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Abstract. An extremal problem for the coefficients of sine polynomials, which
are nonnegativein [0, π], posed and discussed by Rogosinski and Szegő is un-
der consideration. An analog of the Fejér-Riesz representation of nonnegative-
general trigonometric and cosine polynomials is proved for nonnegativesine
polynomials. Various extremal sine polynomials for the problem of Rogosin-
ski and Szegő are obtained explicitly. Associated cosine polynomials kn(θ)
are constructed in such a way, that {kn(θ)} are summability kernels. Thus,
the Lp, pointwise and almost everywhere convergence of the corresponding
convolutions is established.

1. Introduction

Among the various reasons for the interest in the problem of constructing non-
negativetrigonometric polynomials are: the Gibbs phenomenon [19, Chapter II,
§9], univalent functions and polynomials [8], positive Jacobi polynomial sums [3],
orthogonal polynomials on the unit circle [18], zero-free regions for the Riemann
zeta-function [1, 2], just to mention a few.

Our interest in this subject comes from the classical Approximation Theory. In
this paper we construct some new positive summability kernels. Recall that the
sequence {kn(θ)} of even, nonnegativecontinuous 2π-periodic functions is called an
even positive kernel if kn(θ) are normalized by (1/2π)

∫ π

−π
kn(θ)dθ = 1 and they

converge to zero in any closed subset of (0, 2π). It is classically known that the
convolutions of such kernels with 2π-periodic functions f ∈ Lp[−π, π] converge to
f in the Lp-norm, for 1 ≤ p ≤ ∞. To the best of our knowledge, Fejér [6] was the
first to construct such a kernel. He proved that

(1.1) Fn(θ) = 1 + 2
n∑

k=1

(
1− k

n + 1

)
cos kθ

are nonnegative, and established the uniform convergence of the corresponding
convolutions with continuous functions. These convolutions are nothing but the
Cesàro means of the Fourier series. Jackson [10, 11] used the kernel Jn(θ) = F 2

n(θ)
to prove his celebrated approximation theorem.

The basic tool for constructing nonnegativetrigonometric polynomials T (θ) is
Fejér and Riesz’ (see [7]) theorem which states that T (θ) is nonnegativeif and only
if there exists an algebraic polynomial R(z), such that T (θ) = |R(eiθ)|2. However,
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most of the positive summability kernels turn out to be solutions of some extremal
problems for the coefficients of T (θ). Fejér’s kernel (1.1) itself is the only non-
negativecosine polynomial of the form 1 + 2

∑n
k=1 ak cos kθ ≥ 0 with the maximal

possible sum of its coefficients. A nice simple proof of Jackson’s theorem in Rivlin
[12, Chapter I] is based on the nonnegativecosine polynomial whose first coeffi-
cient a1 is the largest possible, provided a0 = 1. This polynomial was determined
explicitly by Fejér [7].

Szegő [14] and Egerváry and Szász [5] extended this result of Fejér, determining
the maximums of the means

√
a2

k + b2
k, for k = 1, 2, . . . , n, of nonnegativetrigono-

metric polynomials whose coefficient a0 is fixed to be 1. Their estimates yield lower
and upper limits for the coefficients ak of the nonnegativecosine polynomial

1 +
n∑

k=1

ak cos kθ.

In all these cases the corresponding extremal polynomials were found explicitly.
However, very little is known about the extremal values of the coefficients of the
nonnegativesine polynomials.

Since sine polynomials are odd functions, in what follows we shall call

Sn(θ) =
n∑

k=1

bk sin kθ

a nonnegativesine polynomial if Sn(θ) ≥ 0 for every θ ∈ [0, π]. It is clear that, if
Sn(θ) is nonnegative, then b1 ≥ 0 and b1 = 0 if and only if Sn is identically zero.
Motivated by the results for the general trigonometric and for the cosine polynomi-
als described above and bearing in mind this observation about b1, Rogosinski and
Szegő [13] considered the following extremal problem for nonnegativesine polyno-
mials:

Determine the minimum and maximum values of bk provided that the sine poly-
nomial Sn(θ) is in

Sn =

{
Sn(θ) = sin θ +

n∑

k=2

bk sin kθ : Sn(θ) ≥ 0 for θ ∈ [0, π]

}
.

For each of these values, find the extremal sine polynomial which belongs to Sn and
whose coefficient bk coincides with the corresponding extremal value.

Although Rogosinski and Szegő suggested two methods for obtaining the extrema
of the moments bk, they found the minimal and maximal values only for b2, b3, bn−1

and bn. Moreover, in none of the cases the corresponding extremal sine polynomials
were determined explicitly.

In this paper we develop a method of solving the above stated problem. The basic
tool is a general representation of nonnegativesine polynomials. Note that Fejér
and Riesz’ theorem implies a representation of nonnegativecosine polynomials (see
Lemma 2 below). However, to the best of our knowledge, no similar representation
of nonnegativesine polynomial was known. Due to the complicated nature of the
problem, we apply the method to find the extremal polynomials, associated with
the minima and maxima of bn, bn−1, and bn−2.

The results containing a variety of nonnegativesine and cosine polynomials are
stated in the next section. We formulate and prove only some of the possible
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consequences of the main results. We do not include, for example, the nonneg-
ativetrigonometric polynomials which are in the convex hulls of the polynomials
that we obtain. The remark which follows the statements of Vietoris’ [17] results
in Askey and Steinig’s paper [4] gives an idea how new nonnegativetrigonometric
polynomials can be generated by a known sequence of nonnegativetrigonometric
polynomials. Our method is developed in Section 3. The extremal problems for
bn−1 and for bn are solved in Section 4. In Section 5 the minimal and the maximal
values of bn−2 are determined. For odd n, the corresponding extremal polynomials
are constructed. The limit behaviour of the extremal values of bn−2, for even n, is
established. In Section 6 we prove that some of the sequences of cosine polynomials
obtained are in fact positive summability kernels. The graphs of some of the non-
negativetrigonometric polynomials constructed in this paper are shown in Section
7.

2. Statement of results.

Theorem 1. Let n = 2m+2 be a even positive integer. Then for every Sn(θ) ∈ Sn:

(i) −m + 1
m + 2

≤ bn ≤ m + 1
m + 2

.

The equality bn = (m + 1)/(m + 2) is attained only for the nonnegativesine
polynomial
(2.1)

m∑

k=0

(
(m + k + 2)(m− k + 1)

(m + 1)(m + 2)
sin(2k + 1)θ +

(k + 1)2

(m + 1)(m + 2)
sin(2k + 2)θ

)
.

The equality bn = −(m + 1)/(m + 2) is attained only for the nonnegativesine poly-
nomial
(2.2)

m∑

k=0

(
(m + k + 2)(m− k + 1)

(m + 1)(m + 2)
sin(2k + 1)θ − (k + 1)2

(m + 1)(m + 2)
sin(2k + 2)θ

)
.

(ii) − m

m + 2
≤ bn−1 ≤ 1.

