NONNEGATIVE TRIGONOMETRIC POLYNOMIALS

DIMITAR K. DIMITROV AND CLINTON A. MERLO

ABSTRACT. An extremal problem for the coefficients of sine polynomials, which
are nonnegativein [0, 7], posed and discussed by Rogosinski and Szegd is un-
der consideration. An analog of the Fejér-Riesz representation of nonnegative-
general trigonometric and cosine polynomials is proved for nonnegativesine
polynomials. Various extremal sine polynomials for the problem of Rogosin-
ski and Szegd are obtained explicitly. Associated cosine polynomials ky (0)
are constructed in such a way, that {kn(0)} are summability kernels. Thus,
the Lp, pointwise and almost everywhere convergence of the corresponding
convolutions is established.

1. INTRODUCTION

Among the various reasons for the interest in the problem of constructing non-
negativetrigonometric polynomials are: the Gibbs phenomenon [19, Chapter II,
§9], univalent functions and polynomials [8], positive Jacobi polynomial sums [3],
orthogonal polynomials on the unit circle [18], zero-free regions for the Riemann
zeta-function [1, 2], just to mention a few.

Our interest in this subject comes from the classical Approximation Theory. In
this paper we construct some new positive summability kernels. Recall that the
sequence {k,(6)} of even, nonnegativecontinuous 2r-periodic functions is called an
even positive kernel if k,(0) are normalized by (1/27) [7 k,(#)d6 = 1 and they
converge to zero in any closed subset of (0,27). It is classically known that the
convolutions of such kernels with 27-periodic functions f € L,[—m, 7] converge to
f in the Ly-norm, for 1 < p < co. To the best of our knowledge, Fejér [6] was the
first to construct such a kernel. He proved that

- k

(1.1) Fo(9) :1+2kz_1 (1— n+1> cos ko
are nonnegative, and established the uniform convergence of the corresponding
convolutions with continuous functions. These convolutions are nothing but the
Cesaro means of the Fourier series. Jackson [10, 11] used the kernel J,,(8) = F2(6)
to prove his celebrated approximation theorem.

The basic tool for constructing nonnegativetrigonometric polynomials T'(8) is
Fejér and Riesz’ (see [7]) theorem which states that 7°(0) is nonnegativeif and only
if there exists an algebraic polynomial R(z), such that T(0) = |R(e*?)|?. However,
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most of the positive summability kernels turn out to be solutions of some extremal
problems for the coefficients of T'(f). Fejér’s kernel (1.1) itself is the only non-
negativecosine polynomial of the form 1 +2%" ), aycoskf > 0 with the maximal
possible sum of its coefficients. A nice simple proof of Jackson’s theorem in Rivlin
[12, Chapter I] is based on the nonnegativecosine polynomial whose first coeffi-
cient ay is the largest possible, provided ag = 1. This polynomial was determined
explicitly by Fejér [7].

Szeg6 [14] and Egervéary and Szasz [5] extended this result of Fejér, determining
the maximums of the means y/a? + b, for k = 1,2,...,n, of nonnegativetrigono-
metric polynomials whose coefficient ag is fixed to be 1. Their estimates yield lower
and upper limits for the coefficients ay of the nonnegativecosine polynomial

1+ Z ay, cos k0.
k=1

In all these cases the corresponding extremal polynomials were found explicitly.
However, very little is known about the extremal values of the coefficients of the
nonnegativesine polynomials.

Since sine polynomials are odd functions, in what follows we shall call

Sn(0) = by, sinkf
k=1

a nonnegativesine polynomial if S,,(6) > 0 for every 6 € [0,w]. It is clear that, if
Sn(0) is nonnegative, then by > 0 and b; = 0 if and only if S, is identically zero.
Motivated by the results for the general trigonometric and for the cosine polynomi-
als described above and bearing in mind this observation about b;, Rogosinski and
Szeg6 [13] considered the following extremal problem for nonnegativesine polyno-
mials:

Determine the minimum and mazimum values of by provided that the sine poly-
nomial Sy (0) is in

k=2

Sn:{Sn(é?):sin0+Zbk sinkd : S,(0) >0 for 96[0,77]}.

For each of these values, find the extremal sine polynomial which belongs to S, and
whose coefficient by, coincides with the corresponding extremal value.

Although Rogosinski and Szegé suggested two methods for obtaining the extrema
of the moments by, they found the minimal and maximal values only for bs, b3, b,, 1
and b,. Moreover, in none of the cases the corresponding extremal sine polynomials
were determined explicitly.

In this paper we develop a method of solving the above stated problem. The basic
tool is a general representation of nonnegativesine polynomials. Note that Fejér
and Riesz’ theorem implies a representation of nonnegativecosine polynomials (see
Lemma 2 below). However, to the best of our knowledge, no similar representation
of nonnegativesine polynomial was known. Due to the complicated nature of the
problem, we apply the method to find the extremal polynomials, associated with
the minima and maxima of b,, b,_1, and b, _s.

The results containing a variety of nonnegativesine and cosine polynomials are
stated in the next section. We formulate and prove only some of the possible
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consequences of the main results. We do not include, for example, the nonneg-
ativetrigonometric polynomials which are in the convex hulls of the polynomials
that we obtain. The remark which follows the statements of Vietoris’ [17] results
in Askey and Steinig’s paper [4] gives an idea how new nonnegativetrigonometric
polynomials can be generated by a known sequence of nonnegativetrigonometric
polynomials. Our method is developed in Section 3. The extremal problems for
bn,—1 and for b, are solved in Section 4. In Section 5 the minimal and the maximal
values of b,,_o are determined. For odd n, the corresponding extremal polynomials
are constructed. The limit behaviour of the extremal values of b,,_s, for even n, is
established. In Section 6 we prove that some of the sequences of cosine polynomials
obtained are in fact positive summability kernels. The graphs of some of the non-
negativetrigonometric polynomials constructed in this paper are shown in Section
7.

