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ZEROS OF GEGENBAUER AND HERMITE POLYNOMIALS
AND CONNECTION COEFFICIENTS

IVAN AREA, DIMITAR K. DIMITROV, EDUARDO GODOY, AND ANDRE RONVEAUX

ABSTRACT. In this paper, sharp upper limit for the zeros of the ultraspherical
polynomials are obtained via a result of Obrechkoff and certain explicit con-
nection coefficients for these polynomials. As a consequence, sharp bounds for
the zeros of the Hermite polynomials are obtained.

1. INTRODUCTION

Let C)z), n = 0,1,..., A > —1/2, be the ultraspherical (Gegenbauer) poly-
nomials, orthogonal in (—1,1) with respect to the weight function (1 — z2)*~1/2,
Denote by z,x()\), k =1,...,n, the zeros of C)(z) enumerated in decreasing order,

1> zp1(A) > zp2(A) > -+ > zpn(A) > —1. The behaviour of x,x(A) has been
of interest because of their nice electrostatic interpretation and of their important
role as nodes of Gaussian quadrature formulae, and vice—versa, these applications
motivated further the interest on describing this behaviour more thoroughly. For
instance, the fact that the positive zeros of C}(z) decrease when X increases is in-
tuitively clear from the electrostatic interpretation of x,x(\), k=1,...,n, as the
positions of equilibrium of n unit charges in (—1,1) in the field generated by two
charges located at —1 and 1 whose common value is A\/2 4+ 1/4 [26, pp. 140-142].
Here the charges are distributed along infinite wires perpendicular to the interval
[—1, 1] and because of that the field obeys the law of the logarithmic potential. On
the other hand, the fact that z,,(\) are nodes of a Gaussian quadrature formula
requires sharp limits for these zeros to be established.

Since the zeros x,i(A\) are symmetric with respect to the origin, it suffices to
find such limits only for the positive zeros. There have been many contributions
in this direction and we refer to Chapter 6 of Szegd’s classical reading [26] and
to a recent survey of Elbert [7] for exhaustive number of inequalities. Generally
speaking, when A € [0,1], the use of Sturm’s comparison theorem provides very
precise bounds. This method yields (see Theorems 6.3.2 and 6.3.4 in [26])

cos (%) < Zap(\) < cos (Ww) S k=1,....[n/2,

where 0 < j1(v) < ja2(v) < ... denote the positive zeros of the Bessel function
Jy(x).
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Somehow surprisingly, most of the limits for z,(\), when A > 0, were obtained
only during the last two decades. Since these results are interesting mainly when A
is large enough, usually a good test for the sharpness of the corresponding bound is
its behaviour when A diverges. It is known that, for any fixed n and k, 1 < k <mn,
the limit relation

(1.1) VAL (A) — hpr as A — o0

holds, where hpx, k =1,...,n, are the zeros of the Hermite polynomial H,, (x), also
arranged in decreasing order. Elbert and Laforgia [9] established a more precise
asymptotic result concerning the behaviour of z,;(A). They proved that

hy, _: _
(12)  Zar(N) = hapA /2 — ?’“ (2n — 1+ 2h2,) X732 £ O(A7%/2), X — 0.

Moreover, it is known that, for k = 1,...,[n/2], the products vAz,i()\) tend to
their horizontal asymptotes in such a way that they increase monotonically. Elbert
and Siafarikas [11] proved that [\ + (2n2 +1)/(4n + 2)]" 2z (\), k=1,...,[n/2],
are increasing functions of A, for A > —1/2, thus extending earlier results obtained
in [22, 1, 17, 3], and proving a conjecture which was posed by Laforgia [23], and
by Ismail, Letessier and Askey [20, 19]. Recently, the sharpness of the result of
Elbert and Siafarikas was established in [5]. Also, by using the Sturm comparison
theorem Gatteschi [14] obtained upper and lower bounds for the zeros of Jacobi
polynomials.