The equality bn−1 = 1 is attained only for the nonnegativesine polynomials

(2.3) sin θ +
m∑

k=1

(2pq sin 2kθ + sin(2k + 1)θ) + pq sin(2m + 2)θ,

where the parameters p and q satisfy p2 + q2 = 1.
The equality bn−1 = −m/(m + 2) is attained only for the nonnegativesine polyno-
mials
(2.4)

sin θ +
m∑

k=1

{
2pq

(
1− 2k2

m(m + 2)

)
sin 2kθ +

(
1− 2k(k + 1)

m(m + 2)

)
sin(2k + 1)θ

}

− pq sin(2m + 2)θ,

where p and q satisfy the relation p2 + q2 = 1.



4 DIMITAR K. DIMITROV AND CLINTON A. MERLO

An interesting nonnegativesine polynomial is
m∑

k=0

(m + k + 2)(m− k + 1)
(m + 1)(m + 2)

sin(2k + 1)θ,

which is a convex combination of (2.1) and (2.2). Observe that the extremal poly-
nomials (2.3) and (2.4) depend on a parameter. Their convex combination also has
an intriguing form.

Theorem 2. Let n = 2m+1 be an odd positive integer. Then for every Sn(θ) ∈ Sn

(i)
−m

m + 2
≤ bn ≤ 1.

The equality bn = 1 is attained only for the nonnegativesine polynomial

(2.5)
m∑

k=0

sin(2k + 1)θ.

The equality bn = −m/(m + 2) is attained only for

(2.6)
m∑

k=0

(
(1− 2k(k + 1)

m(m + 2)
) sin(2k + 1)θ

)
.

(ii) −1 ≤ bn−1 ≤ 1.

The equality bn−1 = 1 is attained only for the nonnegativesine polynomial

(2.7)
2m∑

k=1

sin kθ +
1
2

sin(2m + 1)θ.

The equality bn−1 = −1 is attained only for the nonnegativesine polynomial

(2.8)
2m∑

k=1

(−1)k+1 sin kθ +
1
2

sin(2m + 1)θ.

It is worth noting the extremal property of the sine polynomial (2.5). Another
interesting observation is that the polynomial (2.6) coincides with the polynomial
(2.4) if p = 0 or q = 0.

Theorem 3. Let n = 2m + 1, m ≥ 2 be an odd positive integer. Then for every
Sn(θ) ∈ Sn

−m + 4−
√

m(5m− 8)
2(m + 2)

≤ bn−2 ≤ 1 +
√

5
2

.

The equality bn−2 = (1+
√

5)/2 is attained only for the nonnegativesine polynomial

(2.9)
sin θ +

m−2∑

k=1

(
5 + 2

√
5

5

)
sin(2k + 1)θ

+

(
1 +

√
5

2

)
sin(2m− 1)θ +

(
5 +

√
5

10

)
sin(2m + 1)θ.
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The equality bn−2 = (−m + 4 −
√

m(5m− 8))/(2m + 4) is attained only for the
nonnegativesine polynomial

(2.10)

sin θ +
m−2∑

k=1

(
4 + 2k + 2k2 −m2

m2 − 4

)
sin(2k + 1)θ

−
m−2∑

k=1

(
2(2k(k + 1)− 2(k2 + k + 2)m + m3)

(m2 − 4)
√

m(5m− 8)

)
sin(2k + 1)θ

+

(
4−m−

√
m(5m− 8)

2(m + 2)

)
sin(2m− 1)θ

− m

2m + 4

(
1 +

(m− 4)√
m(5m− 8)

)
sin(2m + 1)θ.

In order to formulate our result concerning the extremal values of bn−2 for the
case where n is even we need the following technical result:

Lemma 1. For every positive integer m ≥ 2 the cubic polynomial

rm(y) = −y3 +
4(m2 + m + 2)

(m + 2)2
y2 − 4(m2 −m + 1)

(m + 2)2
y +

(m− 1)2

(m + 2)2

has three positive zeros. Moreover, the largest zero y(m) of rm(y) does not exceed
y(∞) := (3 +

√
5)/2 and y(m) → y(∞) as m diverges.

Theorem 4. Let n = 2m + 2, m ≥ 2 be an even positive integer and, let y(m) be
defined as in Lemma 1. Then for every Sn(θ) ∈ Sn:

|bn−2| ≤
√

y(m).

In particular,
|bn−2| < ((3 +

√
5)/2)1/2.

Employing a result of Turán [16, Theorem I] we obtain a consequence of Theorem
1, Theorem 2, and Theorem 3 which provides interesting analogues of the classical
result of Fejér, Jackson, and Gronwall which states that, for any positive integer n,
the sine polynomial

(2.11)
n∑

k=1

sin kθ

k

is positive in (0, π).

Corollary 1. The sine polynomials

(2.12)
n∑

k=1

(
1
k
− k − 1

n(n + 1)

)
sin kθ,

(2.13)
n∑

k=1

(
1
k
− k − 1

n2 − 1

)
sin kθ,

n∑

k=1

1
k

sin kθ − 1
2n

sin nθ,
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sin θ +

(
5 + 2

√
5

5

)
n−2∑

k=2

1
k

sin kθ +

(
1 +

√
5

2(n− 1)

)
sin(n− 1)θ +

(
5 +

√
5

10n

)
sin nθ

and

sin θ +
n−2∑

k=2

(
n2 − 2n− 2k2 + 2k − 3

(n− 3)(n + 1)k

)
sin kθ

+
n−2∑

k=2

(
2(n2 − 1)(n− 3)− 4k(n− 2)(k − 1)
(n− 3)(n + 1)k

√
(n− 1)(5n− 13)

)
sin kθ

+

(
5− n−

√
(n− 1)(5n− 13)

2(n + 1)(n− 1)

)
sin(n− 1)θ

+
1− n

2n(n + 1)

(
1 +

n− 5√
(n− 1)(5n− 13)

)
sin nθ

are nonnegative.

As is seen in Figures 1 and 2, the Gibbs phenomenon of the polynomials (2.12)
and (2.13) is almost negligible in comparison with the Gibbs phenomenon of the
Fejér-Jackson-Gronwall polynomials. Moreover, (2.12) and (2.13) approximate the
function f(θ) = (π− θ)/2 uniformly on every compact subset of (0, π] much better
than (2.11) does.

The method allows us to obtain also some nonnegativecosine polynomials.

