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Abstract

Denote by xn,k(α, β), k = 1, . . . , n, the zeros of the Jacobi polynomial P
(α,β)
n (x).

It is well known that xn,k(α, β) are increasing functions of β and decreasing func-
tions of α. In this paper we investigate the question of how fast the functions
1 − xn,k(α, β) decrease as β increases. We prove that the products tn,k(α, β) :=
fn(α, β) (1− xn,k(α, β)), where fn(α, β) = 2n2 + 2n(α + β + 1) + (α + 1)(β + 1),
are already increasing functions of β and that, for any fixed α > −1, fn(α, β) is the
asymptotically extremal, with respect to n, function of β that forces the products
tn,k(α, β) to increase.

Key words: Zeros, Jacobi polynomials, monotonicity.

1 Introduction and statement of results

The behaviour of the zeros xn,k(α, β), k = 1, . . . , n, of the Jacobi polynomial
P (α,β)

n (x), arranged in decreasing order, as functions of the parameters α and
β, α, β > −1, has been of interest for more than a century, since the pioneering
contributions of Markov [14] and Stieltjes [18], both published in 1886. Some of
the reasons for this interest are the important role that xn,k(α, β) play as nodes
of Gaussian quadrature formulae and their nice electrostatic interpretation.
Stieltjes proved in [18] that, given two fixed charges at the points −1 and 1,
with forces (β + 1)/2 and (α + 1)/2, respectively, and n free unit charges in
(−1, 1), the energy of the electrostatic field generated by them attains a local
minimum when the free charges are located at xn,k(α, β). Here the field obeys
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the law of the logarithmic potential which means that all the charges, both
the fixed and the free ones, are distributed along infinite wires orthogonal to
(−1, 1). Szegő [19, Section 6.83] proved that the energy has a unique global
minimum which shows that the zeros of the Jacobi polynomial of degree n
are the points of stable equilibrium of the energy. Andrey Markov [14], (see
also [19, Theorem 6.12.1]) proved that all the zeros xn,k(α, β) are increasing
functions of β and decreasing functions of α. This fact is intuitively clear from
the above electrostatic interpretation since all the charges are positive and
repel each other. In this paper we discuss the deeper question of how fast the
zeros increase/decrease when the parameters β and α increase from −1 to
infinity.

The present piece of research is inspired by the complete solution of corre-
sponding problem about the speed of decrease of the positive zeros xn,k(λ)
of the ultraspherical polynomial Cλ

n(x), as functions of λ, when λ > −1/2.
The solution came after series of papers, published within the last twenty five
years, where various conjectures and contributions were made. Instead of ask-
ing the straightforward question about the way xn,k(λ) decrease, the following
equivalent problem was investigated: If the zeros of Cλ

n(x) are arranged in de-
creasing order, which is the extremal function fn(λ) that forces the functions
fn(λ)xn,k(λ), k = 1, . . . , [n/2], to increase? The exact meaning of the notion
“extremal” was described in the introduction of [2] and we recall that rea-
soning below to justify our choice of the multiplier fn(α, β). The first to pose
such a question for the positive zeros of Cλ

n(x) was Laforgia who conjectured
in [12] that λxn,k(λ) increase for λ > 0. Laforgia had established this result
for λ ∈ (0, 1) in [11]. Later on, Ismail and Letessier [10] refined the conjecture,
restating it with a function that possesses the precise asymptotic behaviour,
namely for f(λ) =

√
λ. Finally, Askey guessed the extremal universal function,

that is, the one that does not depend on n, with the above properties. The
function turned out to be simply f(λ) =

√
λ + 1 (see [9]). Various contribu-

tions to the problem were made by Spigler [17], Ahmed, Muldoon and Spigler
[1], Ifantis and Siafarikas [8], Dimitrov [2], while, in 1999, Elbert and Siafarikas
[5] proved that [λ+(2n2 +1)/(4n+2)]1/2xn,k(λ), k = 1, . . . , [n/2], are increas-
ing functions of λ for λ > −1/2, thus extending the result of Ahmed, Muldoon
and Spigler [1] and proving the conjecture of Ismail, Letessier and Askey [10,9].
Finally, it was proved in [3] that the above function [λ+(2n2 +1)/(4n+2)]1/2

is asymptotically extremal in the sense that there is no function that increases
slower than it and forces the products fn(λ)xn,k(λ) to increase. Similar ques-
tions concerning zeros of Laguerre polynomials were raised and discussed by
Natalini and Palumbo [15].