To the best of our knowledge, the best bounds which hold for all the positive
zeros of C)(x) and for every A > 0, were obtained by Elbert and Laforgia [8]
through the Sturm theorem. As pointed out by Elbert [7], the result obtained in
[8], implies

13) o)) < V"“%i; A1 o (kn__ll)”, k=1,....[In/2.

For k = 1 the latter reduces immediately to the inequality
- Vn2+2(n—1)A-1
- n+ A

for the largest zero of C;)(z). Limits similar to (1.4) were obtained earlier by Ifantis
and Siafarikas [16, 18] and by Forster and Petras [13]. Observe that the asymptotic
formula (1.2) immediately yields that

(1.5) hnk§\/2n72cosu, k=1,...,[n/2]

n—1

(14) Inl ()\)

and, in particular,
(1.6) hnt < V210 — 2.

In what follows we adopt the following criteria for sharpness of the upper bounds
for x,,(N\). The better such a limit is said to be, the better it behaves when
A diverges. Equivalently, the good upper bounds for the zeros of C;)(x) will be
considered those which provide good bounds for h,; through the limit relation
(L.1).

The paper is organized as follows: in the next section we use a result of Ismail
and Li [21] in order to establish upper bounds for z,;(\) and h,; which are better
than the one appearing in (1.4) and (1.6). Section 3 contains information about



ZEROS AND CONNECTION COEFFICIENTS 3

the basic ingredients of our approach, namely, a theorem of Obrechkoff and a new
explicit form of the connection coefficients between ultraspherical polynomials with
shifted argument and the Chebyshev polynomials. These results allow us to obtain
an upper estimate for the positive zeros of the ultraspherical polynomials in terms
of the smallest zeros of certain Jacobi polynomials. To the best of our knowledge
such a relation appears for the first time in the literature and because of that it is of
interest in itself. Moreover, it provides very sharp upper limits for the zeros z,(\),
especially when £ is small in comparison with n and A is large. These limits are
obtained in Section 4. Naturally, as a consequence, we obtain precise bounds for
the positive zeros of the Hermite polynomials. In Section 5 we provide numerical
results and comparisons between the known limits and the bounds obtained in this

paper.

2. SHARPER BOUNDS FOR Z,1(A) AND hy,g

Let {pr(x)}72, be a sequence of orthonormal polynomials generated by the re-
currence relation
p-1(z) =0
(2.1) po(x) =1
zpk () =ak+1 pr+1(x) + bk pr(x) + ak pr—1(x),

where ag, b € R, ap > 0. Then, it is well known and easy to see that the zeros of
pn(x) coincide with the eigenvalues of the associated n x n Jacobi matrix

bo a1
al bl as
Jn — an b2 as

Gnp—1 bnfl

Ismail and Li [21] used a characterization of the positive definite Jacobi matrices in
terms of chain sequences, due to Wall and Wetzel [28], and an ingenuous argument
in order to prove the following result:

Theorem 2.1. If the sequence of orthogonal polynomials {pr(x)} is defined by
(2.1), then the zeros xi, k = 1,...,n, of pp(x) belong to the interval which contains
all the zeros of all the equations

(2.2) (x—bj_1)(x —bj) = 4a} cos*(x/(n+1)), j=1,....n—1
A simple investigation of the zeros of the equations (2.2) immediately yields:

Corollary 2.2. If {bj};‘:_o1 is a decreasing sequence and {aj}?:_ll s an increasing
one, then the smallest zero x,, of p,(x) satisfies the inequality

1
T, > 5 {bnz +bpo1 — \/(bn,g —by_1)?2 4+ 16a2_, cos?(m/(n + 1))} .

In particular, if {pr(z)} is a sequence of symmetric orthonormal polynomials, i.e.
ifbj=0forj=1,...,n—1, and {a; }?:_11 s an increasing sequence, then the zeros
g, k=1,...,n, of pa(x) satisfy the inequality

|zk| < 2an-1 cos(m/(n+ 1)).
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Using the second statement of this corollary and the fact that for the ultraspher-
ical polynomials b; = 0,
a,_l JjG+22-1)
T2V A=A

Oa; 1 AMA-1)(2+2A-1)
9j  8a; (jHA-1)2(j+A)?
we obtain the following result:

and that

>0 forj>1and A>1,

Corollary 2.3. For any n > 2 and for every X\ > 1 the inequality

(2.3) Tp1(A) < \/(757:_)\1_)(;);;2_:\)\_2)1) cos(m/(n + 1))

holds.