Corollary 2. The following cosine polynomials are nonnegative:

(2.14) 1 + 2
n∑

k=1

(
1− k

n + 1

)(
1− 2k(n + k + 1)

n(n + 2)

)
cos kθ,

(2.15)

1 + cos θ + 2
n∑

k=1

(
1− k

n + 1

)(
1− k

n + 2

)(
1 +

k

2n + 3

)
cos(2k)θ

+
n∑

k=1

(
1− k

n + 1

)(
1 + k

(
4(k + 1)
2n + 3

− 2k + 1
n + 2

))
cos(2k + 1)θ,

(2.16)

1− cos θ + 2
n∑

k=1

(
1− k

n + 1

)(
1− k

n + 2

)(
1 +

k

2n + 3

)
cos(2k)θ

−
n∑

k=1

(
1− k

n + 1

)(
1 + k

(
4(k + 1)
2n + 3

− 2k + 1
n + 2

))
cos(2k + 1)θ,

(2.17) 1 + 2
n∑

k=1

(
1− k

n + 1

)(
1− k

n + 2

)(
1 +

k

2n + 3

)
cos kθ,

(2.18) 1 + 2
n−1∑

k=0

((
1− k + 1/2

n + 1/2

)
cos(2k + 1)θ +

(
1− k + 1

n + 1/2

)
cos(2k + 2)θ

)
,
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(2.19) 1+2
n−1∑

k=0

((
−1 +

k + 1/2
n + 1/2

)
cos(2k + 1)θ +

(
1− k + 1

n + 1/2

)
cos(2k + 2)θ

)
,

(2.20) 1 + 2
n∑

k=1

(
1− k

n + 1/2

)
cos kθ,

(2.21)

1+
4n + 2
n + 1

pq cos θ+2
n∑

k=1

{(
1− k

n + 1

)
cos 2kθ +

(
1− 2k − n

n + 1

)
pq cos(2k + 1)θ

}
,

(2.22)

1 +
4n− 2
n + 1

pq cos θ + 2
n∑

k=1

(
1− k

n + 1

)(
1− 2k(n + k + 1)

n(n + 2)

)
cos 2kθ

+ 2
n∑

k=1

2n3 + 3n2 − 2n− 6kn2 − 12kn + 4k3 + 6k2 + 2k

n(n + 1)(n + 2)
pq cos(2k + 1)θ,

where the parameters p and q in (2.21) and (2.22) satisfy p2 + q2 = 1,

(2.23)
3 +

√
5

4
(m−1)

(
1 + 2

m−2∑

k=1

(
1− k

m− 1

)
cos kθ

)
+1+(1+

√
5)

m−2∑

k=1

cos kθ+cos mθ

and

(2.24)
m(−5 + 2m +

√
m(5m− 8))

6
√

m(5m− 8)

+
m−1∑

k=1

(
10k + 2k3 − 4m− 3km2 + m3

3m2 − 12

)
cos kθ

+
m−1∑

k=1

(
2m4 − 6km3 + m3 − 8m2 + 4k3m + 20km− 4m− 4k3 + 4k

(3m2 − 12)
√

m(5m− 8)

)
cos kθ

− m

2(m + 2)

(
1 +

m− 4√
m(5m− 8)

)
cos mθ.

The polynomial (2.17) is a convex combination of (2.15) and (2.16), and the
polynomial (2.20) is a convex combination of (2.18) and (2.19).

The explicit forms of the nonnegativecosine polynomials given by the formulas
from (2.14) to (2.20) are somehow very similar to the classical Fejér kernel (1.1).
While the coefficients of Fn(θ) approximate “linearly” the coefficients of the formal
Fourier series

(2.25) 1 + 2
∞∑

k=1

cos kθ
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of Dirac’s delta, the coefficients of our cosine polynomials, except for (2.20), provide
“quadratic”, or even “cubic”, approximations to the coefficients of (2.25). This in-
tuitive observation suggests that the above cosine polynomials may be also positive
summability kernels. The graphs of (2.14), (2.17), and (2.20) together with the
graph of Fejér’s kernel are shown in Figures 3 and 4.

In Section 6 we shall prove that the cosine polynomials (2.14), (2.17) or (2.20)
are positive summability kernels. Thus we shall establish the Lp, pointwise and
almost everywhere convergence of the corresponding convolutions

Kn(f ; x) = 1/(2π)
∫ π

−π

Kn(θ)f(x− θ)dθ.

In particular, when the kernel coincides with (2.14), (2.17) or (2.20), the convo-
lutions reduce to the approximating polynomials

Kn,1(f ;x) = a0(f)
2 +

n∑

k=1

(
1− k

n + 1

)(
1− 2k(n + k + 1)

n(n + 2)

)

×(ak(f) cos kx + bk(f) sin kx),

Kn,2(f ;x) = a0(f)
2 +

n∑

k=1

(
1− k

n + 1

)(
1− k

n + 2

)(
1 +

k

2n + 3

)

×(ak(f) cos kx + bk(f) sin kx)

and

Kn,3(f ; x) =
a0(f)

2
+

n∑

k=1

(
1− k

n + 1/2

)
(ak(f) cos kx + bk(f) sin kx),

where ak(f) and bk(f) denote the Fourier coefficients of f .

Theorem 5. For any p, 1 ≤ p ≤ ∞ and for every 2π-periodic function f ∈
Lp[−π, π] the sequences Kn,j(f ; x), j = 1, 2, 3, converge to f in Lp[−π, π].

Theorem 6. Let f be a 2π-periodic function, which is integrable in [−π, π]. If, for
x ∈ [−π, π], the limit limh→0(f(x + h) + f(x− h)) exists, then, for j = 1, 2, 3,

Kn,j(f ; x) −→ (1/2) lim
h→0

(f(x + h) + f(x− h)) as n diverges.

Theorem 7. Let f be a 2π-periodic function, which is integrable in [−π, π]. Then
Kn,j(f ; x), j = 1, 2, 3, converge to f almost everywhere in [−π, π].

It is worth mentioning that all the cosine polynomials we have constructed, some
with slight modification, are positive summability kernels. More precisely, (2.23)
and (2.24) are also positive summability kernels. In the remaining four cases,
namely when Cn(θ) is one of the cosine polynomials (2.15), (2.16), (2.18) or (2.19),
then Kn(θ) = Cn(θ/2) is a positive summability kernel. We shall omit the proofs
of these technical results.
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3. Fejér-Riesz type representation of nonnegativesine polynomials

A careful inspection of the proof of the Fejér-Riesz theorem shows that the
coefficients of any nonnegativecosine polynomial are representable in terms of real
parameters ck.

Lemma 2. Let

Cn(θ) = a0 + 2
n∑

k=1

ak cos kθ

be a cosine polynomial of order n which is nonnegativefor every real θ. Then there
exists an algebraic polynomial with real coefficients R(z) =

∑n
k=0 ckzk of degree

n such that Cn(θ) = |R(eiθ)|2. Thus, the cosine polynomial Cn(θ) of order n is
nonnegativeif and only if there exist real numbers ck, k = 0, 1, . . . , n, such that

(3.1)

a0 =
n∑

k=0

c2
k,

ak =
n−k∑
ν=0

ck+νcν for k = 1, . . . , n.

The following relation between nonnegativesine and nonnegativecosine polyno-
mials is a simple observation (see [13]).

