. More precisely, the right-hand side of the latter inequality can be reduced
by introducing the factor (n − 1)/n.

Conjecture 1 is known to be true for polynomials of degree up to five and for
n = 5 it was proved by Sendov and Marinov [8].

In this paper we study the the quantities that appear in Smale’s conjecture and
formulate a natural problem on electrostatic equilibrium.

2. A problem on electrostatic equilibrium

In this paper we discuss an electrostatic equilibrium problem related to the
conjecture of Smale. Our approach is pretty simple. Instead of investigating the
minimum of the n − 1 quantities |f(ξj)|/ (|ξj ||f ′(0)|), where ξj , j = 1, . . . , n − 1,
are the critical points of f ∈ π0

n, we consider their product.
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Theorem 1. If f(z) is a polynomial from π0
n with zeros z0 = 0, z1, . . . , zn−1 and

critical points ξ1, . . . , ξn−1, then

(2.1)

n−1
∏

j=1

|f(ξj)|
|ξj ||f ′(0)| =

1

nn−1

∏

1≤j<k≤n−1 |zk − zj|2
∏n−1

j=1 |zj|n−2
.

Proof. Let f(z) be monic. Then

(2.2) f(z) = (z − z0)(z − z1) · · · (z − zn−1)

and then

(2.3) f ′(zj) = (zj − z0) · · · (zj − zj−1)(zj − zj+1) · · · (zj − zn−1).

On the other hand, we have

f ′(z) = n(z − ξ1)(z − ξ2) · · · (z − ξn−1),

which yields

(2.4) f ′(zj) = n(zj − ξ1)(zj − ξ2) · · · (zj − ξn−1), j = 0, . . . , n − 1.

Multiplying the latter identities and having in mind (2.2), we obtain

f ′(z0) · · · f ′(zn−1) = nn
n−1
∏

j=0

(zj − ξ1)(zj − ξ2) · · · (zj − ξn−1)

= nn
n−1
∏

k=1

(−1)n(ξk − z0)(ξk − z1) · · · (ξk − zn−1)

= nn
n−1
∏

k=1

f(ξk).

This immediately implies

(2.5)
f(ξ1)f(ξ2) · · · f(ξn−1)

ξ1ξ2 · · · ξn−1[f ′(0)]n−1
=

1

nn

f ′(z0)f
′(z1) · · · f ′(zn−1)

ξ1ξ2 · · · ξn−1[f ′(0)]n−1
.

Since, by (2.4), f ′(z0) = f ′(0) = (−1)n−1nξ1ξ2 · · · ξn−1, then the right-hand side of
(2.5) reduces to

(−1)n−1

nn−1

f ′(z1) · · · f ′(zn−1)

[f ′(0)]n−1
.

Now we substitute the values of the derivatives both in the numerator and the
denominator of the latter by their values, given as in (2.4), to obtain

∣

∣

∣

∣

f(ξ1)f(ξ2) · · · f(ξn−1)

ξ1ξ2 · · · ξn−1[f ′(0)]n−1

∣

∣

∣

∣

=
1

nn−1

|f ′(z1)| · · · |f ′(zn−1)|
|f ′(0)|n−1

=
1

nn−1

∏n−1
j=1

(

|zj |
∏n−1

k=1,k 6=j |zj − zk|
)

|z1z2 · · · zn−1|n−1

=
1

nn−1

∏

1≤j<k≤n−1 |zj − zk|2
∏n−1

j=1 |zj|n−2
.

�
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It is worth mentioning that a similar argument appeared already in a short
note of Szegő [10] in connection with a famous problem of Erdös on lemniscates of
polynomials. Szegő observed that for every monic polynomial p(z) of degree n with
zeros z1, . . . , zn, and critical points ξ1, . . . , ξn−1, we have

n−1
∏

j=1

|p(ξj)| =
∏

1≤j<k≤n−1

|zk − zj|2.

In the same short note Szegő points out that Schur [5] had proven that the maximum
of the latter Vandermonde determinant, when the zeros are restricted to be in the
closed unit disc, is attained when they are, up to a rotation the roots of unity.
Thus, Sezegő’s and Schur’s observations immediately yield the above mentioned
Tischler’s result.

In what follows we shall study the behaviour of the quantity

(2.6) T (z1, . . . , zn−1) =

∏

1≤j<k≤n−1 |zk − zj|
∏n−1

j=1 |zj |(n−2)/2
.

Given a limited domain E in the complex plane whose complement contains a
neighbourhood of the origin, we shall investigate

(2.7) max
z1,...,zn−1∈E

T (z1, . . . , zn−1).

Consider the the following electrostatic field. Given a positive integer n ≥ 2, a fixed
negative charge with force of absolute value n/2 − 1 is located at the origin and
n − 1 free unit charges are located at z1, . . . , zn−1. Suppose that the electrostatic
field generated by these charges obey the law of the logarithmic potential which
means that all the charges are uniformly distributed along infinite straight lines
perpendicular to the complex plane. Thus, the total energy of this field is given by

L(z1, . . . , zn−1) = −n − 2

2

n−1
∑

k=1

log
1

|zk|
+

∑

1≤i<k≤n−1

log
1

|zi − zk|
.