2. STATEMENT OF RESULTS.
Theorem 1. Let n = 2m+2 be a even positive integer. Then for every S, (6) € Sy,:
m+1 m+1

(4) — <y < ——.
m+ 2 m+ 2
The equality b, = (m + 1)/(m + 2) is attained only for the nonnegativesine
polynomial
(2.1)
i <(m—|—k+2)(m—k+1)
(m+1)(m+2)

(k+1)2
(m+1)(m+2)

sin(2k + 1)0 + sin(2k + 2)9) .

k=0

The equality b, = —(m +1)/(m + 2) is attained only for the nonnegativesine poly-
nomaial

(2.2)
m (m+Ek+2)(m—k+1) . (k+1)2 .

m

<bp <1

(&) Tm+2

The equality b,_1 = 1 is attained only for the nonnegativesine polynomials

(2.3) sin 6 + Z (2pg sin 2k6 + sin(2k + 1)0) + pgsin(2m + 2)0,
k=1

where the parameters p and q satisfy p? + ¢ = 1.

The equality b,—1 = —m/(m + 2) is attained only for the nonnegativesine polyno-
mials
(2.4)
- 2k?2 2k(k +1)
in 6 2 1— —— | sin2k0 1— ——= |sin(2k+1)60
sinf  + ;{pq( m(m+2)>s1n +( oy p—— sin(2k + 1)

—  pgsin(2m + 2)0,

where p and q satisfy the relation p®> + ¢% = 1.
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An interesting nonnegativesine polynomial is

i(m+k+2)(mfk+1)

CESCED) sin(2k + 1)6,

k=0

which is a convex combination of (2.1) and (2.2). Observe that the extremal poly-
nomials (2.3) and (2.4) depend on a parameter. Their convex combination also has
an intriguing form.

Theorem 2. Let n = 2m+1 be an odd positive integer. Then for every S, (0) € S,

(4)

<b, <1
m+2 -

The equality b, = 1 is attained only for the nonnegativesine polynomial

(2.5) Z sin(2k + 1)0

The equality b, = —m/(m + 2) is attained only for

+
(2.6) i( 2k 2REHD) ) ok + 1)9) .

— m(m + 2)

(i)  —1< by_y <1

The equality b,_1 = 1 is attained only for the nonnegativesine polynomial

2m
(2.7) Z sin k6 + 3 51n(2m + 1)6.
k=1
The equality b,_1 = —1 is attained only for the nonnegativesine polynomial
2m 1
(2.8) ;(—1)’”‘1 sin k6 + Esin(2m+ 1)6.

It is worth noting the extremal property of the sine polynomial (2.5). Another
interesting observation is that the polynomial (2.6) coincides with the polynomial
(24)ifp=0orqg=0.

Theorem 3. Letn =2m + 1, m > 2 be an odd positive integer. Then for every
Sp(0) € S,

—-m+4—+/m(5m — 8) b < 1+\/5'
2(m + 2) 2

The equality b,_» = (1++/5)/2 is attained only for the nonnegativesine polynomial

2
sinf + (5 * 2\[> sin(2k + 1)6

(2.9) ~1
) sin(2m — 1) + (5 + \/5> sin(2m + 1)6.

.c i

—_
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The equality bp,—o = (—m + 4 — /m(bm — 8))/(2m + 4) is attained only for the
nonnegativesine polynomial

m—2 2 2
sinf + Z <4+ 2k—22k4 m > sin(2k + 1)6
1 me=
2 (202k(k 4+ 1) — 2(k% + k + 2)m + m®)
(m? — 4)y/m(5m — 8)

b
Il

3
\

(]

) sin(2k + 1)6

(2.10) ’f:41 G 3
+ 2m+2) ) sin(2m —1)6
m (m—4) )
o A (1 + ol 8)) sin(2m + 1)6.

In order to formulate our result concerning the extremal values of b,_o for the
case where n is even we need the following technical result:

Lemma 1. For every positive integer m > 2 the cubic polynomial

4(m? +m+2 4(m? —m+1 m—1)2
rm(y)z—y3+ ( - )y2_ ( - )y ( )2
(m+2) (m+2) (m+ 2)
has three positive zeros. Moreover, the largest zero y(m) of rm(y) does not exceed
y(00) := (3 4+/5)/2 and y(m) — y(o0) as m diverges.

Theorem 4. Let n =2m+ 2, m > 2 be an even positive integer and, let y(m) be
defined as in Lemma 1. Then for every S,(0) € S,:

|br—2| < V/y(m).
In particular,

b2l < ((3+V5)/2)"/2.

Employing a result of Turdn [16, Theorem I] we obtain a consequence of Theorem
1, Theorem 2, and Theorem 3 which provides interesting analogues of the classical
result of Fejér, Jackson, and Gronwall which states that, for any positive integer n,
the sine polynomial

" sin k6
(2.11) > -

k=1

is positive in (0, ).

Corollary 1. The sine polynomials

n

(2.12) > <; - n(kn—i-ll)> sin k0,

k=1

"1 —1
(2.13) > (k - :2 — 1) sin k6,

k=1

1
sinkf — — sinn#,
2n

En

D

k=1

n
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. 5—&-2\/5 n2 1 . 1—|—\/5 . 5—}—\/5 .
PIAN —TV 1
sind + ( 7 ) 2% sin k6 + <Q(n Y sin(n — 1)0 + on sinnd

and

M |

—2n — 2k2 4+ 2k —
sinf + i + 3> in k6

( (n—3)(n+ 1)k
( 2(n? — 1)(n —3) — 4k(n — )(k—l))sinka

3 >
Il

NN

Y(n+ 1)k+y/(n —1)(5n — 13)

—/(n—=1)(5n—13)\ .
Q(n—l—l)(n— 0 ) sin(n — 1)0

/—-\a-
C“w

1—n n—2>5 .
— | 1+ sin nf
2n(n + 1) V(= 1)(5n — 13)
are nonnegative.

As is seen in Figures 1 and 2, the Gibbs phenomenon of the polynomials (2.12)
and (2.13) is almost negligible in comparison with the Gibbs phenomenon of the
Fejér-Jackson-Gronwall polynomials. Moreover, (2.12) and (2.13) approximate the
function f(6) = (7 — 0)/2 uniformly on every compact subset of (0, 7] much better
than (2.11) does.