For the largest zero of H,(x) we have
(2.4) hn1 < V2n —2 cos(w/(n+1)).

Observe that the bound (2.3) is better than (1.4) in the sense we compare these
bounds, namely, that the corresponding limit (2.4) for h,, is slightly sharper than
(1.6). However, Corollary 2.3 is still a result only for the largest and not for each
positive zero of C) () and of H,,(z).

3. OBRECHKOFF’S THEOREM AND A CONNECTION PROBLEM

In this section we obtain an upper bound for the positive zeros of the Gegenbauer
polynomials in terms of the smallest zeros of certain Jacobi polynomials. Formally,
this result is formulated in the statement of Theorem 3.6 and the basic tool in its
proof is a beautiful theorem of Obrechkoff. In order to formulate the latter we need
a definition.

Definition 3.1. The finite sequence of functions fi,..., f, obeys Descartes’ rule
of signs in the interval (a,b) if the number of zeros in (a,b), where the multiple
zeros are counted with their multiplicities, of any real linear combination

arfi(@) + ...+ anfu(z)
does not exceed the number of sign changes in the sequence asq, ..., a,.
Theorem 3.2 (Obrechkoff [24]). Let the sequence of polynomials {pn(x)}5, be
defined by the recurrence relation
(3.1) Pn(2) = anPpy1(®) + bppn(z) + copn_1(x) n >0,
where an, by, c, € R, ap,c, > 0. If {, denotes the largest zero of p,(z), then the

sequence of polynomials po, .. .,pn obeys Descartes’ rule of signs in (Cp, 00).

Favard’s theorem [12], [2, Theorem 4.4], implies that the requirements of the
Theorem 3.2 are equivalent to the requirement that {p, } is a sequence of orthogonal
polynomials. If we denote by Z(f;(a,b)) the number of the zeros, counting their
multiplicities, of the function f(z) in (a,b), and by S(ai,...,ay) the number of
sign changes in the sequence aq, ..., a,, Obrechkoff’s theorem can be reformulated
in the following more succinct form.
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Corollary 3.3. Let the orthogonal polynomials pr(x), k = 0,1,...,n be normalized
in such a way that their leading coefficients are all of the same sign and let ¢, be the
largest zero of py(x). Then, for any sequence «v, ..., ay, which is not identically
zero,

Z(QOPO(m) et O‘npn(x); (Cn» OO)) < S(Ozo, SEE) an)'

We must emphasize that it is essential that the polynomials are normalized in
such a way that their leading coefficients are positive.

Some history about Theorem 3.2 as well as some application to zeros of orthogo-
nal polynomials were discussed in [4]. There we employed the connection problems
for the classical orthogonal polynomials. In this paper we obtain more precise
results using the explicit solution of the following more sophisticated connection
problem.

Theorem 3.4. The connection coefficients Ay m(s) in the expansion

(3.2) CH52) = 3 Au(s) T(z) 50,

m=0

where C’r(ﬁ)(:n) are the monic Gegenbauer polynomials and Ty, (x) are the monic
Chebyshev polynomials of the first kind, are given by Apm(s) =0 when n —m is
odd and by

(3.3)
A (S) o (—1)(n7m)/2 gm (2/\)n (n + 2)\)'@ n!
T ml((n—m)/2)0 28 (A +1/2), (A4 (n+m)/2) ()2 (M)
(m—mn)/2,2A+m+n)/2 | ,
X oFy < 1 ‘ s ) ,

when n —m is even, where (a), = ala+1)---(a +n —1), (a)o = 1 denotes the
Pochhammer symbol.