Then obviously

n−1
∏

j=1

n|f(ξj)|
|ξj ||f ′(0)| = T 2(z1, . . . , zn−1) = exp (−2 L(z1, . . . , zn−1))

and the problem of minimizing the energy of the filed is equivalent to the problem of
maximizing the generalized Vandermonde determinant T which itself is equivalent
to maximizing the product of Smale’s quantities |f(ξj)|/(|ξj ||f ′(0)|). Since each
|f(ξj)|/(|ξj ||f ′(0)|), j = 1, . . . , n − 1, and thus the function T (z1, . . . , zn−1), are
invariant upon a transformation z 7→ kz, for any k ∈ C, k 6= 0, without loss of
generality we may assume that all zeros of f lie outside an open disc with radius
a > 0, i.e. that |zk| ≥ a. Moreover, if z1, . . . , zn−1 belong to a compact set
E ⊂ D∞(0, a) = {z : |z| ≥ a}, then the Weierstrass theorem guarantees the
existence of points z∗1 , . . . , z∗n−1 ∈ E that are solutions of the problem (2.7) and
then these are points of an equilibrium of the described electrostatic field.

In what follows we discuss the particular case when E is an annulus in C. Let
0 < a < b < ∞ and let us consider the closed ring domain

R(a, b) = {z : a ≤ |z| ≤ b}.
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We shall be interested in the extremal problem

max {T (z1, . . . , zn−1) : zk ∈ R(a, b), k = 1, . . . , n − 1}
By the above observation there are points z∗k ∈ R(a, b) for which this maximum is
attained,

(2.8) T (z∗1 , . . . , z∗n−1) = max {T (z1, . . . , zn−1) : zk ∈ R(a, b), k = 1, . . . , n − 1}.
In the next section we formulate a conjecture about the location of the ex-

tremal points of z∗k when n is an odd integer as well as about the maximal value
T (z∗1 , . . . , z

∗
n−1).

3. The new conjecture and further comments

We begin this section with our conjecture:

Conjecture 3. Let n be an odd integer, n− 1 = 2m, m ∈ N. Then the unique, up

to a rotation, extremal points z∗1 , . . . , z∗2m for the problem (2.8) are the zeros of the

polynomial q(z) = (zm − bm)(zm + am). Moreover, we have

T (z∗1 , . . . , z∗2m) =

(

m
am + bm

√
ambm

)m

.

First we comment some straightforward consequences of the conjecture. Obvi-
ously, for odd n it reads

T (z∗1 , . . . , z
∗
n−1) = (n − 1)(n−1)/2

(

a(n−1)/2 + b(n−1)/2

2a(n−1)/4b(n−1)/4

)(n−1)/2

,

which immediately implies that there exist a critical point ξj such that

|f(ξj)|
|ξj ||f ′(0)| ≤ n − 1

n

a(n−1)/2 + b(n−1)/2

2a(n−1)/4b(n−1)/4
.

In general, the second quotient on the right-hand side of this inequality is greater
than one and is equal to one if and only if a = b which implies Tischler’s result. On
the other hand, for this location of the zeros zk, always exists a critical point with

|f(ξj)|
|ξj ||f ′(0)| ≤ n − 1

n
.

Indeed, when a < b the critical points ξ of the polynomial p(z) = z(zm − bm)(zm +
am) satisfy

ξm =
(m + 1)(bm − am) ±

√

(m + 1)2(bm − am)2 + 4(2m + 1)ambm

2(2m + 1)
,

so that they are located on two concentric circumferences centered at the origin,
m critical points on each of them the radius of the smaller one being smaller
than a. For those zeros ξk of p′(z) with smaller modulus the strict inequality
|f(ξk)|/(|ξk||f ′(0)|) < (n − 1)/n holds. We omit these calculation in the general
case because they are rather straightforward. We only show the situation on the
figure below for the case n = 21, m = 10, when a = 1, b = 2. The larger points are
on the figure the zeros of p(z), i.e. the extremal charges, and the smaller one are the
critical points of p(z). Then the critical points are located on two circumferences
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with radii r1 = 0.786857 and r2 = 1.87462. For the critical points ξk with |ξk| = r1

we have
|f(ξk)|

|ξk||f ′(0)| = 0.909098 < 0.952381 = 20/21

and for those critical points ξj with |ξj | = r2 we have |f(ξj)|/(|ξj ||f ′(0)|) = 255.917.
Thus, Smale’s conjecture is true for this configuration.

-2 -1 1 2

-1.5

-1

-0.5

0.5

1

1.5

Figure: The conjectured extremal configuration for n = 21, m = 10, a = 1 and b = 2.

In what follows we justify our conjecture furnishing arguments that led us to it.
In order to do this, first we provide brief information and some basic properties of
the so-called weighted Fekete points. For details see Chapter III of Saff and Totik’s
monograph [3].