Lemma 3. The sine polynomial of order n

Sn(θ) =
n∑

k=1

bk sin kθ

is nonnegativein [0, π] if and only if the cosine polynomial of order n− 1:

Cn−1(θ) = a0 + 2
n−1∑

k=1

ak cos kθ,

where

(3.2)
bk = ak−1 − ak+1 for k = 1, . . . , n− 2,

bn−1 = an−2,
bn = an−1,

is nonnegative.

As a consequence of the last two lemmas we obtain a parametric representation
for the coefficients of the nonnegativesine polynomials.

Lemma 4. The sine polynomial of order n:

Sn(θ) =
n∑

k=1

bk sin kθ
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is nonnegativeif and only if there exist real numbers c0, . . . , cn−1, such that

(3.3)

b1 =
n−1∑
ν=0

c2
ν −

n−3∑
ν=0

cνcν+2,

bk =
n−k∑
ν=0

ck+ν−1cν −
n−k−2∑

ν=0

ck+ν+1cν , for k = 2, . . . , n− 2,

bn−1 = c0cn−2 + c1cn−1,
bn = c0cn−1.

The principal idea is to canonize the quadratic form, which represents b1 in order
to obtain sum of squares. The process of canonization begins as follows:

b1 =
n−1∑

k=0

c2
k −

n−3∑

k=0

ckck+2

=
(

c0 − 1
2
c2

)2

+
(

c1 − 1
2
c3

)2

+
3
4
c2
2 +

3
4
c2
3 +

n−1∑

k=4

c2
k −

n−3∑

k=2

ckck+2

=
(

c0 − 1
2
c2

)2

+
(

c1 − 1
2
c3

)2

+

(√
3

2
c2 − 1√

3
c4

)2

+

(√
3

2
c3 − 1√

3
c5

)2

+
2
3
c2
4 +

2
3
c2
5 +

n−1∑

k=6

c2
k −

n−3∑

k=4

ckck+2.

It is not difficult to see that if n is odd, n = 2m + 1, then b1 can be written as a
sum of squares in the form

b1 =
m−2∑

k=0

{(√
qk+1c2k − c2k+2

2√qk+1

)2

+
(√

qk+1c2k+1 − c2k+3

2√qk+1

)2
}

+
(√

qmc2m−2 − c2m

2
√

qm

)2

+ qmc2
2m−1 + qm+1c

2
2m,

and if n is even, n = 2m + 2, then b1 is given by

b1 =
m−1∑

k=0

{(√
qk+1c2k − c2k+2

2√qk+1

)2

+
(√

qk+1c2k+1 − c2k+3

2√qk+1

)2
}

+qm+1c
2
2m + qm+1c

2
2m+1,

where the parameters qk, k = 1, . . . ,m + 1, are determined by the recurrence
relation q1 = 1, qk+1 = 1− 1/(4qk). The solution of this recurrence equation is

(3.4) qk =
k + 1
2k

.

We can formulate our next technical lemma:

Lemma 5. Let the sequence {qk} be defined by (3.4). Then, for every positive
integer n, the coefficient b1 can be represented as a sum of squares

b1 =
n−1∑

k=0

d2
k,
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where, for n odd, n = 2m + 1, the parameters dk and ck are related by

√
qkc2k−2 − 1

2
1√
qk

c2k = d2k−2, k = 1, . . . ,m,

√
qkc2k−1 − 1

2
1√
qk

c2k+1 = d2k−1, k = 1, . . . ,m− 1,
√

qm+1c2m = d2m,√
qmc2m−1 = d2m−1,

and for n even, n = 2m + 2, dk and ck are related by

√
qkc2k−2 − 1

2
1√
qk

c2k = d2k−2, k = 1, . . . , m,

√
qkc2k−1 − 1

2
1√
qk

c2k+1 = d2k−1, k = 1, . . . , m,
√

qm+1c2m = d2m,√
qm+1c2m+1 = d2m+1.

Solve the above systems of linear equations with respect to ck. Bearing in mind
the explicit form (3.4) of qk, k = 1, . . ., and setting qk+1 · · · qk+ν = 1 for ν = 0, we
obtain an explicit representation of ck in terms of a linear combination of the new
parameters dj , j = k, k + 2, k + 4, . . .. Thus c2k, k = 0, 1, . . . ,m, are given by

(3.5)
c2k =

m−k∑
ν=0

1
2ν

(qk+1 · · · qk+ν
√

qk+ν+1)−1d2k+2ν

= (k + 1)
m−k∑
ν=0

√
2

(k + ν + 1)(k + ν + 2)
d2k+2ν ,

while for the parameters c2k+1 we have

(3.6)
c2k+1 =

m−k−1∑
ν=0

1
2ν

(qk+1 · · · qk+ν
√

qk+ν+1)−1d2k+2ν+1

= (k + 1)
m−k−1∑

ν=0

√
2

(k + ν + 1)(k + ν + 2)
d2k+2ν+1,

if n = 2m + 1, or

(3.7)
c2k+1 =

m−k∑
ν=0

1
2ν

(qk+1 · · · qk+ν
√

qk+ν+1)−1d2k+2ν+1

= (k + 1)
m−k∑
ν=0

√
2

(k + ν + 1)(k + ν + 2)
d2k+2ν+1,

if n = 2m + 2.
Lemma 4, Lemma 5, and relations (3.5), (3.6), and (3.7) yield the desired para-

metric representation of the coefficients of nonnegativesine polynomials.

Theorem 8. The sine polynomial

Sn(θ) =
n∑

k=1

bk sin kθ
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is nonnegativefor θ ∈ [0, π] if and only if there exist real parameters d0, . . . , dn−1,
such that b1 = d2

0 + · · ·+ d2
n−1 and

(3.8) bk =
n−1∑

i=0

δ
(k)
i,i d2

i + 2
∑

0≤i<j≤n−1

δ
(k)
i,j didj for k = 1, . . . , n− 1,

where the coefficients δ
(k)
i,j are explicitly obtained by the relations (3.3), (3.5), (3.6)

and (3.7).

Let Dk = (δ(k)
i,j )n−1

i,j=0 be a symmetric matrix associated with the quadratic form
(3.8). Denote by d the vector (d0, . . . , dn−1)T . Then

bk = dT Dkd.

By the Rayleigh-Ritz theorem (see Theorem 4.2.2 on p. 176 in Horn and Johnson
[9]) we obtain the main result in this section.

Theorem 9. Let λk,min and λk,max be the smallest and the largest eigenvalues of
Dk. If Sn(θ) ∈ Sn, then

λk,min ≤ bk ≤ λk,max.

Moreover, the equality bk = λk,max is attained if and only if Sn(θ) is a sine
polynomial in Sn whose coefficients bi, i = 2, . . . , n, are obtained by the formulas

bi = dT
k,maxDidk,max,

where dk,max is an eigenvector with unit length, associated with the eigenvalue
λk,max.

Similarly, the equality bk = λk,min is attained if and only if Sn(θ) is a sine
polynomial in Sn, whose coefficients bi, i = 2, . . . , n, are obtained by the formulas

bi = dT
k,minDidk,min,

where dk,min is an eigenvector with unit length, associated with the eigenvalue
λk,min.