The method allows us to obtain also some nonnegativecosine polynomials.

Corollary 2. The following cosine polynomials are nonnegative:

(2.14) 1+2§(1n_";1> (1W)msk9,

(2.15)
g k k k
1+cosf + 2 (1 - > (1 - > (1 + ) cos(2k)6
P + n—+2 2n+3

1 n+1
= k 4k+1) 2k+1
+ Z(l—m) <1+k(2n+3 —~ n+2)>cos(2k+1)9,
(2.16)

~ k k k
1—cosf + 2;(1— n+1> (1_n+2> (l—i— 2n+3) cos(2k)6

1
" k 4k+1) 2k+1
- 1- 1 - 2k + 1
;( n+1)( +k<2n+3 n+2)>C°b( k+ 19,
" k k k
(2.17) 1+2k§_:1<1— n+1) (1—n+2) (1+ 2n+3>cosk6,

(2.18) 1+ QS ((1 - SEZ) cos(2k +1)6 + (1 - nk:l}?) cos(2k + 2)9) ,
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(2.19) 142 Z (( ni;;) cos(2k + 1)0 + (1 - nk—:_l}Q) cos(2k + 2)9) ,

- k
(2.20) 142 ; (1 — n—|—1/2) cos ko),
(2.21)
1+ 4::12pqcose+2é { (1 - ni1> cos 2k0 + (1 . 2::;17%) pg cos(2k + 1)9} :
(2.22)
14 4n —

2 k 2k(n+k+1)
2 1-— l1-— 2
1 pq cos + Z( n—i—l) ( n(n+2) )cos ko

k=1
213 + 3n2 — 2n — 6kn? — 12kn + 4k® + 6k2 + 2k
+ 22

nn+1)(n+2)

pq cos(2k + 1)6,

where the parameters p and q in (2.21) and (2.22) satisfy p*> + ¢*> = 1,

(2.23)

3+\/5 m—2 k m—2
-1 1—- — 1 1
2 (m )( +2 1( p— 1)cosk9>+ +( +\[ ;coskﬁ—i—cosme

k=

and
(2.24)
=54 2m + /m(5m — 8))
6+/m(5m — 8)
m—1 3 . 2 3
n 10k + 2k° — 4m — 3km* +m cos kO
— 3m?2 — 12
" 2m? — 6km® + m® — 8m? + 4k3m + 20km — 4m — 43 + 4k
+ cos ko6
k=1

(3m? —12)y/m(5m — 8)
m m—4

- — |14+ —— ) cosmd.
2(m+2)< m(5m — 8)

The polynomial (2.17) is a convex combination of (2.15) and (2.16), and the
polynomial (2.20) is a convex combination of (2.18) and (2.19).

The explicit forms of the nonnegativecosine polynomials given by the formulas
from (2.14) to (2.20) are somehow very similar to the classical Fejér kernel (1.1).

While the coefficients of F,, () approximate “linearly” the coefficients of the formal
Fourier series

(2.25) 1+2 Z cos k6
k=1
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of Dirac’s delta, the coefficients of our cosine polynomials, except for (2.20), provide
“quadratic”, or even “cubic”, approximations to the coefficients of (2.25). This in-
tuitive observation suggests that the above cosine polynomials may be also positive
summability kernels. The graphs of (2.14), (2.17), and (2.20) together with the
graph of Fejér’s kernel are shown in Figures 3 and 4.

In Section 6 we shall prove that the cosine polynomials (2.14), (2.17) or (2.20)
are positive summability kernels. Thus we shall establish the L,, pointwise and
almost everywhere convergence of the corresponding convolutions

T

Knu(fiz) = 1/(2m) [ Kn(6)f(x — 0)do.

In particular, when the kernel coincides with (2.14), (2.17) or (2.20), the convo-
lutions reduce to the approximating polynomials

ao 2k(n+k+1
Kna(fiw) = “ 4 2:( ﬂ+1><1;%+®v
x(ak(f) coskx + b (f) sinkx),

k k
Kno(f;z) = 0 1- 1- 1
n2(fi7) 2 n+1 n+2 o3

(ak f)coskx + by (f)sin kx)

and

n

n3(fv

< n+1/2>( k(f) coskx + by (f) sin kx),
=1

where ai(f) and b (f) denote the Fourier coefficients of f.

Theorem 5. For any p,1 < p < oo and for every 2mw-periodic function f €
L,[—m, 7] the sequences K, ;(f;x), j=1,2,3, converge to f in L,[—m, 7).

Theorem 6. Let f be a 2m-periodic function, which is integrable in [—m,w]. If, for
x € [—m, 7|, the limit limp_o(f(x + h) + f(z — h)) exists, then, for j =1,2,3,

Ky j(fiz) — (1/2) }lbli%(f(x +h)+ f(x—h)) as n diverges.

Theorem 7. Let f be a 2w-periodic function, which is integrable in [—m,7t]. Then
K, ;(f;x), j=1,2,3, converge to f almost everywhere in [—m, ).

It is worth mentioning that all the cosine polynomials we have constructed, some
with slight modification, are positive summability kernels. More precisely, (2.23)
and (2.24) are also positive summability kernels. In the remaining four cases,
namely when C), () is one of the cosine polynomials (2.15), (2.16), (2.18) or (2.19),
then K, (0) = C,,(0/2) is a positive summability kernel. We shall omit the proofs
of these technical results.
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3. FEJER-RIESZ TYPE REPRESENTATION OF NONNEGATIVESINE POLYNOMIALS

A careful inspection of the proof of the Fejér-Riesz theorem shows that the
coeflicients of any nonnegativecosine polynomial are representable in terms of real
parameters cg.

Lemma 2. Let

Cn(0) =ao + QZak cos kO

k=1

be a cosine polynomial of order n which is nonnegativefor every real 6. Then there
exists an algebraic polynomial with real coefficients R(z) = > p_, ck2® of degree
n such that C,(0) = |R(e')|?. Thus, the cosine polynomial C,(0) of order n is

nonnegativeif and only if there exist real numbers ¢y, k =0,1,...,n, such that
n
aw = Y
k=0
ar = ch+l,cy for k=1,...,n.
v=0

The following relation between nonnegativesine and nonnegativecosine polyno-
mials is a simple observation (see [13]).