Definition 1. Given a compact set E of the complex plane, a positive integer n,

and a continuous weight function w : E → IR+, we define the n-th weighted Fekete

set Fn := {ζ∗1 , . . . , ζ∗n} ⊂ E to be a set which maximizes the product

(3.1)
∏

1≤i<j≤n

|ζi − ζj |w(ζi)w(ζj).

The points {ζ∗i }n
1 are called weighted Fekete points.

We immediately obtain the following:

Proposition 1. Let E be a compact set and W (z) be an analytic function in some

open domain containing E with W (z) 6= 0 for every z ∈ E. Then for any n ∈ N

the weighted Fekete points for the weight w(z) := |W (z)| are on the boundary of E.

Proof. Suppose that n ∈ N is fixed and let Fn = {ζ1, . . . , ζn} be a weighted Fekete
set for E. Fix ζk ∈ Fn and consider the function gk(z) := Wn−1(z)

∏

i6=k(z − ζi).

It is analytic in int(E) and |gk(z)| achieves its maximum at ζk. Therefore, by the
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maximum principle ζk ∈ ∂E (unless gk is a constant, which is impossible because
of the analyticity of W ). Since ζk was arbitrary, we obtain Fn ⊂ ∂E. �

The close relation of our problem to weighted Fekete points is revealed by the
fact that (3.1) reduces to T (ζ1, . . . , ζn) when w(z) = 1/

√

|z|. Therefore, in fact, we
need to determine the weighted Fekete points for the ring R(a, b) associated with
this weight. Our conjecture is that for even n they are equally distributed on the
circumferences |z| = a and |z| = b is such a way that the arguments of the points
on |z| = a are rotated π/n in comparison with those of the points on |z| = b.

Related to the weighted Fekete points is the minimal energy problem with weight
w. For a compact set E, denote by ME the set of all unit Borel measures. Given
a continuous weight function w, an equilibrium measure of E associated with w is
defined to be a measure µw := µw,E such that

Iw(µw) = min{Iw(µ) : µ ∈ ME},

where

Iw(µ) :=

∫

log
1

|x − z|w(x)w(z)
dµ(x)dµ(z)

is the weighted energy of a measure µ ∈ ME. The equilibrium measure is unique
and is characterized by the Euler-Lagrange variational conditions

Uµ(x) + Q(x) = F for x ∈ supp(µ),(3.2)

Uµ(x) + Q(x) ≥ F for x ∈ E,(3.3)

where Q(z) = − ln |z| is called external field and Uµ(x) =
∫

log(1/|x|) dµ(x) is the
logarithmic potential of µ.

Let us denote the support of the weighted equilibrium measure µw with Sw. It is
known that the Fekete sets Fn are subsets of Sw and the discrete counting measures

ν(Fn) :=
1

n

∑

z∈Fn

δz

have a weak∗ limit µw (see [3, Theorems III.1.2 and III.1.3]).

Next we find the weighted equilibrium measure for R(a, b) with w(z) = 1/
√

|z|.

Proposition 2. Let 0 < α < 1 and wα(z) = |z|−α. Then the weighted equilibrium

measure µwα
on D(a, b) associated with the weight wα is

(3.4) µwα
= αµa + (1 − α)µb,

where µa and µb are the unit one-dimensional Lebesgue measures on the circles

|z| = a and |z| = b, respectively.

Proof. Let µ := αµa + (1 − α)µb. Certainly supp(µ) = {|z| = a} ∪ {|z| = b} =
∂D(a, b). Recall that for each r > 0

Uµr (z) =
1

2π

∫ π

−π

log
1

|z − reiφ| dφ =







log 1/r if |z| ≤ r

log 1/|z| if |z| > r
.
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Thus, for the logarithmic potential of µ(z) we have
(3.5)

Uµ(z) = αUµa(z) + Uµb(z) =























α log 1/a + (1 − α) log 1/b if |z| ≤ a

α log 1/|z| − (1 − α) log b if a < |z| ≤ b

log 1/|z| if |z| > b

.

Since the external field is Q(z) = α log |z|, we can easily verify that conditions
(3.2) and (3.3) hold for µ. In fact equality holds on all of D(a, b) and not only on
∂D(a, b). The uniqueness of the equilibrium measure now implies that µwα

= µ
and (3.4) follows. �

Since in our case α = 1/2, the weighted equilibrium measure associated with the
electrostatic problem is (µa + µb)/2 which shows that when n goes to infinity, the
charges that minimize the energy must be distributed in such a way that approxi-
mately half of them should lie on |z| = a and the other half on |z| = b. It is natural
to try to guess the situation when the number of the free charges is odd, i.e. when
n − 1 = 2m − 1. Despite that we know the approximate asymptotic behaviour, it
is not clear if there will be m− 1 extremal points z∗k on |z| = a and m on |z| = b or
vice versa: m Fekete points with |z| = a and m−1 with |z| = b. The exact location
of the extremal point in this case is still a mystery for me despite some numerical
tests.
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