4. Extremal polynomials for bn and bn−1

In this section we find the extremal values and the corresponding extremal poly-
nomials for the coefficients bn and bn−1. It is worth mentioning that the extremal
values as well as the associated extremal polynomials depend on the parity of n.
Thus, for any coefficient we consider four cases: the problems of determining the
minimum and the maximum and, for each of these, the cases of even and odd n.

4.1. The minimum and maximum of bn for n = 2m + 1 and the extremal
polynomials associated.

On using the relations (3.3), (3.5) and (3.6) we obtain

bn =
m∑

k=0

d2kd2m

2kq1q2 · · · qk
√

qk+1
√

qm+1
,

where qk is given by (3.4). Since

2kq1q2 · · · qk
√

qk+1
√

qm+1 =

√
m + 2
m + 1

√
(k + 1)(k + 2)

2
,
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then

bn =

√
m + 1
m + 2

m∑

k=0

2d2kd2m√
(k + 1)(k + 2)

.

Set

(4.1) α :=

√
m + 1
m + 2

and

(4.2) Aj :=
1√

(j + 1)(j + 2)
, j = 0, . . . ,m.

Then the symmetric matrix D
(o)
n associated with the quadratic form which rep-

resents bn is

D(o)
n =




2αAm 0 αAm−1 · · · αA1 0 αA0

0 0 0 · · · 0 0 0
αAm−1 0 0 · · · 0 0 0

...
...

...
αA1 0 0

0 0 0
αA0 0 0




.

Hence the characteristic polynomial of D
(o)
n is

det(D(o)
n − λI) = (−λ)2m

{
(α2A2

0 + · · ·+ α2A2
m−1)/λ + 2αAm − λ

}

= (−λ)2m−1

{
λ2 − 2

α√
(m + 1)(m + 2)

λ− α2 m

m + 1

}
.

Since the smallest and the largest zeros of this polynomial are −m/(m + 2) and
1, then, by Theorem 9,

− m

m + 2
≤ bn ≤ 1.

In order to determine the extremal polynomial associated with bn,max we need
to find first an eigenvector d(o)

n,max of D
(o)
n , associated with the eigenvalue λ = 1,

such that

(4.3) d2
0 + · · ·+ d2

2m = 1.

From the homogeneous linear system



2αAm − 1 0 αAm−1 · · · αA1 0 αA0

0 −1 0 · · · 0 0 0
αAm−1 0 −1 0 0 0

...
. . .

...
...

αA1 0 0 · · · −1 0 0
0 0 0 · · · 0 −1 0

αA0 0 0 · · · 0 0 −1







d2m

d2m−1

d2m−2

...
d2

d1

d0




= 0

for the coordinates of d(o)
n,max, we obtain d2k = αAkd2m and d2k+1 = 0 for k =

0, . . . , m − 1. A substitution of these values of dj in (4.3) yields d2m = ±((m +
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2)/(2m + 2))1/2. Thus the desired eigenvectors are ±d(o)
n,max, where

d(o)
n,max =

1√
2

(A0, 0, A1, 0, . . . , Am−2, 0, Am−1, 0, 1/α)T
.

Observe that both the coefficients ak and bk are expressed as quadratic forms of
d0, d1, . . . , d2m. Thus any choice of the sign of the eigenvector will imply the same
extremal polynomial. We prefer working with d(o)

n,max. From (3.5) and (3.6) we
obtain c2k+1 = 0 for k = 0, . . . , m− 1, and

c2k = (k + 1)
m−k∑
ν=0

√
2

(k + ν + 1)(k + ν + 2)
d2k+2ν

=
k + 1
m + 1

+ (k + 1)
m−k−1∑

ν=0

1
(k + ν + 1)(k + ν + 2)

= 1.

Then the expressions (3.1) yield a2k = m + 1− k for k = 0, . . . ,m, and a2k+1 = 0
for k = 0, . . . , m− 1. Thus we obtained the classical nonnegativecosine polynomial
(1.1). On using (3.2) we obtain (2.5).

The procedure of determining an extremal sine polynomial associated with bn,min

is similar. First we find the eigenvectors of D
(o)
n , associated with the smallest

eigenvalue λ = −m/(m + 2). They are ±dn,min, where

dn,min =

√
m + 2
2m

(A0, 0, A1, 0, . . . , 0, Am−1, 0,−mAm)T
,

and we choose the positive sign. Thus, d2k+1 = 0, d2m = −
√

m/(2m + 2), and

d2k+2ν =

√
m + 2
2m

1
(k + ν + 1)(k + ν + 2)

for k + ν = 0, . . . ,m− 1.

Then, by (3.6) we obtain c2k+1 = 0, and by (3.5) we get

c2k = (k + 1)
m−k∑
ν=0

√
2

(k + ν + 1)(k + ν + 2)
d2k+2ν

= − k + 1
m + 1

√
m

m + 2
+ (k + 1)

√
m

m + 2

m−k−1∑
ν=0

1
(k + ν + 1)(k + ν + 2)

=
√

m

m + 2
m− 2k

m
for k = 0, . . . , m.

Hence a2k+1 = 0 and the general formula for a2k in terms of c0, c2, . . . , c2m yields

a2k =
1

m(m + 2)

m−k∑

j=0

(m− 2j)(m− 2j − 2k)

=
(m− k + 1)(m2 + 2m− 2mk − 2k2 − 2k)

3m(m + 2)
.

We arrived at the nonnegativecosine polynomial (2.14). Now we need to express
the coefficients bk in terms of ak by (3.2). Obviously, b2k = 0 and

b2k+1 = 1− 2k(k + 1)
m(m + 2)

.
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This gives the nonnegativesine polynomial (2.6).

4.2. The minimum and maximum of bn for n = 2m + 2 and the extremal
polynomials associated.

Relations (3.3), (3.5), and (3.7) imply

bn =
m∑

k=0

d2kd2m+1

2kq1q2 · · · qk
√

qk+1
√

qm+1
.

Since

2kq1q2 · · · qk
√

qk+1
√

qm+1 =

√
m + 2
m + 1

√
(k + 1)(k + 2)

2
,

then

bn =

√
m + 1
m + 2

m∑

k=0

2d2kd2m+1√
(k + 1)(k + 2)

.

Hence the symmetric matrix D
(e)
n associated with the quadratic form which

represents bn is

D(e)
n =




0 αAm 0 · · · αA1 0 αA0

αAm 0 0 · · · 0 0 0
...

...
...

αA1 0 0
0 0 0

αA0 0 0




,

where α and Aj are defined by (4.1) and (4.2). The characteristic polynomial of
D

(e)
n is

det(D(e)
n − λI) = (−λ)2m+1

{
(α2A2

0 + · · ·+ α2A2
m−1 + α2A2

m)/λ− λ
}

= (−λ)2m

{
λ2 − α2 m + 1

m + 2

}
.