Lemma 3. The sine polynomial of order n
Sn(0) = by sink
k=1

is nonnegativein [0, 7] if and only if the cosine polynomial of order n — 1:

n—1
Cn-100) =ag+2 Z ay, cos kO,
k=1
where
by = ag-1—agy1 for k=1,...,n—2
(32) bp-1 = an-s,
bn = Qn-1,

is nonnegative.

As a consequence of the last two lemmas we obtain a parametric representation
for the coeflicients of the nonnegativesine polynomials.

Lemma 4. The sine polynomial of order n:

Sn(0) = by sin ko
k=1
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is nonnegativeif and only if there exist real numbers cq, ..., cn_1, such that
n—1 n—3
2
by = E ¢ — E CuCyi2,
v=0 v=0
n—k—2
3.3 _ _
(3:3) b, = E Chtv—1Cy — E Chyv41Cy, for k=2,...,n-2
bn-1 = CoCp—2+cCi1Cn-1,
bn = CoCp—1-

The principal idea is to canonize the quadratic form, which represents b; in order
to obtain sum of squares. The process of canonization begins as follows:

n—1

IRy
1 > 1 \* 3,
= <co — 282) + (cl — 263) 1 *63 + Z Cp — Z CLCl+2

2 2
_ LY, 1 L N ﬁ Ry
= Co 282 C1 263 \/§ Cq 9 C3 \/505
+ c4 -+ 7(35 + Z Cy, — Z CLCEk+2-

It is not difficult to see that if n is odd, n = 2m + 1, then b; can be written as a
sum of squares in the form

m—2

2 2
C2k+3
by = <\/Qk+1c2k _ 2k ) (\/Qk+102k+1 - )
,;) { 2\/Qk 2\/Qk+1
+ (\/ dmCam—2 —

2\/q7m) + qumel + qm+1cgm’

and if n is even, n = 2m + 2, then b, is given by

m—1

2 2
Cok+2 C2k+3
by = (\/Qk+1c2k - ) + (\/Qk+1c2k+1 - )
,;) { 2\/Qr+1 2\/qk+1

2 2
FAm+1C2m T Im+1C2m 415

where the parameters qx, £ = 1,...,m + 1, are determined by the recurrence

relation ¢ =1, gx4+1 =1 — 1/(4qx). The solution of this recurrence equation is
k+1

3.4 = —.

(3.4) T

We can formulate our next technical lemma:

Lemma 5. Let the sequence {qi} be defined by (3.4). Then, for every positive
integer n, the coefficient by can be represented as a sum of squares

n—1

§ : 2
frd dk?

k=0



NONNEGATIVE TRIGONOMETRIC POLYNOMIALS 11

where, for n odd, n = 2m + 1, the parameters di and ci are related by

1 1
VakCar—2 — iﬁc% = dog—2, k=1,...,m,
11
VakCak—1 — s ——=Cop41 = dop—1, k=1,...,m—1,

2 /4
VAam+1C2m = d2m7
VimCom—1 = dom—1,

and for n even, n = 2m + 2, dy, and cj, are related by

11
\/ g — —— = dop_ k=1,...
qrCak 21 zlmczk 2k—2; s y 1,
VA4kC2k—1 — 5 —F—C2k4+1 = d2k—17 k= 17"'7m7

2/
VAam+1C2m = d2m7
Vim+1C2m+1 =  doms1.

Solve the above systems of linear equations with respect to ¢x. Bearing in mind
the explicit form (3.4) of qx, £ =1,..., and setting gx+1 - qr4» = 1 for v =0, we
obtain an explicit representation of ¢; in terms of a linear combination of the new
parameters d;, j =k, k+2,k+4,.... Thus cg, £=0,1,...,m, are given by

m—k

1 _
Cox = Z;(Qkﬁ-l"'Qk-&-u\/M) Hdogtou

(3.5) =0

v m—k

2
k 1 d vy
(k+ );) k+v+D)(k+v+2) FF

while for the parameters cox11 we have

m—k—1

1 _
Cokr1 = Z 27(Qk+1 Qo Tt 1) kg2t
(3.6) v=0 I 5

1 v b)
(k+1) ;) (k+u+1)(k+u+2)d2k+2 +

ifn=2m+1, or

m—k

1 -
Cok+1 = Z 27((1k+1 Qe /Qrror1) ok
(3.7) v=0

m—k
2
= (k+1 dokt2v+41,
(k+ );) k+v+1)(k+v+2) 2t

ifn=2m+2.
Lemma 4, Lemma 5, and relations (3.5), (3.6), and (3.7) yield the desired para-
metric representation of the coefficients of nonnegativesine polynomials.

Theorem 8. The sine polynomial

Sn(0) = by sin ko
k=1
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is nonnegativefor 0 € [0, 7] if and only if there exist real parameters do, . ..,dn_1,
such that by = d3 +--- +d%_; and

n—1
(3.8) =Y ad2+2 Y oMdid; for k=1,...n-1,

i=0 0<i<j<n—1
where the coefficients 51(2) are explicitly obtained by the relations (3.3), (3.5), (3.6)
and (3.7).

Let Dy = (52(13))?]_:10 be a symmetric matrix associated with the quadratic form

(3.8). Denote by d the vector (do,...,d,—1)T. Then
be = d” Dyd.

By the Rayleigh-Ritz theorem (see Theorem 4.2.2 on p. 176 in Horn and Johnson
[9]) we obtain the main result in this section.