In this paper we state and solve the corresponding question about the zeros of
Jacobi polynomials. Surprisingly enough, no attempt has been done to tackle
this problem. One of the possible reasons for the lack of results in this direc-
tion is that xnk(α, β) change sign. This indicates that, instead of considering
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the zeros of P (α,β)
n (x) themselves, it is more reasonable to investigate either

1 − xnk or 1 + xnk. Moreover, a careful inspection of the evolution of the
conjectures and results concerning the positive zeros of ultraspherical poly-
nomials, described above, leads to the conclusion that, in order to obtain a
sharp result, quantities that obey nice asymptotic behaviour, as the parame-
ter diverges, must be considered. Such an asymptotic formula for the zeros of
Jabobi polynomials is (see [19, formula (6.71.11)])

lim
β→∞

β(1− xnk(α, β)) = 2 xn,n−k+1(α), (1.1)

where xnj(α) are the zeros of the Laguerre polynomial L(α)
n (x), arranged in de-

creasing order. These observations, together with the fact that 1−xnk(α, β) de-
crease when β increases, already suggest that we search for a function fn(α, β)
that forces the products fn(α, β)(1 − xnk(α, β)) to increase. It is natural to
require that, for any fixed α ∈ (−1,∞), fn is positive and smooth function of
β, for β ∈ (−1,∞).

Consider the quantities Znk(α, β) = fnk(α, β)(1−xnk(α, β)) as functions of β,
where fnk(α, β) are also positive and differentiable functions of β, for any fined
n, k and α ∈ (−1,∞). What additional necessary conditions for fnk(α, β) the
inequalities ∂Znk(α, β)/∂β ≥ 0 imply? Since these are equivalent to

0 ≤ ∂Znk(α, β)

∂β
=

∂fnk(α, β)

∂β
(1− xnk(α, β))− fnk(α, β)

∂xnk(α, β)

∂β
,

fnk(α, β) > 0, (1− xnk(α, β)) > 0, and ∂xnk(α, β)/∂β, then we must have

∂ ln fnk(α, β)

∂β
> −∂ ln(1− xnk(α, β))

∂β
. (1.2)

Thus, if we search for positive functions fnk(α, β), n ∈ N, k = 1, . . . , n, that
are smooth with respect to β and force the corresponding products Znk(α, β)
to increase with β, then the best possible are those which satisfy (1.2). Observe
that this problem is intractable because it is equivalent to determine explicitly
the logarithmic derivatives of all (1− xnk(α, β)) and this latter task itself re-
quires to find explicitly all zeros of all Jacobi polynomials. Therefore, we reduce
the problem to find, for any fixed n ∈ N and α ∈ (−1,∞), a positive func-
tion fn(α, β) which forces the products tn,k(α, β) = fn(α, β) (1− xn,k(α, β)),
k = 1, . . . , n, to increase as β increases from −1 to infinity. Observe that if we
were able to determine the functions fnk(α, β), then fn(α, β) would have been
a piecewise smooth function given by

∂ ln fn(α, β)

∂β
= max1≤k≤n

∂ ln fnk(α, β)

∂β
.
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Hence, if we require that fn(α, β) is a smooth function of β with the property
that tnk(α, β) increase with β, then the best possible choice of fn is the one
for which its logarithmic derivative with respect to β is the smallest possible.

Our main result read as follows.

Theorem 1 For every n ∈ N and k, k = 1, . . . , n, the products

fn(α, β) (1− xn,k(α, β)) ,

where fn(α, β) := 2n2 +2n(α+β+1)+(α+1)(β+1), are increasing functions
of β, for β ∈ (−1,∞).

A simple argument for symmetry (see formula (2.4) below) immediately im-
plies:

Corollary 1 For every n ∈ N and k, k = 1, . . . , n, the products(
2n2 + 2n(α + β + 1) + (α + 1)(β + 1)

)
(1 + xn,k(α, β))

are increasing functions of α, for α ∈ (−1,∞).

In order to justify the sharpness of Theorem 1, observe that it can be refor-
mulated, stating that the products

gn(α, β) (1− xn,k(α, β)) ,

where

gn(α, β) = β + n +
α + 1

2
+

1− α2

2(2n + α + 1)
,

are increasing functions of β in (−1,∞).