Since the smallest and the largest zeros of this polynomial are −(m+1)/(m+2)
and (m + 1)/(m + 2), then

−m + 1
m + 2

≤ bn ≤ m + 1
m + 2

.

First we obtain an eigenvector d(e)
n,max of D

(e)
n , associated with the eigenvalue

λ = (m + 1)/(m + 2), such that

(4.4) d2
0 + · · ·+ d2

2m+1 = 1.

Solve the homogeneous linear system (D(e)
n − ((m + 1)/(m + 2))I)d(e)

n,max = 0
we obtain d2k = ((m + 2)/(m + 1))αAkd2m+1, k = 0, . . . , m, and d2k+1 = 0,
k = 0, . . . , m − 1. Substitute these values of dj in (4.4) to get d2m+1 = ±√2/2.
Thus the eigenvectors we need are ±d(e)

n,max, where

d(e)
n,max =

1√
2α

(A0, 0, A1, 0, . . . , Am, α)T
.
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We shall work with d(e)
n,max. By (3.5) and (3.7), we obtain

c2k =
m− k + 1

m + 2

√
m + 2
m + 1

for k = 0, . . . , m,

and

c2k+1 =
k + 1
m + 1

√
m + 1
m + 2

for k = 0, . . . ,m.

Then formulas (3.1) imply that

a2k =
(m− k + 1)(2m2 −mk + 7m− k2 − k + 6)

3(m + 1)(m + 2)
and

a2k+1 =
(2m3 + 9m2 + 13m− 2k3 − 3k2 − k + 6)

6(m + 1)(m + 2)
.

Thus we obtained the nonnegativecosine polynomial (2.15).On using relations
(3.2) we obtain the nonnegative sine polynomial (2.1).

In order to determine the extremal sine polynomial associated with bn,min, we
find the eigenvectors of D

(e)
n , associated with the smallest eigenvalue λ = −(m +

1)/(m + 2). They are ±d(e)
n,min, where

d(e)
n,min = − 1√

2α
(A0, 0, A1, 0, . . . , Am,−α)T

,

and we choose the positive sign. Then formulas (3.5) and (3.7) yield

c2k = −m− k + 1
m + 2

√
m + 2
m + 1

and c2k+1 =
k + 1
m + 1

√
m + 1
m + 2

for k = 0, . . . , m. Then,

a2k =
(m− k + 1)(2m2 −mk + 7m− k2 − k + 6)

3(m + 1)(m + 2)
and

a2k+1 = − (2m3 + 9m2 + 13m− 2k3 − 3k2 − k + 6)
6(m + 1)(m + 2)

.

Thus we obtain the nonnegativecosine polynomial (2.16). On using the relations
(3.2) we obtain the nonnegative sine polynomial (2.2).

4.3. The minimum and maximum of bn−1 for n = 2m+1 and the extremal
polynomials associated.

In this case

bn−1 =
m∑

k=0

d2kd2m−1

2kq1q2 · · · qk
√

qk+1
√

qm
+

m−1∑

k=0

d2k+1d2m

2kq1q2 · · · qk
√

qk+1
√

qm+1

=
√

m

m + 1

m∑

k=0

2d2kd2m−1√
(k + 1)(k + 2)

+

√
m + 1
m + 2

m−1∑

k=0

2d2k+1d2m√
(k + 1)(k + 2)

.

Setting

(4.5) β :=
√

m

m + 1
,
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we obtain the symmetric matrix

D
(o)
n−1 =




0 βAm + αAm−1 0 · · · αA0 0
βAm + αAm−1 0 βAm−1 · · · 0 βA0

0 βAm−1

αAm−2 0
...

...
0 βA1

αA0 0
0 βA0




associated with the quadratic form which represents bn−1. Hence the characteristic
polynomial of D

(o)
n−1 is

det(D(o)
n−1 − λI) = (−λ)2m−3

{
λ4 − 2m2 + 2m + 2

(m + 1)(m + 2)
λ2 +

m(m− 1)
(m + 1)(m + 2)

}
,

whose smallest and largest zeros are ±1. By Theorem 9, we have

|bn−1| ≤ 1.

In order to determine the extremal polynomial associated with bn−1,max we need
to find an eigenvector d(o)

n−1,max of D
(o)
n−1, associated with the eigenvalue λ = 1, such

that d2
0 + · · ·+ d2

2m = 1. For the eigenvector d(o)
n−1,max, we obtain

d(o)
n−1,max =

1
2

(
A0, A0, . . . , Am−2, Am−2, Am−1,

√
m + 1

m
,

√
m + 2
m + 1

)T

.

The relations (3.5) and (3.6) yield ck =
√

2/2 for k = 0, . . . , 2m. Then the
expressions (3.1) imply a2k = m − k + 1/2 for k = 0, . . . , m and a2k+1 = m − k
for k = 0, . . . ,m − 1. We obtain the nonnegativecosine polynomial (2.18) and, by
(3.2), the positive sine polynomial (2.7).

The extremal sine polynomial associated with bn−1,min is obtained through the
eigenvectors of D

(o)
n−1, associated with the smallest eigenvalue λ = −1. They are

±d(e)
n,min, where

d(o)
n−1,min =

1
2

(
A0,−A0, . . . , Am−2,−Am−2, Am−1,−

√
m + 1

m
,

√
m + 2
m + 1

)T

.

The relations (3.5) and (3.6) yield c2k =
√

2/2 for k = 0, . . . , m and c2k+1 =
−√2/2 for k = 0, . . . , m− 1. Then the expressions (3.1) imply a2k = m− k + 1/2
for k = 0, . . . , m and a2k+1 = −(m − k) for k = 0, . . . ,m − 1. Thus we obtain the
nonnegativecosine polynomial (2.19). Then, by (3.2), we obtain the nonnegative
sine polynomial (2.8).

4.4. The minimum and maximum of bn−1 for n = 2m+2 and the extremal
polynomials associated.
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Since in this case

bn−1 =
m∑

k=0

(
d2kd2m

2kq1q2 · · · qk
√

qk+1
√

qm+1
+

d2k+1d2m+1

2kq1q2 · · · qk
√

qk+1
√

qm+1

)

=

√
m + 1
m + 2

m∑

k=0

2(d2kd2m + d2k+1d2m+1)√
(k + 1)(k + 2)

,

then the symmetric matrix D
(e)
n−1 associated with the quadratic form which repre-

sents bn−1 is

D
(e)
n−1 =




2αAm 0 αAm−1 0 · · · αA0 0
0 2αAm 0 αAm−1 · · · 0 αA0

αAm−1 0
0 αAm−1

...
...

αA0 0
0 αA0




.

Hence the characteristic polynomial of D
(e)
n−1 is

det(D(e)
n−1 − λI) = λ2m−2

(
λ2 − 2

m + 2
λ− m

m + 2

)2

,

whose smallest and largest zeros are −m/(m + 2) and 1. Therefore

− m

m + 2
≤ bn−1 ≤ 1.