Theorem 9. Let A\, pin and Ai mar be the smallest and the largest eigenvalues of
Dy. If S, (0) € Sy, then
Aeymin < bk < Agmaz-
Moreover, the equality by = Ak maz 1S attained if and only if S,(0) is a sine
polynomial in S,, whose coefficients b;, i = 2,...,n, are obtained by the formulas
bi = df,meidk,maz,

where di mae 5 an eigenvector with unit length, associated with the eigenvalue
)\k,maz'
Similarly, the equality by = Ngmin s attained if and only if S, (0) is a sine

polynomial in S,,, whose coefficients b;, i = 2,...,n, are obtained by the formulas
b = df,mmDidk:,mim

where dy min 5 an eigenvector with unit length, associated with the eigenvalue
>\k,min~

4. EXTREMAL POLYNOMIALS FOR b, AND b,,_1

In this section we find the extremal values and the corresponding extremal poly-
nomials for the coefficients b,, and b,,_1. It is worth mentioning that the extremal
values as well as the associated extremal polynomials depend on the parity of n.
Thus, for any coefficient we consider four cases: the problems of determining the
minimum and the maximum and, for each of these, the cases of even and odd n.

4.1. The minimum and maximum of b,, for n = 2m + 1 and the extremal
polynomials associated.

On using the relations (3.3), (3.5) and (3.6) we obtain

m
b — Z d2kd2m
! k=0 2*1¢2 - Qe /A1 /A1

where ¢y, is given by (3.4). Since

m+2+(k+1)(k+2
2kq1q2"'Qk\/Qk+1\/Qm+1 = ma1 \/( 2)( )7
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then
b — m+1§: 2dordom
PVmr2 & Sk Dk +2)
Set
m+1
4.1 =y —
(4.1) =g
and
1 .
(4.2) Aj = —— —-—ow, j=0,...,m.

G+DG+2)
Then the symmetric matrix D,(v,o)
resents b,, is

associated with the quadratic form which rep-

200A,, aA,_1 - aAdr 0 adp

0 m—
0 0 0 e 0o 0 0
aAm—1 0 0 e 0o 0 O
D) = : :
O[Al 0 0
0 0 0
Oon 0 0

Hence the characteristic polynomial of fo) is

det(D —NI) = (=N)*" {(@®AZ+ - +a?A2, ) /A + 204, — A}

= =T {A 2 (m+1)(m+2))\_am+1}'

Since the smallest and the largest zeros of this polynomial are —m/(m + 2) and
1, then, by Theorem 9,

<b, <1.
m+27- "

In order to determine the extremal polynomial associated with b, e We need

to find first an eigenvector d;‘jZnaz of Dgf), associated with the eigenvalue \ = 1,
such that

(4.3) dg+ -+ +ds, =1.
From the homogeneous linear system
2C¥Am -1 0 OéAm,1 R O[Al 0 CVA(] dgm
0 -1 0 e 0 0 0 dom—1
aAm_l 0 -1 0 0 0 dgm_g
: . I .| =0
OéAl 0 0 R -1 0 0 dg
0 0 0 e 0o -1 0 dy
OéAo 0 0 R 0 0 -1 do

for the coordinates of dﬁfﬂmx, we obtain dor = aApday, and dag41 = 0 for k =
0,...,m — 1. A substitution of these values of d; in (4.3) yields do,, = £((m +
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2)/(2m + 2))/2. Thus the desired eigenvectors are +d\ .z, where

1
d) -
n,max \/§

Observe that both the coefficients aj, and by are expressed as quadratic forms of

(A07 0; Alvov e 7Am727 Oa Am71707 1/a)T .

do,dq, .- .,dom. Thus any choice of the sign of the eigenvector will imply the same
extremal polynomial. We prefer working with d;‘flm. From (3.5) and (3.6) we
obtain cog41 =0 for £k =0,...,m — 1, and
m—k 9
C: = ]C + 1 d v
o ( )Z% k+v+)k+v+2)
m—k—1
k+1 1
= ——+(k+1
m+1 ( ) ; (k+v+1D)(k+v+2)
= 1
Then the expressions (3.1) yield agxy = m+1—k for k=0,...,m, and agg41 =0
for k=0,...,m—1. Thus we obtained the classical nonnegativecosine polynomial

(1.1). On using (3.2) we obtain (2.5).
The procedure of determining an extremal sine polynomial associated with by, pin

is similar. First we find the eigenvectors of Dy(lo)7 associated with the smallest
eigenvalue A = —m/(m + 2). They are £d,, yn, where

/ 2
dn,’min = mt (AOaOaAlaov'"aovAm—1a07_mAm)T7
2m

and we choose the positive sign. Thus, dag1 = 0, doy, = —v/m/(2m + 2), and

m+2 1
dok o = 1/ for ktv=0,...m—1
2ht2 om ktvtDErore 8 FTY i
Then, by (3.6) we obtain car+1 = 0, and by (3.5) we get

m—k
2
= 1
c2k (k+ );) (k+v+1)(k+v+2)

— ,ﬂ L+(k+1) Lmikil 1
o om+1\m+2 m+2 — (k+v+1)(k+v+2)

v

dogyou

-2k
= _mm for k=0,...,m.
m+2 m

Hence agi+1 = 0 and the general formula for ag, in terms of cg, ca, . . ., Cop, yields
1 m—k
= — — 25 — 25 — 2k
G = gy O m = 2)m = 2~ 2)

J=0
(m — k+ 1)(m? + 2m — 2mk — 2k? — 2k)
3m(m +2) '

We arrived at the nonnegativecosine polynomial (2.14). Now we need to express
the coefficients by in terms of ay by (3.2). Obviously, bor, = 0 and
2k(k+1)

b =1-—-"2=.
2k+1 m(m +2)
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This gives the nonnegativesine polynomial (2.6).

4.2. The minimum and maximum of b, for n = 2m + 2 and the extremal
polynomials associated.

Relations (3.3), (3.5), and (3.7) imply
b, = i o dordom+1 .
o ¢ 192" QT 1/ Tl
Since
2"q1gs -+~ Gk /Ter 1/t = \/”mlii\/(lﬂr 12)(k:+2)7
then

b, — m+1i 2dopdom41 .
Vim+2 & T Dk +2)

Hence the symmetric matrix Dﬁf) associated with the quadratic form which
represents b, is

0 ady, 0 -+ ady 0 adp
aAn, 0 0 --- 0 0 0
D = ; D 7
aA1 0 0
0 0 0
OéAo 0 0
where a and A; are defined by (4.1) and (4.2). The characteristic polynomial of

Dgf) is

det(DY —NI) = (=N {(0?A2+ - +a?A2 | +a?A2) /A - N}
o yemfy2 omtl
= (=X {/\ ) } .