We employ the method developed in [3] and based on the classical Routh-
Hurwitz stability criterion to prove that the function gn(α, β) is asymptotically
extremal with respect to n. The result is the following:

Theorem 2 Let n ∈ N, α > −1 and hn(α, β), considered as a function of
β, be positive and continuously differentiable for β ∈ (−1,∞). If the products
hn(α, β)(1−xnk(α, β)), k = 1, . . . , n, are increasing functions of β in (−1,∞),
then

∂

∂β
ln hn(α, β) >

1

n + α + β + 1
. (1.3)

Moreover, if hn(α, β) = β + n + (α + 1)/2 + dn(α), then
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dn(α) <
(α + 1)(α + 2)

2(n + α + 1)
. (1.4)

The fact that the extremal function with the desired property must posses
the smallest possible logarithmic derivative and inequality (1.3) imply that
the extremal hn must be a linear function of β. This justifies the choice of
hn(α, β), as given in the second statement of Theorem 2. A comparison of the
explicit form of the function gn(α, β) and inequality (1.4) shows that gn(α, β)
is asymptotically extremal. Indeed, obviously gn(α, β) − hn(α, β) < 0 for all
admissible n, α and β and this difference behaves as O(1/n), as n goes to
infinity provided α is fixed. Finally we mention an immediate but interesting
consequence of Theorem 1 and the asymptotic formula (1.1).

Corollary 2 Let n ∈ N, α, β > −1. Then the inequalities

{2n(n+α+β +1)+(α+1)(β +1)}(1−xnk(α, β)) < 2(2n+α+1)xn,n−k+1(α)

hold for k = 1, . . . , n.

2 Preliminary technical results

Recall that the Jacobi polynomials can be represented by

P (α,β)
n (x) =

(α + 1)n

n!
F (−n, n + α + β + 1; α + 1;

1− x

2
) (2.1)

in terms of the hypergeometric function

F (a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
,

where (γ)k denotes the Pochhammer symbol, defined by (γ)k = γ · · · (γ+k−1),
for k ∈ N, and (γ)0 := 1.

Since y(z) = F (a, b; c; z) satisfies the differential equation

z(1− z)y′′ + [c− (a + b + 1)z]y′ − aby = 0,

the Jacobi polynomial Y (x) = P (α,β)
n (x) is a solution of

(1− x2)Y ′′ + [β − α− (α + β + 2)x]Y ′ + n(n + α + β + 1)Y = 0.
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Introduce the polynomial

q(α,β)
n (y) =

n!

(α + 1)n

P (α,β)
n (2y + 1).

Then

q(α,β)
n (y) =

n∑
k=0

(
n

k

)
(n + α + β + 1)k

(α + 1)k

yk (2.2)

and its zeros yn,k(α, β) are given by yn,k(α, β) = (xn,k(α, β)− 1)/2. Moreover,
the polynomials q(α,β)

n (y) are orthogonal in (−1, 0) and all yn,k(α, β) belong to
this interval.

We shall need some additional information about functions whose zeros coin-
cide with

t̃nk(α, β) = tnk(α, β)/2 = fn(α, β)(1− xnk(α, β))/2.

Recall first (see [19, p. 67]) that the function u(x) = (1−x)
α+1

2 (1+x)
β+1

2 P (α,β)
n (x)

satisfies the Sturm-Liouville differential equation

d2u(x)

dx2
+ λ(x; α, β)u(x) = 0,

with

λ(x; α, β) =
1− α2

4(1− x)2
+

1− β2

4(1 + x)2
+

n(n + α + β + 1) + (α + 1)(β + 1)/2

1− x2
.

Then a straightforward change of variables implies that

u(z) = z
α+1

2 (1− z)
β+1

2 P (α,β)
n (1− 2z),

whose zeros in (0, 1) are znk = (1− xnk)/2, is a solution of

d2u(z)

dz2
+ Λ(z; α, β)u(z) = 0,

with

Λ(z; α, β) =
α + β + 2

2z(1− z)
+

n(n + α + β + 1)

z(1− z)
+

α + 1− z(α + β + 2)

2z2(1− z)

−α + 1− z(α + β + 2)

2z(1− z)2
− (α + 1− z(α + β + 2))2

4z2(1− z)2
.

Thus we immediately conclude that:
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Lemma 1 The function U(t) = u(t/f),

U(t) =
( t

f

)α+1
2
(
1− t

f

)β+1
2 P (α,β)

n

(
1− 2

t

f

)
,

where f = fn(α, β), is a solution of the differential equation

d2U(t)

dt2
+ Λ̃(t; α, β) U(t) = 0, (2.3)

where

Λ̃(t; α, β) =
1

[fn(α, β)]2
Λ

(
t

fn(α, β)
; α, β

)
that is,

Λ̃(t; α, β) = −α + β + 2

2t(t− f)
− n(n + α + β + 1)

t(t− f)
+

t(α + β + 2)− (α + 1)f

2t(t− f)2

+
t(α + β + 2)− (α + 1)f

2t2(t− f)
− (t(α + β + 2)− (α + 1)f)2

4t2(t− f)2
.