In order to determine the extremal polynomial associated with bn−1,max we need
to find first an eigenvector d(e)

n−1,max of D
(e)
n−1, associated with the eigenvalue λ = 1,

such that
d2
0 + · · ·+ d2

2m+1 = 1.

As in the previous cases, for the coordinates of the eigenvector d(o)
n−1,max, we

obtain d2m = P , d2m+1 = Q, and d2k = αPAk and d2k+1 = αQAk for k =
0, . . . , m−1, where the parameters P and Q satisfy P 2+Q2 = (m+2)/(2m+2). Now
the relations (3.5) and (3.7) yield c2k =

√
2αP and c2k+1 =

√
2αQ for k = 0, . . . , m.

Then the expressions (3.1) imply

a2k = m− k + 1 and a2k+1 =
2(m + 1)(2m− 2k + 1)

m + 2
PQ for k = 0, . . . , m.

On substituting

P =

√
m + 2
2m + 2

p and Q =

√
m + 2
2m + 2

q

we obtain the nonnegativecosine polynomial (2.21) and the relations (3.2) yield the
nonnegative sine polynomial (2.3).

The eigenvector d(e)
n−1,min of D

(e)
n−1, associated with the smallest eigenvalue λ =

−m/(m + 2) is given by d2m = P , d2m+1 = Q, and d2k = −αPAk(m + 2)/m and
d2k+1 = αQAk(m + 2)/m for k = 0, . . . , m − 1, where in this case the parameters
P and Q satisfy P 2 + Q2 = m/(2m + 2). Now the relations (3.5) and (3.7) yield
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c2k =
√

2αP (2k−m)/m and c2k+1 =
√

2αQ(2k−m)/m for k = 0, . . . , m. By (3.1)
we obtain

a2k =
(m− k + 1)(m2 − 2km + 2m− 2k2 − 2k)

3m(m + 2)
for k = 0, . . . , m,

and

a2k+1 =
2(m + 1)(4k3 + 6k2 + 2k − 2m− 12km + 3m3 − 6km2 + 2m3)

3m2(m + 2)
PQ

for k = 0, . . . , m. Substituting

P =
√

m

2m + 2
p and Q =

√
m

2m + 2
q

we obtain the nonnegativecosine polynomial (2.22) and then, by (3.2), we obtain
the nonnegative sine polynomial (2.4).

5. Extremal problems for bn−2

5.1. The minimum and maximum of bn−2 for n = 2m+1 and the extremal
polynomials associated.

Proof of Theorem 3. In this case (3.3), (3.5) and (3.6) imply

bn−2 =
m∑

k=0

(
d2kd2m−2

2kq1q2 · · · qk
√

qk+1
√

qm
+

d2kd2m

2k+1q1q2 · · · qkqm
√

qk+1
√

qm+1

)

+
m∑

k=0

(−1)2
k

d2kd2m

2kq1q2 · · · qkqm
√

qk+1
√

qm+1
+

m−1∑

k=0

d2k+1d2m−1

2kq1q2 · · · qk
√

qk+1
√

qm

=
m∑

k=0

2√
(k + 1)(k + 2)

(
βd2kd2m−2 + γd2kd2m + (−1)2

k

αd2kd2m

)

+
m−1∑

k=0

2βd2k+1d2m−1√
(k + 1)(k + 2)

,

where α and β are defined by (4.1) and (4.5) and

(5.1) γ :=
m√

(m + 1)(m + 2)
.

Thus, the symmetric matrix D
(o)
n−2 associated with the quadratic form which repre-

sents bn−2 is



2(α + γ)αAm 0 (α + γ)Am−1 + αAm · · · (γ − α)A0

0 2βAm−1 0 · · · 0
(α + γ)Am−1 + αAm 0 2βAm−1 · · · βA0

...
...

...
(α + γ)A1 0 βA1

0 βA0 0
(γ − α)A0 0 βA0




.
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Then, by straightforward calculations, we obtain the characteristic polynomial of
D

(o)
n−2 in the form

−λ2m−5 (λ− 1)
(
λ2 − λ− 1

) (
λ +

m− 1
m + 2

)(
λ2 +

m− 4
m + 2

λ− m− 2
m + 2

)
.

It is easy to see that the smallest and the largest zeros of this polynomial are

−m + 4−
√

m(5m− 8)
2(m + 2)

and
1 +

√
5

2
.

In order to determine the extremal polynomial associated with bn−2,max we have
to find an eigenvector d(o)

n−2,max of Do
n−2, associated with the eigenvalue λ = (1 +√

5)/2, such that

(5.2) d2
0 + · · ·+ d2

2m = 1.

Solve the homogeneous linear system (D(o)
n−2 − ((1 +

√
5)/2)I)d(o)

n−2,max = 0.
Set

κ :=

√
7 + 3

√
5

5 + 2
√

5
.

For the coordinates of d(o)
n−2,max we obtain d2k+1 = 0 for k = 0, . . . , m− 1, and

d0 =
κ√

2λ(1 +
√

5)
,

d2k =
1 +

√
5

4
Akκ for k = 1, . . . ,m− 2,

d2m−2 =
2m + 3 +

√
5

2
√

m(m + 1)(1 +
√

5)
κ,

d2m =
1
2

√
m + 2
m + 1

κ.

A substitution of these values of dj in (5.2) yields d2m = ±(1/2)((m + 2)/(m +
1))1/2κ. Thus the desired eigenvectors are ±d(o)

n−2,max, where

d(o)
n−2,max =

κ

2

( √
2

λ(1 +
√

5)
, 0, . . . , 0,

2m + 3 +
√

5
(1 +

√
5)

√
m(m + 1)

, 0,

√
m + 2
m + 1

)T

.

We shall work with d(o)
n−2,max. Relations (3.5) and (3.6) yield c0 = c2m = κ/

√
2

and c2k =
√

2(1 +
√

5)κ/4 for k = 1, · · · ,m− 1. Then the relations (3.1) imply

a0 = κ2(1 + (
3 +

√
5

4
)(m− 1),

a2k = κ2((
1 +

√
5

2
) + (

3 +
√

5
4

)(m− k − 1)) for k = 1, . . . , m− 1,

a2m = κ2/2 and
a2k+1 = 0 for k = 0, · · · ,m− 1.

We obtain the nonnegative cosine polynomial (2.23). On using (3.2) we obtain the
nonnegative sine polynomial (2.9).
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In order to determine the extremal sine polynomial associated with b
(o)
n−2,min

we find the eigenvector d(o)
n−2,min of D

(o)
n−2, associated with the smallest eigenvalue

λ = (−m + 4−
√

m(5m− 8))/(2m + 4).
Set

σ := β

√
1 +

m− 4√
m(5m− 8)

.

For the coordinates of d(o)
n−2,min we obtain d2k+1 = 0 for k = 0, . . . , m− 1, and

d0 = −3m−
√

m(5m− 8)
4m
√

2
ασ,

d2k =
m + 2

m−
√

m(5m− 8)
ασAk for k = 1, . . . , m− 2,

d2m−2 =
m(1−m) + (1 + m)

√
m(5m− 8)

4m
√

m(m + 2)
σ,

d2m =
σ

2
.