Since the smallest and the largest zeros of this polynomial are —(m+1)/(m+2)
and (m +1)/(m + 2), then

_Lﬂ<bn<m7+1.
m-+2 “m+2

«

First we obtain an eigenvector dy mas Of D7(f)7 associated with the eigenvalue

A= (m+1)/(m+2), such that
(4.4) dg+ -+ +ds, 4 =1

Solve the homogeneous linear system (DSLS) —((m+1)/(m+ 2))I)d$§)maz =0
we obtain dor, = ((m + 2)/(m + 1))aArdoms1, & = 0,...,m, and dogyr; = 0,
k =0,...,m — 1. Substitute these values of d; in (4.4) to get doy1 = +v/2/2.
Thus the eigenvectors we need are :I:d,(l‘fiz,wm7 where

q® 1

= A0,0,41,0,..., Ay, )"
n,max ﬂa( 0 1 )
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We shall work with d{“az. By (3.5) and (3.7), we obtain

and

Then formulas (3.1) imply that
(m—k+1)(2m? —mk + Tm — k> — k + 6)
3(m+1)(m+2)

azk =

and
(2m3 + 9m? + 13m — 2k3 — 3k? — k + 6)
6(m+1)(m+ 2) '
Thus we obtained the nonnegativecosine polynomial (2.15).On using relations
(3.2) we obtain the nonnegative sine polynomial (2.1).

In order to determine the extremal sine polynomial associated with b, ;n, We
(e)

A2k+1 =

find the eigenvectors of Dy, ’, associated with the smallest eigenvalue A = —(m +
1)/(m + 2). They are idfli)rnin, where
e 1
dfz}mm = - (A0a05A1?07~-~aAm7_a)Ta

o
and we choose the positive sign. Then formulas (3.5) and (3.7) yield

m—k+1 /m+2 q k+1 /m+1
Cop = — and ¢ = —
2k m—+ 2 m—+1 k1 m—+1Vm+2
for k=0,...,m. Then,

(m—k+1)(2m? —mk + ™m — k* — k + 6)
3(m+1)(m+2)

A2k =
and
(2m3 + 9m? + 13m — 2k3 — 3k? — k + 6)
6(m+1)(m+ 2)
Thus we obtain the nonnegativecosine polynomial (2.16). On using the relations
(3.2) we obtain the nonnegative sine polynomial (2.2).

A2k+1 = —

4.3. The minimum and maximum of b,,_; for n = 2m+1 and the extremal
polynomials associated.

In this case

m m—1

dordom—1 dop4+1dam

boy = n

1 kZ:O 25192 - @[Tt 1/Am kZ:O 28q1g2 Qi /T 1 /T 1

\/sz: 2dapdom \/W"’iﬁ 2dapi1dam
m+1e=(k+)(k+2)  Vm+2 =0 /(k+1)(k +2)

Setting

(4.5) B = ma1
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we obtain the symmetric matrix

0 BA,, +aA,_1 0 - Ay 0
ﬁAm + aAm—l 0 ﬁAm—l e 0 ﬁAO
0 ﬁAm—l
OéAm_Q 0
Dno—l = . .
0 BA;
OZAO 0
0 BAo

associated with the quadratic form which represents b,,_1. Hence the characteristic
polynomial of Dibo_)l is

2m? + 2m + 2 -1
det(Dflo_)l—)\I):(_/\ym3{/\4_ m* +2m + 9 m(m ) }7

(m+1)(m+2) (m+1)(m+2)
whose smallest and largest zeros are +1. By Theorem 9, we have
|bn—1‘ S 1.

In order to determine the extremal polynomial associated with by, —1 maqz We need
to find an eigenvector d@ of D

n—1,mazx n—1»

that d2 + -+ + d3,, = 1. For the eigenvector d

associated with the eigenvalue A = 1, such
(0)

n—1,mazx’

T
o 1 Im+1 /m+2
dngl,maa: = 5 (AOa AOa ey Am—27 Am—Qa Am—h 77 M) .

The relations (3.5) and (3.6) yield ¢, = v/2/2 for k = 0,...,2m. Then the
expressions (3.1) imply agy, = m —k+1/2 for k = 0,...,m and agg41 = m — k
for k =0,...,m — 1. We obtain the nonnegativecosine polynomial (2.18) and, by
(3.2), the positive sine polynomial (2.7).

The extremal sine polynomial associated with b,,—1 min is obtained through the
(o)

n—1°

we obtain

eigenvectors of D associated with the smallest eigenvalue A = —1. They are

:Ed(e)

n,min’

T
1 m+ 1 m + 2

A = 2 Ay, —Ag, . Ao — Ao, A \/7,/ ,
n—1,min 2 05 0> ) 29 2y 1 m 5 m+ 1

The relations (3.5) and (3.6) yield cop = v/2/2 for k = 0,...,m and capy1 =
—V/2/2 for k=0,...,m — 1. Then the expressions (3.1) imply az, = m — k + 1/2
for k=0,...,m and agx41 = —(m — k) for k =0,...,m — 1. Thus we obtain the
nonnegativecosine polynomial (2.19). Then, by (3.2), we obtain the nonnegative
sine polynomial (2.8).