Moreover, the zeros of U(t) are 0, fn(α, β) and t̃nk(α, β), k = 1, . . . , n.

We shall need the explicit expressions for integrals of the form Iν = Iν(n, α, β),
where

Iν =

1∫
−1

(1− x)α(1 + x)β−ν{P (α,β)
n (x)}2dx, β > ν − 1.

More precisely, we shall make use of I0, I1 and I2. In fact, I0 and I1 are known.
The integral

I0 =
2α+β+1

2n + α + β + 1

Γ(n + α + 1)Γ(n + β + 1)

Γ(n + 1)Γ(n + α + β + 1)
,

is given in [19, p. 68] and

I1 =
2α+β

n!β

Γ(n + α + 1)Γ(n + β + 1)

Γ(n + α + β + 1)

is a consequence of formula 7.391(5) in [7] and the relation (see [19, p. 59])

P (α,β)
n (x) = (−1)nP (β,α)

n (−x). (2.4)

Observe that the explicit integral expression

1∫
−1

(1− x)ρ(1 + x)βP (α,β)
n (x) dx =

2β+ρ+1Γ(ρ + 1)Γ(n + β + 1)Γ(n + α− ρ)

n!Γ(α− ρ)Γ(n + β + ρ + 2)
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that appears as item 7.391(4) in [7], and (2.4) yield

1∫
−1

(1− x)α(1 + x)ρP (α,β)
n (x) dx

= (−1)n 2α+ρ+1Γ(ρ + 1)Γ(n + α + 1)Γ(n + β − ρ)

n!Γ(β − ρ)Γ(n + α + ρ + 2)
,

(2.5)

and the latter holds for any n ∈ N, α, ρ > −1.

Lemma 2 For every n ∈ N and α > −1, β > 1 we have

I2 =
2α+β−1Γ(n + α + 1)Γ(n + β + 1)

n!Γ(n + α + β + 1)

2n(n + α + β + 1) + (α + β)(β + 1)

β(β − 1)(β + 1)
.

Proof The relation (2.4) and the explicit expression (2.1) for P (α,β)
n (x), yield

P (α,β)
n (x) = (−1)n (β + 1)n

n!

n∑
k=0

(−n)k(n + α + β + 1)k

(β + 1)k

1

k!

(1 + x)k

2k
.

Hence,

Iν =

1∫
−1

(1− x)α(1 + x)β−ν{P (α,β)
n (x)}2dx

=
(−1)n(β + 1)n

n!

×
n∑

k=0

(−n)k(n + α + β + 1)k

2kk!(β + 1)k

1∫
−1

(1− x)α(1 + x)β+k−νP (α,β)
n (x)dx.

The explicit forms of I1 and I2 are immediate consequences of this expression
and of (2.5). In particular, for I2 we have

I2 = (−1)n (β + 1)n

n!

{ 1∫
−1

(1− x)α(1 + x)β−2P (α,β)
n (x)dx

−n(n + α + β + 1)

2(β + 1)

1∫
−1

(1− x)α(1 + x)β−1P (α,β)
n (x)dx

}
.

= (−1)n (β + 1)n

n!

{
(−1)n 2α+β−1

n!

Γ(β − 1)Γ(n + α + 1)Γ(n + 2)

Γ(2)Γ(n + α + β)

−n(n + α + β + 1)

2(β + 1)
(−1)n 2α+β

n!

Γ(β)Γ(n + α + 1)Γ(n + 1)

Γ(1)Γ(n + α + β + 1)

}
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=
2α+β−1(β + 1)n

n!

Γ(β − 1)Γ(n + α + 1)

Γ(n + α + β + 1)

×
{

(n + 1)(n + α + β)− n(n + α + β + 1)

β + 1
(β − 1)

}

= 2α+β−1 Γ(n + α + 1)Γ(n + β + 1)

n!Γ(n + α + β + 1)

2n(n + α + β + 1) + (α + β)(β + 1)

β(β + 1)(β − 1)
.

3 Proof of Theorem 1 for β ∈ (−1, 1)

The proof of our main result for β ∈ (−1, 1) is rather straightforward. It
follows immediately from the following two statements.