Proof. In order to derive the explicit formulae for A, ,(s) we use the method known
as the Navima algorithm [15, 25]. The main feature of this method is to obtain a
recurrence relation for the connection coefficients. This recurrence relation is in fact
a difference equation which can be solved in many cases. Formally, this procedure
goes as follows for our problem. Consider the differential operator

d? d
(1 2.2 _ 2 2
D= (1 Sm)daﬁ (I14+2X\)s xdx—&-n@)\—i—n)sI

3

where 7 stands for the identity operator. Since D,, s [C’f;(s x)] =0, n=12,...,
then the application of D,, ; to both sides of (3.2) yields

(3.4) 0= Z An,m(s) Dy,s [Tm(aj)] .
m=0
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On using the recurrence relation for the Chebyshev polynomials and the identity
4(m + )Ty (x) = 4T, 1 (x) — T}, (x) we reduce (3.4) to the sum

m—1

N (n—m) 2QX+m+n—-1)s%\,_,
0= 3 A { (M ) Theats

m=0
(1o (m (2+m)+2X(2+n)+ (=3+n) (2+n)) s? T ()
2m (2+m)
2A=m+n—3) (2+m+n)s?\,,,
T
+ ( 16m (1+m) m—2(%)

where T/ (z) := 0 when m is an index smaller than 2. Rewriting the latter as a
combination of the linearly independent polynomials T (z), m = 2,...,n+ 2, we

obtain the desired three—term recurrence relation for the connection coefficients:

(35) (m—1)(n—m+2\—2)(n+m+2)s* A, mia(s)
—8m (2(1 = m?) + (n® + m® + 2(n + L)X — 2)s%) A, 1 (s)
—16(m +1)(m —n —2)(n +m+ 2\ — 2)s% A, ;n_a(s) =0,
which holds for 2 < m < n, with the initial conditions A, ,(s) = s™ for every
nonnegative integer n, A, ,—1(s) = 0 for all n € N and A, ,,(s) = 0 for each

m > n. We have to prove that the expressions given on the right—hand side of (3.3)
satisfy the recurrence relation (3.5). Thus, we need to show that the identity

(3.6) —4(m+2)(m+1)*m(m —1) frm 2(s)
—2(m+2)(m + D)m (2(1 = m?) + (n> + m® + 2(n + DA — 2)s°) frm(s)
- %(m— (n—=m)(n+m+2) (n—l—Tm —&—A) (n—m—2=2A\)fnmt2(s) =0,

holds for the hypergeometric polynomials

o " 2

whenever n — m is an even integer. Using the Maclaurin expansion of the these
polynomials, we express the polynomial on the left—hand side of (3.6) in the form

(n—m+2)/2

Z bjszj.

j=0
Performing this lengthly but straightforward procedure we obtain the following
general expression for the coeflicient b;:

b, :((m —n)/2+1);_o((n+m)/24+ A+ 1)j_2(m —n)(m+n+2X) "

J 451(m + 3)5_s
{=m+D)(m+5)(m+j—1)(m—n—2)(m+n—2+2))
—(m+1)mm—-1)(m—-—n+2j—-2)(m+n+2X+2j—2)
—2m(m+3)j(n* +m? =2+ 2(n+1)A)

+(m—-—1)n+m+2)(n—m—24+2X)j({—1)}
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and it can be verified that this expression is identically zero.

It is worth mentioning that a different argument can be used to justify the
fact that f,, ., (s) are solutions of (3.6). Very recently Vidunas [27] presented an
algorithm for computing general contiguous relations for F; hypergeometric series,
which in particular yields a relation of the form

a—1,b—-1 a+1,b+1
I O S 1] (LS LA B

= [P(~1,-1,-2)Q(1,1,2) — P(1,1,2)Q(~1,~1,~2)] 2F1< aéb ‘ . )

where
W=
P(1,1,2) = & (1bj;:)_(z)+(:i;)cz) ’
O(~1,-1,-2) = %
P(-1,-1,-2) = (c—a—1) (c+2-bz-2)

(c—2) (c=1)
O

Now we prove two important properties of the zeros of A, ,,,(s) defined by (3.3).