where

4.4. The minimum and maximum of b,,_; for n = 2m +2 and the extremal
polynomials associated.
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Since in this case

m

b L _ Z < kode d2k+1d2m+1 )
" 26q1G2 - QA /Tt1 /Tt Qkfhfh C kDt 1/ Gl
_m+ 1 Z 2(dakdam + dok+1d2m+1)
m+ 2 VEFDE+F2)

then the symmetric matrix fozl associated with the quadratic form which repre-

sents b,,_1 is

200 A, 0 aA,,_1 0 - adp 0
0 200 A, 0 QA1 - 0 aAy
O[Am,1 0
Dnefl — 0 OéAm,1
OéAO 0
0 OZAO

Hence the characteristic polynomial of Dfﬁl is

2
(e) 2m—2 2 2 m
D — ) = _ _

det(Dy, 2y — AL) = A (A m+2)\ m+2> ’

whose smallest and largest zeros are —m/(m + 2) and 1. Therefore

m
<b <1.
m+2_n1

In order to determine the extremal polynomial associated with b,,—1 maqz We need

to find first an eigenvector d® of D\

no1,maz n_1, associated with the eigenvalue A =1,
such that

Bty =1

As in the previous cases, for the coordinates of the eigenvector dn 1,maz: We
obtain de = P d2m+1 = Q, and dgk = OtPAk and d2k+1 = OzQAk fOI" k =
0,...,m—1, where the parameters P and Q satisfy P?+Q? = (m+2)/(2m+2). Now
the relatlons (3.5) and (3.7) yield co, = v2aP and copy1 = V2aQ for k =0,...,m
Then the expressions (3.1) imply

2(m+1)(2m — 2k + 1)

=m-k+1 d =
agzx =m + and  agg+1 m ot o

PQ for k=0,...,m

On substituting

m+ 2 d Q m—+ 2
a. =
om+2f M om + 27

we obtain the nonnegativecosine polynomial (2.21) and the relations (3.2) yield the
nonnegative sine polynomial (2.3).

The eigenvector dffllﬂm-n of Dflezl, associated with the smallest eigenvalue A =
—m/(m + 2) is given by day, = P, dam+1 = @, and do, = —aPAi(m + 2)/m and
dok+1 = aQAg(m + 2)/m for k =0,...,m — 1, where in this case the parameters
P and Q satisfy P2+ Q? = m/(2m + 2). Now the relations (3.5) and (3.7) yield
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car = V2aP(2k —m)/m and copy1 = V2aQ(2k —m)/m for k =0,...,m. By (3.1)
we obtain
(m —k+1)(m? — 2km + 2m — 2k? — 2k)

f
3m(m+2) or

ask = k::O,...,m,

and

2(m + 1)(4k3 + 6k% + 2k — 2m — 12km + 3m? — 6km? + 2m3)
3m2(m + 2)

PQ

a2k+1 =
for k =0,...,m. Substituting

m m
P= d 0= ]
oyl d @ om + 27

we obtain the nonnegativecosine polynomial (2.22) and then, by (3.2), we obtain
the nonnegative sine polynomial (2.4).

5. EXTREMAL PROBLEMS FOR b, _2

5.1. The minimum and maximum of b,,_5 for n = 2m+ 1 and the extremal
polynomials associated.

Proof of Theorem 3. In this case (3.3), (3.5) and (3.6) imply

b m kodgmfz d2kd2m
n—2 -

= +
kZ:O (2kq1q2 QT Tm 2V G2 - Qe /Gr \/qm+1>
-1
(—1)? dapdan, S dog+1dom—1

+ E I .
= 2102+ Gk /Thr 1/ Tt kZ:O Pt U T
m k
(ﬁd%d2m_2 +ydardam + (=1)° ad2kd2m)

2
kZ:O (k+1)(k+2)
i 2/6d2k+1d2m—1

= Jk+D)(k+2)

where o and ( are defined by (4.1) and (4.5) and

m

+

m

T mr )m12)

()

(5.1)

Thus, the symmetric matrix D
sents b,,_o is

5 associated with the quadratic form which repre-

2(a+y)aA, 0 (a+7)Am—1 + A, (v — a)Ag
0 2BA,,-1 0 0
(a+7)Am—1+ aA, 0 28A,,-1 BA
(a+7)A 0 BA,
0 BAg 0
(v — a)Ag 0 BAg



20 DIMITAR K. DIMITROV AND CLINTON A. MERLO

Then, by straightforward calculations, we obtain the characteristic polynomial of
Dflolz in the form

-1 m—4 m— 2
A2 O (A2 a—1) (A+ ) (a2 A— .
( )( )< Jrm—&-2 Jrm—i—2 m+ 2

It is easy to see that the smallest and the largest zeros of this polynomial are

—m+4— y/m(bm — 8) and 1+5
nd ——.
2

2(m +2)
In order to determine the extremal polynomial associated with b, _2 mqs We have
to find an eigenvector dffllmaz of D?_,, associated with the eigenvalue A = (1 +
\/5)/2, such that
(52) d(% +ooet d%m =1
Solve the homogeneous linear system (D', — ((1+ \/5)/2)I)d$;)227mmJ =0.
Set
. [TE3V5
EREEENG
For the coordinates of dgzozz,maz we obtain dogy1 =0 for k=0,...,m — 1, and
K
dy = —F=—F——F7=
V2A(1 + V/5)
1 5
dop, = +4\[Ak./€ for k=1,...,m—2,
2m+3+ 5
dom—2 = K,
2¢/m(m + 1)(1 +/5)
d _ 1 /m+2
S
A substitution of these values of d; in (5.2) yields da,, = £(1/2)((m + 2)/(m +
1))}/2k. Thus the desired eigenvectors are :I:dglozzmm, where
T
d(o) _ K \/i 0 0 2m—|—3—|—\/5 0 m 4+ 2
n—2,max 2 /\(1+\/5)a goeny ,(1+\/5) m(m+1)a ) m+1

We shall work with df1032,maz' Relations (3.5) and (3.6) yield cg = con = K/V/2

and cop = V2(1 4 v/5)k/4 for k =1,--- ,m — 1. Then the relations (3.1) imply

3+v5
w = w21+ (o),
1 5 3 5
ask = K(( +2\f)+( +4\[)(m—k—1)) for k=1,...,m—1,
asy = /<;2/2 and
askr+1 = 0 for k=0,--- ,m—1.

We obtain the nonnegative cosine polynomial (2.23). On using (3.2) we obtain the
nonnegative sine polynomial (2.9).
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In order to determine the extremal sine polynomial associated with bgflz,mm
(0)

we find the eigenvector d,,”, ., of D,SO)Q, associated with the smallest eigenvalue

A=(—m+4—/m(5m —8))/(2m + 4).