Theorem 3 Let, for some fixed values of n ∈ N and α > −1, the function
fn(α, β) be defined and positive for β ∈ I, where I is an interval, I ⊂ (−1,∞).
Suppose further that fβ = ∂fn(α, β)/∂β exists, it is continuous and positive
for β ∈ I. Then

t̃nk(α, β) = fn(α, β)
1− xn,k(α, β)

2
are increasing function of β in I, provided

(2n + α + β + 1) t2 (3.1)

+[(2n(n + α + β + 1) + (α + β)(β + 1))fβ − (4n + 2α + β + 2)f ] t

+[(2n + α + 1)f − (2n2 + 2n(α + β + 1) + (α + 1)(β + 1))] f fβ < 0

for every 0 < t < f .

Proof The statement of the theorem follows from Sturm’s comparison theorem
on solutions of Sturm-Liouville differential equation. The version we need is
Theorem 1.82.1 in [19]. It implies that the zeros t̃nk of the solution of the
differential equation (2.3) are increasing functions of the parameter β provided
the partial derivative of Λ̃(t; α, β) with respect to β is negative for every t ∈
(0, f) when β ∈ I. Thus, the straightforward calculation

∂Λ̃(α,β)
∂β

=
1

2t(f − t)3
{(2n + α + β + 1)t2

+[(2n(n + α + β + 1) + (α + β)(β + 1))fβ − (4n + 2α + β + 2)f ] t

+[(2n + α + 1)f − (2n2 + 2n(α + β + 1) + (α + 1)(β + 1))] f fβ}

completes the proof.
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Lemma 3 If fn(α, β) = 2n2 +2n(α+β +1)+(α+1)(β +1) and β ∈ (−1, 1),
then inequality (3.1) holds.

Proof Substituting the explicit form of fn(α, β) on the left-hand side of (3.1),
we obtain the polynomial

r(t) = an(α, β) t2 − bn(α, β) t,

where an(α, β) = 2n + α + β + 1 and

bn(α, β) = {4n3+6n2(α+β+1)+2n(α2+3α+3+3(α+1)β)+(α+1)(α+2)(β+1)}.

Observe that the free coefficient of the quadratic in (3.1) vanishes because of
the proper choice of the function f . Obviously the leading coefficient an is
always positive and the zeros of r(t) are 0 and bn(α, β)/an(α, β). Moreover,
the latter positive zero exceeds fn(α, β) if and only if anfn < bn. On the other
hand, this inequality is equivalent to

(2n + α + 1)(β2 − 1)

2n + α + β + 1
< 0

which itself is nothing but the requirement −1 < β < 1. Hence, for these
values of β, the binomial r(t) is negative for every t ∈ (0, f).

4 Proof of Theorem 1 for β ∈ (1,∞)

Consider a parametric family of Sturm-Liouville equations of the form

y′′(x) + F (x, µ)y(x) = 0,

for 0 < x < δ, where the parameter µ varies in certain interval and the function
F (x, µ) is continuously differentiable with respect to both variables, so that
∂F (x; µ)/∂µ is integrable function of x in (0, δ). Then the solution y = y(x, µ)
is also smooth with respect to x and µ. Moreover, if the zeros of the solution y
are distinct, then each such a zero c is a smooth function of the parameter µ.
Elbert and Muldoon [4] obtained a beautiful formula for the derivative c′(µ)
of any zero c of a solution of y provided the above requirements are fulfilled
and, in addition, the solution satisfies either of the requirements y(0, µ) = 0
or y′(0, µ) = 0, where the last derivative is with respect to the first variable.
The formula reads as

[dy(x, µ)

dx
|x=c

]2
c′(µ) = −

c∫
0

∂F (x; µ)

∂µ
[y(x, µ)]2dx.
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Having in mind that ∂Λ̃(t; α, β)/∂β is continuous in (0, f), that U(0) = 0, and
applying this formula for the derivatives of the zeros t̃nk of the solution U(t)
of the differential equation (2.3), we obtain

[∂U(t; α, β)

∂t
|t=t̃nk

]2 ∂t̃nk(α, β)

∂β
= −

t̃nk∫
0

∂Λ̃(t; α, β)

∂β
U2(t; α, β) dt.

Substituting the explicit expressions of U(t; α, β) and Λ̃(t; α, β) into the right-
hand side integral

−
t̃nk∫
0

∂Λ̃(t; α, β)

∂β
U2(α, β; t)dt,

we obtain

[∂U

∂t

]2∂t̃nk

∂β
= −

t̃nk∫
0

r(t)

2t(f − t)3

( t

f

)α+1(
1− t

f

)β+1{
P (α,β)

n

(
1− 2

t

f

)}2
dt,

where r(t) is exactly the polynomial defined in the proof of Lemma 3. Let us
investigate the function

Φ(τ) = −
τ∫

0

r(t)

2t(f − t)3

( t

f

)α+1(
1− t

f

)β+1{
P (α,β)

n

(
1− 2

t

f

)}2
dt.