Lemma 3.5. Let n —m be a nonnegative even integer. Then A, ., (s) is an alge-
braic polynomial of degree n with positive leading coefficient. The origin is a zero
of Ay.m(s) with multiplicity m and the remaining n — m zeros are real, distinct,
symmetric with respect to the origin and belong to (—1,1).

Moreover, if n—m and n—m — 2 are two consecutive nonnegative even integers,
then the positive zeros of Anm(s) and Ay, mi2(s) interlace.

Proof. Recall the hypergeometric representation of the monic Jacobi polynomials
2V (a+ 1) N ~N,N+a+p3+1 1—x>
2 )

P (z) = F
v (N+a+f+1)y ° 1( a+1
orthogonal on (—1,1) with respect to the weight function (1 — x)®(1 + z)? when
a, > —1. Set

(m—n)/2= =N, m+1= a+1, 2 +m+n)/2= N+a+p+1.

Then N = (n—m)/2, a =m and § = A — 1 and we see that A, ., (s) is a multiple
of a Jacobi polynomial of degree (n —m)/2. More precisely

(3.7) Apm(s) = (=1)"=™/2¢, 5™ P (11— 25%), A >0,
with
n!

Crom = 23(m7n)/2

((n—m)/2)!((n +m)/2)t
This establishes the first statement of the lemma.

The second one is a consequence of Sturm’s comparison theorem [26, Theorem
1.82.1]. Equation (4.24.1) in [26] shows that

u(z) = (1= 2)" D21 4 22 P ()
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is a solution of the second—order differential equation

u"(z) + Fp o\ (z)u(z) = 0,

where

1/1-m?> 1-\=1)2% n?>—m?+2n+1)\

Frma(z) = - - ( 2) (2 AY

4\ (1-2x) (14 2x) 1—=x

Since 2 0
m +
an _an :—7
mA(T) m+2.1(7) (1—2)2(1+2)

then F, ma(x) > Fp e (x) for any x € (—1,1) and Sturm’s theorem immediately
implies that the zeros of PU™ 1) (2) and of P/ 2271 (2 interlace, which itself

(n—m)/2 (n—m—2)/2
yields that the positive zeros of A, ,,,(s) and A, my2(s) interlace. O
In what follows we suppose that the zeros z,i(«, 8), k = 1,...,n, of the Jacobi

polynomial pld) (x) are arranged in decreasing order.

Theorem 3.6. Let n € N and ¢ = n(mod 2), i.e. € =0 if n is even, and € = 1 if
n is odd. Then the inequalities

1= 20 e it (mor /2 % —2A—1
k() S\/ Tn=o)/2-kt1n=e)/2-h11(E + )cosl

(3.8) 5 o

hold for every k, k=1,...,[n/2], and A > 0.

Proof. For any real s # 0 the zeros of C)\(sx) are s~ x,x()\). Since the largest zero
of the Chebyshev polynomial of degree n is cos(w/2n), then Obrechkoft’s result, as
stated in Corollary 3.3, and Theorem 3.4 imply immediately that

Z(CX(sz); (cos(m/2n),00)) < S(Ano(5), ..., Apn(s)).
Therefore, for any fixed s # 0 and A > —1/2,
#{k s zae(N) > cos(m/2n)} < S(Ano(s),. .., Ann(s)),
where #D denotes the number of the elements of the finite set D. Equivalently,

(3.9) Tk (A) < sk cos(m/2n)
provided S(An0(sk), ..., Ann(sk)) < k—1. Thus we need to count the number
of sign changes in the sequence A, o(sx),...,Ann(sx). By Lemma 3.5, A, ;(s) are

identically zero when n — j is odd, and when n — j is even these polynomials obey
three important properties:
e They have have positive leading coefficients;
o A, ;(s) has exactly (n — j)/2 positive zeros.
e The positive zeros of two consecutive polynomials A, ;(s) and A, ji2(s)
strictly interlace.