Set
o= 6 1+ m7_4
vm(bm — 8)
For the coordinates of dil 2,min W€ Obtain dop41 =0for k=0,...,m —1, and
3m — /m(5bm — 8)
dy = — ao,
0 4m2\f
dop, = m acAy for k=1,...,m—2,
m — /m(bm — 8)

m(1l —m)+ (1+m)/m(5m — 8)

dopm— g,
am2 dm+/m(m + 2)

o
d2m - 5
By (3.5) and (3.6) we obtain cog41 =0 for k=0,--- ,m — 1, and
o a0
0 \/57
2(m — 2k —
Cop, = f(m )(m + /m(5m 8))a0 for k=1,...,m—1,
4m(2 —m)
Com = —Cp.

Then expressions (3.1) imply

2m—5—|—\/ (5m — 8

o= 3/m(5m — 8)
10k + 2k* — 4m — 3km? + m?
a2k = ECH
4k3( 1) +m(m? — 4)(2m + 1) + k(4 + 20m — 6m?)
3(m? —4)\/m(5bm — 8) ’
0420'2
azm = — D)

We obtain the nonnegative cosine polynomial (2.24) and, by (3.2), the nonnegative
sine polynomial (2.10).

5.2. The extrema of b,,_5 for n = 2m + 2.

Proof of Lemma 1. Simple analysis shows that r,,(y) has two positive points of
extrema and the values of r,,(y) at these points are negative and positive, respec-
tively. Since 7,,(0) > 0 and 7,,(y) is negative for sufficiently large y, then 7, (y)
has three positive zeros. On the other hand, y(co) = (3 4 v/5)/2 is strictly greater
than the point of local maximum of r,, and r,(y(c0)) < 0. This implies the in-
equality y(m) < y(o0). It is clear that r,,(y) converges uniformly on the compacts
of the complex plane to the polynomial —y3 + 4y2 — 4y + 1. Then by a theorem of
Hurwitz (see Theorem 3.45 on p. 119 in [15]) the sequence of the largest zeros y(m)
of 7, (y) converges to the largest zero (3++/5)/2 of —y3 +4y? —4y+1 as m diverges.
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Proof of Theorem 4. By (3.3), (3.5) and (3.7) we obtain

by oy = zmz( dordam—1 n dordam+1 )
! N2 Q0 QA1 28T Qg2 e /Gt /e

+Zm: (_1)2kd2kd2m+1 . dopy1dom
5—0 2kq1q2 -+ e /Brr 1/ T 2Fq1G2 Qo /Tr 1 /Dt
2i Bdordom—1 + (v + (_1)2ka>d2kd2m+1 + adap+1dam

)

P (k+1)(k+2)
where «, § and « are defined by (4.1), (4.5), and (5.1). Thus, the symmetric matrix
Dgf_)2 associated with the quadratic form which represents b,,_5 is
0 e1 0 (a+vAn-1 - (y—a)Ag
el 0 es 0 e 0

0 €9 0 ﬁAmfl e BAO

(a+v)A1 0 A
0 OéAo 0
(v—a)do 0 B4

where e; = (2a + 7)A,, and e; = a@A,,—1 + BA,,. Calculations show that the
8

det(D\ — M) = X7, (X2),
where the polynomial 7,,(y) is defined in Lemma 1. The statement of Lemma 1
completes the proof of Theorem 4.

characteristic polynomial of D, is

6. PROOF OF THE CONVERGENCE

In order to establish Theorems 5, 6, and 7 we have to prove that each K,, ;(6), j =
1,2,3, is a positive summability kernel. It follows from the way K, ;(f) were
constructed that they are nonnegative. Obviously, they are also even and properly
normalized. Thus all we need to prove is that, for j = 1,2,3, {K, ;(#)} converge
locally uniformly to zero in (0, 27).

Theorem 10. The sequences {K, ;j(0)}>2,, j =1,2,3, defined as in the paragraph
before the statement of Theorem 5 are sequences of positive summability kernels.

Proof. By differentiation of the well-known formulas

” cos _ 1 sin((2n+1)/2)0
kz::l ke2<1+ sin(0/2) )

and

sin(6/2) ’

we obtain closed-form expressions for the sums >, _, k” coskf, v = 1,2,3. Then
expanding the cosine polynomials in terms of linear combinations of the latter sums
we obtain the closed-form representations of the kernels K, ;(6):

3((n + 2) sin(n/2)0 — nsin((20 + no)/2)?
dn(n + 1)(n + 2) sin*(6/2)

. sin kO = sin(n/2)@sin((n +1)/2)0

K,1(00) =

)
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3
Kna(0) = 4(n + 1)(n +2)(2n + 3) sin?(6/2)

x {n®+3n+3—(n®+3n+2)cosf — (n+2)cos(n+1)0
+cos(n +2)0 4+ ncos(n + 2)6) }

and
2 — cosnb — cos(n+ 1)6

(4n + 2)sin*(6/2)
Then we obtain immediately the estimates

Kn,B(g) =

) 3(n+1)
sin(0/2)K,1(0) < n(n+2)
. _ 3n+2)
sin’(6/2)Kn2(6) < 2(n+1)(2n+3)’
and
) 1
81112(9/2)[(,1,3(9) < -

The fact that, for every j = 1,2,3 and every positive integer n, K, ;(6), j =
1,2,3, are even functions yields the local uniform convergence of the sequences
{K,;(0)}2, in (0,27). >

7. SOME GRAPHS
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FIGURE 1. The graphs of the function f(6) = (7 —6)/2 and of the
sine polynomials (2.11) and (2.12) for n = 60.



24

DIMITAR K. DIMITROV AND CLINTON A. MERLO

0.5 1 1.5 2 2.5 3

FIGURE 2. The graphs of the function f(6) = (7 —0)/2 and of the
sine polynomials (2.11) and (2.13) for n = 60.
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FIGURE 3. The graphs of Fejér’s kernel (1.1) and of the cosine
polynomials (2.14) and (2.17) for n = 15.
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FIGURE 4. The graphs of Fejér’s kernel (1.1) and of the cosine
polynomial (2.20) for n = 15.
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