For, observe that latter integrand changes sign if and only if r(t) does. How-
ever, the discussion in the proof of Lemma 3 shows that it happens only when
t = bn/an. On the other hand, recalling again the investigation of the behav-
iour of this quotient and the fact that now β > 1, we see that in this case
bn/an < f . Summarizing, we conclude that Φ(τ) is an increasing function of
τ in (0, bn/an) and it decreases in (bn/an, f).

We shall prove that Φ(f) = 0. Performing the change of variables t = f(1 −
x)/2 in the integral that represents Φ(f), we obtain

Φ(f) = A

1∫
−1

(1− x)α+1(1 + x)β−2{P (α,β)
n (x)}2dx

+B

1∫
−1

(1− x)α+1(1 + x)β−1{P (α,β)
n (x)}2dx,

where

A =
(1− β2)(2n + α + 1)

2α+β+1f 2
, B =

2n + α + β + 1

2α+β+2f
.

11



Then the straightforward calculation

1∫
−1

(1− x)α+1(1 + x)µ{P (α,β)
n (x)}2dx =

2

1∫
−1

(1− x)α(1 + x)µ{P (α,β)
n (x)}2dx−

1∫
−1

(1− x)α(1 + x)µ+1{P (α,β)
n (x)}2dx

immediately yields

Φ(f) = 2A

1∫
−1

(1− x)α(1 + x)β−2{P (α,β)
n (x)}2dx

+(2B − A)

1∫
−1

(1− x)α(1 + x)β−1{P (α,β)
n (x)}2dx

−B

1∫
−1

(1− x)α(1 + x)β{P (α,β)
n (x)}2dx

Thus, Φ(f) = 2AI2 + (2B − A)I1 −BI0 = 0.

Therefore, Φ(τ) > 0 for every τ ∈ (0, f), and in particular Φ(t̃nk) > 0. This
shows that t̃nk(α, β) are increasing functions of β for β > 1.

5 Proof of Theorem 2

The fact that fn(α, β) is extremal in the sense described in the introduction
is justified by at least three arguments. The first one is that Φ(fn(α, β)) = 0.
The second one, that the authors discovered first, was an application, for
β ∈ (−1, 1), of the technique used by Ahmed, Muldoon and R. Spigler [1] for
the extremal function in the ultraspherical case. This involves rather lengthy
technical details. Despite that these arguments led us to the correct guess,
they are somehow intuitive and not rigorous at all.

Because of that we provide a completely correct argument. We apply the
method developed in [3] and use the notations adopted there. The ideas in [3]
we based on the stability criterion of Routh-Hurwitz. We refer to Gantmacher
[6, Chapter 15] and Marden [13, Chapter 9] for comprehensive information
on this classical topic. We shall provide some definitions and formulate the
Hurwitz theorem. With every polynomial with real coefficients

f(z) = fnz
n + fn−1z

n−1 + fn−2z
n−2 + fn−3z

n−3 + · · · , fn 6= 0,

12



we associate a Hurwitz matrix which is formed as follows. Set f−1 = f−2 =
· · · = 0 and construct the two line block fn−1 fn−3 . . .

fn fn−2 . . .

 ,

where the first line contains fn−2k−1, k = 0, 1, . . . , and the second line is
composed by the coefficients fn−2k, k = 0, 1, . . . , of f(z). Then the Hurwitz
matrix H(f) of f(z) is composed by the above block in its first two lines,
the next two lines of H(f) contain the same block shifted one position to the
right, the fifth and the sixth lines contain this block shifted two positions to
the right, and so forth. Thus

H(f) =



fn−1 fn−3 fn−5 . . . 0

fn fn−2 fn−4 . . . 0

0 fn−1 fn−3 . . . 0

0 fn fn−2 . . . 0

· · · . . . ·


.

The polynomial fn(z) = fnz
n+fn−1z

n−1+· · ·+f0 with real coefficients fj, and
with positive leading coefficient fn is called Hurwitz or stable if all its zeros
have negative real parts. The following is the celebrated Hurwitz theorem
which is sometimes called the Routh-Hurwitz criterion.

Theorem A The polynomial fn(z) is stable if and only if the first n principal
minors of the corresponding Hurwitz matrix H(f) are positive.