Therefore S(A,0(s),. .., Ann(s)) may change only when s passes through a zeros
of either of the polynomials A, ,,(s), An.n-2(5), ..., An(s).

Then the above properties immediately imply that S(A,o(s),..., Apn(s)) =
0 if s > s1, where s; is the largest zero of A, .(z), which itself coincides with
(1 = (n—cy/2,(n—e)/2(e, A = 1)) /2)1/2, X > 0, because of the relation (3.7) between
A, ; and the Jacobi polynomials. This yields (3.8) for k& = 1.

If s is not less than the largest zero sy of A, 42(x), then

S(Ano(5), . Ann(s)) < 1.
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Since
2= ((1 = T(n_c_2)/2,(n—c—2)y/2(c + 2,1 — 1)) /2)}/?

then (3.9) yields the inequality (3.8) for k = 2.
Similarly, if &k is any index with 1 < k < [n/2], the interlacing property of the
zeros of the “connecting polynomials” A,, ;(s), implies that

S(Ano(sk), -y Apn(sk)) <k—1

if s, is not less than the largest zero of A, .1or—2. Again, having in mind relation
(3.7), we obtain

o — \/1 — T(n—e)/2—k+1,(n—e)/2—k+1(E + 2k —2,A — 1)
’ 2

and this proves inequality (3.8). O

4. UPPER LIMITS FOR THE POSITIVE ZEROS OF GEGENBAUER AND HERMITE
POLYNOMIALS

In this Section we establish the main results of the paper. In fact, these are
immediate consequences of Theorem 3.6 and some known results we apply related
to some sharp limits for the extreme zeros of the Jacobi polynomials. However, it
turns out that the bounds that we obtain for the positive zeros of Gegenbauer and
Hermite polynomials are very sharp.

Theorem 4.1. For any n > 2, and for every X\ > 1/2 the inequality

W {24n% + 20X +4K> + X — 2k(3 —2¢) — (3 —¢)

+\/(n—2k+2—5)(n—|—2k—1+5)(n—2k+2)\—|—1—6)(n+2k+2)\—2+5)}

holds.

Proof. Elbert, Laforgia and Rodoné [10] established lower and upper limits for the
zeros of the Jacobi polynomials. In particular, they proved that the inequality

wNN(Oé,ﬁ)
N (ﬁ—a)(a+6+1)—4\/N(N+a+%)(N+B+§)(N+a+ﬁ+1)
= 2N +a+pB+1)2

for the smallest zero of PJ(\,a’ﬂ ) (z) holds for «, 8 > —1/2. Employing Theorem 3.6
and the latter inequality for N = (n—¢)/2—k+1,a=ec¢+2k—2and S =X —1,
and performing some straightforward calculations we obtain (4.1). O

As a consequence of (1.1) we obtain:

Corollary 4.2. For everyn € N and each k, k=1,...,[n/2] the inequality

1
(4.2) hnkg\/n+2+\/(n+2k+5—l)(n—2k—5+2) coszl
n
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for the positive zero hyy of Hy(x) holds. In particular,

1
Rk g\/n+2+\/(n+2k1)(n2k+2) cos21 if n is even,
n

1
Bk §\/n+2+\/(n+2k)(n2k+1) cos2l if n is even.
n

Thus, the largest zero hyy1 of Hy(x) satisfies the inequality

1
(4.3) hp < \/n + 3 +vn(n+1) cos 21 if n is even,
n
1
(4.4) Rt <\/n+2+ (n—1)(n+2) c0521 if n is odd.
n

In what follows we obtain new sharp bounds for the zeros of C)(z) and H,,(x).