By (3.5) and (3.6) we obtain c2k+1 = 0 for k = 0, · · · , m− 1, and

c0 = −ασ√
2
,

c2k =
√

2(m− 2k)(m +
√

m(5m− 8))
4m(2−m)

ασ for k = 1, . . . ,m− 1,

c2m = −c0.

Then expressions (3.1) imply

a0 =
m(2m− 5 +

√
m(5m− 8)

3
√

m(5m− 8)
,

a2k =
10k + 2k3 − 4m− 3km2 + m3

3(m2 − 4)

+
4k3(m− 1) + m(m2 − 4)(2m + 1) + k(4 + 20m− 6m3)

3(m2 − 4)
√

m(5m− 8)
,

a2m = −α2σ2

2
.

We obtain the nonnegative cosine polynomial (2.24) and, by (3.2), the nonnegative
sine polynomial (2.10).

5.2. The extrema of bn−2 for n = 2m + 2.

Proof of Lemma 1. Simple analysis shows that rm(y) has two positive points of
extrema and the values of rm(y) at these points are negative and positive, respec-
tively. Since rm(0) > 0 and rm(y) is negative for sufficiently large y, then rm(y)
has three positive zeros. On the other hand, y(∞) = (3 +

√
5)/2 is strictly greater

than the point of local maximum of rm and rm(y(∞)) < 0. This implies the in-
equality y(m) < y(∞). It is clear that rm(y) converges uniformly on the compacts
of the complex plane to the polynomial −y3 + 4y2 − 4y + 1. Then by a theorem of
Hurwitz (see Theorem 3.45 on p. 119 in [15]) the sequence of the largest zeros y(m)
of rm(y) converges to the largest zero (3+

√
5)/2 of −y3+4y2−4y+1 as m diverges.
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Proof of Theorem 4. By (3.3), (3.5) and (3.7) we obtain

bn−2 =
m∑

k=0

(
d2kd2m−1

2kq1q2 · · · qk
√

qk+1
√

qm
+

d2kd2m+1

2k+1q1q2 · · · qkqm
√

qk+1
√

qm+1

)

+
m∑

k=0

(
(−1)2

k

d2kd2m+1

2kq1q2 · · · qk
√

qk+1
√

qm+1
+

d2k+1d2m

2kq1q2 · · · qk
√

qk+1
√

qm+1

)

= 2
m∑

k=0

βd2kd2m−1 + (γ + (−1)2
k

α)d2kd2m+1 + αd2k+1d2m√
(k + 1)(k + 2)

,

where α, β and γ are defined by (4.1), (4.5), and (5.1). Thus, the symmetric matrix
D

(e)
n−2 associated with the quadratic form which represents bn−2 is




0 e1 0 (α + γ)Am−1 · · · (γ − α)A0

e1 0 e2 0 · · · 0
0 e2 0 βAm−1 · · · βA0

...
...

...
(α + γ)A1 0 βA1

0 αA0 0
(γ − α)A0 0 βA0




,

where e1 = (2α + γ)Am and e2 = αAm−1 + βAm. Calculations show that the
characteristic polynomial of D

(e)
n−2 is

det(D(e)
n−2 − λI) = −λ2m−4rm(λ2),

where the polynomial rm(y) is defined in Lemma 1. The statement of Lemma 1
completes the proof of Theorem 4.

6. Proof of the convergence

In order to establish Theorems 5, 6, and 7 we have to prove that each Kn,j(θ), j =
1, 2, 3, is a positive summability kernel. It follows from the way Kn,j(θ) were
constructed that they are nonnegative. Obviously, they are also even and properly
normalized. Thus all we need to prove is that, for j = 1, 2, 3, {Kn,j(θ)} converge
locally uniformly to zero in (0, 2π).

Theorem 10. The sequences {Kn,j(θ)}∞n=1, j = 1, 2, 3, defined as in the paragraph
before the statement of Theorem 5 are sequences of positive summability kernels.

Proof. By differentiation of the well-known formulas
n∑

k=1

cos kθ =
1
2

(
−1 +

sin((2n + 1)/2)θ
sin(θ/2)

)

and
n∑

k=1

sin kθ =
sin(n/2)θ sin((n + 1)/2)θ

sin(θ/2)
,

we obtain closed-form expressions for the sums
∑n

k=1 kν cos kθ, ν = 1, 2, 3. Then
expanding the cosine polynomials in terms of linear combinations of the latter sums
we obtain the closed-form representations of the kernels Kn,j(θ):

Kn,1(θ) =
3((n + 2) sin(n/2)θ − n sin((2θ + nθ)/2)2

4n(n + 1)(n + 2) sin4(θ/2)
,
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Kn,2(θ) =
3

4(n + 1)(n + 2)(2n + 3) sin4(θ/2)
×{

n2 + 3n + 3− (n2 + 3n + 2) cos θ − (n + 2) cos(n + 1)θ
+cos(n + 2)θ + n cos(n + 2)θ)}

and

Kn,3(θ) =
2− cos nθ − cos(n + 1)θ

(4n + 2) sin2(θ/2)
.

Then we obtain immediately the estimates

sin4(θ/2)Kn,1(θ) ≤ 3(n + 1)
n(n + 2)

,

sin4(θ/2)Kn,2(θ) ≤ 3(n + 2)
2(n + 1)(2n + 3)

,

and
sin2(θ/2)Kn,3(θ) ≤ 1

n + 2
.

The fact that, for every j = 1, 2, 3 and every positive integer n, Kn,j(θ), j =
1, 2, 3, are even functions yields the local uniform convergence of the sequences
{Kn,j(θ)}∞n=1 in (0, 2π). ¤

7. Some graphs
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Figure 1. The graphs of the function f(θ) = (π−θ)/2 and of the
sine polynomials (2.11) and (2.12) for n = 60.
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Figure 2. The graphs of the function f(θ) = (π−θ)/2 and of the
sine polynomials (2.11) and (2.13) for n = 60.
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Figure 3. The graphs of Fejér’s kernel (1.1) and of the cosine
polynomials (2.14) and (2.17) for n = 15.
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Figure 4. The graphs of Fejér’s kernel (1.1) and of the cosine
polynomial (2.20) for n = 15.
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[7] L. Fejér, ‘Über trigonometriche Polynome’, J. Reine Angew. Math. 146 (1915) 53-82.
[8] A. Gluchoff and F. Hartmann, ‘Univalent polynomials and non-negative trigonometric

sums’, Amer. Math. Monthly 105 (1998) 508-522.
[9] G. A. Horn and C. R. Johnson, Matrix analysis (Cambridge Univ. Press, Cambridge, 1985).
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E-mail address: dimitrov@dcce.ibilce.unesp.br

E-mail address: argonaut@osite.com.br