We shall say that the polynomials h(z) and g(z) of degree m form a positive
pair if their leading coefficients are positive and their zeros x1, . . . , xm and
y1, . . . , ym are distinct, real, negative and interlace in the following way:

ym < xm < ym−1 < xm−1 < · · · < y1 < x1.

We shall succinctly denote the latter by ȳ ≺ x̄.

Theorem B The polynomial f(z) = h(z2) + zg(z2) is a Hurwitz polynomial
if and only if h(z) and g(z) form a positive pair.

This result appears as Theorem 13 on p. 228 in [6]. It is an immediate conse-
quence of Theorem A and of the Theorem of Hermite-Biehler (see Obrechkoff
[16]).

Consider the sequence {pn(x; τ)} of parametric polynomials which are orthog-
onal on the interval x ∈ (c, d) when τ ∈ (p, q) and whose coefficients are
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continuous functions of τ . Suppose the leading coefficients of pn(x; τ) are pos-
itive. We shall denote by ζk(τ),

c < ζn(τ) < ζn−1(τ) < · · · < ζ1(τ) < d,

the zeros of pn(x; τ) arranged in decreasing order. Let

pn(x; τ) = a0(τ) + a1(τ)(x− d) + · · ·+ an(τ)(x− d)n, an(τ) > 0, (5.1)

be the Taylor expansion of pn(x; τ) at d. Since the zeros ζk(τ), k = 1, . . . , n of
pn(x; τ) are distinct and belong to (c, d), then all the coefficients aj(τ), j =
0, . . . , n, are positive. Let qn(x; τ) be the polynomial

qn(x; τ) = a0(τ) + a1(τ)x + · · ·+ an(τ)xn,

and

q̃n(x; τ) = a0(τ)xn + · · ·+ a1(τ)x + an(τ)

be its inverse. Denote by H(pn; τ1, τ2) the Hurwitz matrix associated with the
polynomial

f2n+1(x; τ1, τ2) := qn(x2; τ1) + xqn(x2; τ2).

We have

H(pn; τ1, τ2) =



an(τ1) an−1(τ1) an−2(τ1) . . . 0

an(τ2) an−1(τ2) an−2(τ2) . . . 0

0 an(τ1) an−1(τ1) . . . 0

0 an(τ2) an−1(τ2) . . . 0

· · · . . . ·


.

Similarly, H̃(pn; τ1, τ2) denotes the Hurwitz matrix associated with

f ∗2n+1(x; τ1, τ2) := q̃n(x2; τ1) + xq̃n(x2; τ2).

Thus

H̃(pn; τ1, τ2) =



a0(τ1) a1(τ1) a2(τ1) . . . 0

a0(τ2) a1(τ2) a2(τ2) . . . 0

0 a0(τ1) a1(τ1) . . . 0

0 a0(τ2) a1(τ2) . . . 0

· · · . . . ·


.

For any j, 1 ≤ j ≤ 2n + 1, denote by ∆j(pn; τ1, τ2) and ∆̃j(pn; τ1, τ2) the j-th
principal minor of H(pn; τ1, τ2) and H̃(pn; τ1, τ2), respectively. For the first few
j we have
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∆1(pn; τ1, τ2) = an(τ1), ∆2(pn; τ1, τ2) =

∣∣∣∣∣∣∣
an(τ1) an−1(τ1)

an(τ2) an−1(τ2)

∣∣∣∣∣∣∣ ,

∆3(pn; τ1, τ2) =

∣∣∣∣∣∣∣∣∣∣∣
an(τ1) an−1(τ1) an−2(τ1)

an(τ2) an−1(τ2) an−2(τ2)

0 an(τ1) an−1(τ1)

∣∣∣∣∣∣∣∣∣∣∣
,

∆̃1(pn; τ1, τ2) = a0(τ1), ∆̃2(pn; τ1, τ2) =

∣∣∣∣∣∣∣
a0(τ1) a1(τ1)

a0(τ2) a1(τ2)

∣∣∣∣∣∣∣ ,

∆̃3(pn; τ1, τ2) =

∣∣∣∣∣∣∣∣∣∣∣
a0(τ1) a1(τ1) a2(τ1)

a0(τ2) a1(τ2) a2(τ2)

0 a0(τ1) a1(τ1)

∣∣∣∣∣∣∣∣∣∣∣
.