Theorem 4.3. For every n € N, for each k, k = 1,2,...,[n/2], and for every
A > 2k — 1+ ¢, the following bound for the zero x,k(\) of Gegenbauer polynomial
C(x) holds:

(4.5)
1 i 2k—A+e—-1) 2k+A+e-3) 1
xik(AK‘COSQ(%){ A+n—5 A+n—1) T3
4(1-2k+A—e) 2k +A+e—3)° ) o
X( Ctn-5 04n—1F (42k+ne) (@ —n+e)

(2+2k -2 —n+¢e) Rk+n+e—4) (2 (—3+k+)\)+n+5))1/2
A+n—4) A+n-2) '

Proof. For the orthonormal Jacobi polynomials we have
62 _ a2
2i+a+8+2)2+a+p)

2 jG+atA+a)i+h
2j+a+8\ 2 +a+B8-1D)2j+a+8+1)

bj =bj(a,B) =

b

aj = aj(a, 3)

Obviously, if 8% > a2, then {b; }?;01 is a decreasing sequence. In order to investigate

the behaviour of {a; };-’:_11, observe that

da’ 4A(j, o, B)

05 (2+a+B-1202i+a+3)32+a+8+1)%

with
A(j, a, B) = 420 + 267 — 1)j* + 8(a + B)(20” + 267 — 1);°
+2(a+ B)* (50 + 587 + 208 — 3)j% + 2(a + B)*((a+ 8)* — 1)j
+af(a+B)*((a+ B)* - 1).

The half-plane a + 8 < 1 contains both the disc 2a? + 28? < 1 and the ellipse
5a? + 582 + 2a3 < 3. Thus the requirement o + 3 > 1 already guarantees that
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the coefficients of j4, % and j2 of A(j,,3) are nonnegative. Since j is a positive
integer, then for the last two terms we have

2+ B)*((a+B)*—1)j+aBla+B)?*((a+5)>—1) >
(a+B8+)(a+B-D(a+p)* {(a+1)(B+1)+(a+8-1)}.

Hence, the sum of the coefficient of j and the free term in A(j,«, ) is always
nonnegative whenever «, 5 > —1 and o+ 8 > 1. Therefore the requirements that
{b;} is decreasing and {a;} is increasing are satisfied simultaneously if o, 8 > —1,
a+ 0 >1and 3 > a. These observations, together with the statement of Corollary
2.2, imply that

zyn(a, B) > % {bN,2 +by_1 — \/(be2 —by_1)? + 1643 _, cos?(m/(N + 1))} ,

provided a,8 > —1, a4+ 3 > 1 and § > «. This immediately yields that, if
bj =bj(e +2k—2,A—1) and a; = a;(e + 2k —2,A — 1), then

T(n—c)/2—k+1,(n—e)/2—kt1(E + 2k =2, X = 1)

1
> 2 {bN_2 by — \/(bN_2 — by_1)? + 16a%_, cos(r/(N + 1))} ,

with N =(n—¢)/2—k+1,if \+e+2k—3 > 0and A\ > ¢+ 2k — 1. Then, bearing
in mind the latter estimate and applying Theorem 3.6 we obtain (4.5). ]

Again the limit relation (1.1) immediately yields:

Corollary 4.4. For everyn € N and each k, k=1,...,[n/2] the inequality
(4.6)

2
hnkS 7’?,—2+\/1+(n—Qk—E)(n+2k—4+€)COSQn_2kj_4_€ COS%

for the positive zero hyy of Hy,(x) holds. In particular,

2
hnk<\/n—2+\/1+(n—2k)(n+2k—4)c0827h27;_~_4 cos%

for even n, and

hnk<\/n—2—|—\/1+(n—2k—1)(n+2k—3)0052m COS%

for odd n. Thus, the largest zero hp1 of Hy(x) satisfies the inequality
2
1+ (n —2)2 cos? T
n

-2y 7
h n 2+\/1+(n1)(n3)c082 2n
n n+1

™ . .
cos — if n is even,
2n

2+

(4.7 hp <
4.8) <

(4.

cos o if n is odd.
2n
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5. NUMERICAL EXPERIMENTS

In the present section we compare the upper bounds for the zeros of C}(x) and
H, (x), obtained in this paper, with the limits known in the literature. First of all
we emphasize that the limits (1.3) and (1.5) are the best known when k is close
to [n/2], i.e. when we are interested in bounds for the small positive zeros of the
polynomials under discussion. This is so because the argument of the cosine in
these formulae is close to /2.