Thus, we formulate one of the principal results in [3]:

Theorem 4 Let the coefficients ak(τ) in the representation (5.1) of the para-
metric orthogonal polynomial pn(x; τ) be continuous functions of τ . Then:

(i) The inequalities

ζk(τ2) < ζk(τ1), k = 1, . . . , n, (5.2)

hold for any τ2 in a sufficiently small neighbourhood of τ1 if and only if
∆j(pn, τ1, τ2) > 0 for j = 1, . . . , 2n + 1;

(ii) The inequalities

ζk(τ1) < ζk(τ2), k = 1, . . . , n, (5.3)

hold for any τ2 in a sufficiently small neighbourhood of τ1 if and only if
∆̃j(pn, τ1, τ2) > 0 for j = 1, . . . , 2n + 1.

The proof of Theorem 2 follows almost immediately from the latter statement
and some easy calculations. It was already mentioned in the introduction
that the zeros of the polynomial q(α,β)

n (y), defined by (2.2), are yn,k(α, β) =
(xn,k(α, β) − 1)/2. Thus the zeros of the polynomial Q(α,β)

n (y) := q(α,β)
n (y/h),

with h = hn(α, β), are precisely hn(α, β) (xn,k(α, β)− 1)/2, k = 1, . . . , n. It is
clear that

Q(α,β)
n (y) =

n∑
j=0

(
n

j

)
(n + α + β + 1)j

(α + 1)j

1

hj
n(α, β)

yj.

15



Thus, the products hn(α, β)(xn,k(α, β) − 1)/2 are decreasing functions of β
if and only if, for any sufficiently small ε > 0, the polynomials Q(α,β)

n (y) e
Q(α,β+ε)

n (y) form a positive pair. This is equivalent to the fact that Q̃(α,β+ε)
n (y)

and Q̃(α,β)
n (y) form a positive pair, where Q̃(α,β)

n (y) = ynQ(α,β)
n (1/y) denotes

the inverse of Q(α,β)
n (y). Let H̃n(Qn; α, β, ε) be the Hurwitz matrix associated

with the polynomial Q̃(α,β+ε)
n (y2) + yQ̃(α,β)

n (y2),

H̃n(Qn; α, β, ε) =



1
(

n

1

)
(n + α + β + ε + 1)1
(α + 1)1hn(α, β + ε)

(
n

2

)
(n + α + β + ε + 1)2
(α + 1)2h2

n(α, β + ε)
· · ·

1
(

n

1

)
(n + α + β + 1)1
(α + 1)1hn(α, β)

(
n

2

)
(n + α + β + 1)2
(α + 1)2h2

n(α, β)
· · ·

0 1
(

n

1

)
(n + α + β + ε + 1)1
(α + 1)1hn(α, β + ε)

· · ·

0 1
(

n

1

)
(n + α + β + 1)1
(α + 1)1hn(α, β)

· · ·

. . . .



.

Theorem 2.1 (ii) in [3], applied to this situation implies that all hn(α, β)(xn,k(α, β)−
1), k = 1, . . . , n are decreasing functions of β if and only if all minors ∆̃j(Qn; α, β, ε),

j = 1, 2, . . . , 2n + 1, of H̃n(Qn; α, β, ε) are positive for any sufficiently small
positive ε. On the other hand, observe that ∆̃2(Qn; α, β, ε) is positive if and
only if

(n + α + β + 1){hn(α, β + ε)− hn(α, β)} − εhn(α, β) > 0,

which is equivalent to

1

hn(α, β)

hn(α, β + ε)− hn(α, β)

ε
>

1

n + α + β + 1
.

Letting ε tend to zero, we obtain the first statement of Theorem 2.

It shows that, if hn is an extremal function, then hn must be linear with respect
to β. So, we set hn(α, β) = β + n + (α + 1)/2 + d, d = dn(α). Substituting
this expression in the above Hurwitz matrix and calculating its third principal
minor ∆̃3 = ∆̃3(Qn; α, β, ε), we obtain

∆̃3 =
2n

(α + 1)2

ε{4A(n, α, ε, d)β2 + 2B(n, α, ε, d)β + C(n, α, ε, d)}
(α + 2)(2n + α + 2β + 2d + 1)2(2n + α + 2β + 2ε + 2d + 1)2

,
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where A(n, α, ε, d) = (1 + α)(2 + α) − 2d(1 + n + α). The explicit forms of
the coefficients B and C of the binomial in the above numerator are pretty
involved and omit them. Since the denominator of the quotient that represents
∆̃3 is obviously positive, then this minor is positive for all sufficiently large
values of β when A(n, α, ε, d) is positive. However, this is equivalent to the
inequality

d <
(α + 1)(α + 2)

2(n + α + 1)
.

This completes the proof of Theorem 2.
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