The results obtained in this paper provide the best known upper bounds for the
large zeros of C)(z) and H,, (), i.e. for small k and especially for the largest zeros
Zn1(A) and hyp;.

As it was already mentioned, our principal result which yield the remaining one
almost immediately, is Theorem 3.6. It is somehow surprising how sharp inequality
(3.8) is. In Table 1 we show the numerical values of the two sides of (3.8) for several
values of n, k and .

TABLE 1. Gegenbauer zeros

n k| A | () | Th. 3.6
10| 1| 0.1 | 0.98501 | 0.98565
20| 1| 1/2 |0.99312 | 0.99399
50 | 1| 2 ]0.99627 | 0.99679
15| 1| 2000 | 0.10019 | 0.10169
20| 2| 1/2 ] 0.96397 | 0.99396
50 | 2| 2 ]0.98898 | 0.99679
50 | 3 2 0.97808 | 0.99677

Recall that we are interested mainly in estimates for x,x(A) when M\ is large
enough and because of that we adopted the criteria for comparison of the estimates
through the corresponding estimates for the zeros of H,, ().

In what follows we shall show some numerical evidences that the upper limits
(4.7) and (4.8) are the best known and, because of that, we may consider the result
in Theorem 4.3 for k = 1 the best upper limit for the zeros of the Gegenbauer
polynomials, for large values of .

The graphs included in Figure 1 show the difference between the upper limit
obtained in (2.4), for even n, and in (4.3), as well as the difference between the
right-hand side of in (2.4), for odd n, and in (4.4). Both differences are shown as
functions of n. It is worth emphasizing that more extensive numerical experiments
show that these differences tend to zero monotonically decreasing and because of
that remain positive. The graphs show that the limit for &1, given in (2.4), is still
better than those obtained in Corollary 4.2.

However, it turns out that the bounds for h,;, as given in (4.7) and (4.8), are
sharper than that in (2.4). This is shown by the graphs included in Figure 2. They
present the differences between the bound given in (2.4), for even n, and the right—
hand side of (4.7), as well as the similar difference between the limit in (2.4), for
odd n, and the right-hand side of (4.8). Again, these differences remain positive
for all positive integers n.
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FIGURE 1

n even

10 20 30 40 50 60
FIGURE 2

Finally, let us compare (4.7) and (4.8) with the best upper bound given in
Szegd’s classical book [26]. The bound which appears in [26, (6.32.6) and (6.32.7)]
is obtained using the powerful Sturm comparison theorem, it is given in terms of
the first zero ¢; of the Airy function, as defined in Section 1.81 of [26], and it reads
as

(5.1) hp1 < (2n4+1)Y2 =673, 2n4+1)"Y2 = (2n+1)Y/2 —1.85575(2n+1)"1/2.
The two final graphs, included in Figure 3, contain the differences of this limit, for

even and odd n, respectively, and the one obtained in (4.7) and (4.8), as functions
of n. Thus, our Corollary 4.4 provides better limits for h,; than (5.1).

FIGURE 3
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Table 2 contains numerical evidences of the sharpness of the limits for h,1,

given by Corollary 4.4, compared to those provided by Szegd’s estimate (5.1), by

Co

de

rollary 2.3, and by Corollary 4.2.

TABLE 2. Hermite zeros

n hn1 Cor. 4.4 | Eq. (5.1) | Eq. (2.4) | Cor. 4.2
3 1.22474 | 1.22474 | 1.94434 1.41421 | 2.23533
10 | 3.43615 | 3.82530 | 4.17762 | 4.07078 | 4.52487
20 | 5.38748 | 5.92305 | 6.11330 | 6.09556 | 6.38291
30 | 6.86334 | 7.43829 | 7.57264 | 7.57669 | 7.79928
50 | 9.18240 | 9.77579 | 9.86522 | 9.88072 | 10.0448
100 | 13.40648 | 13.99181 | 14.04655 | 14.06444 | 14.17565
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