

LANDAU AND KOLMOGOROFF TYPE POLYNOMIAL INEQUALITIES II

ELIANA X. L. DE ANDRADE, DIMITAR K. DIMITROV, AND LISANDRA E. DE SOUSA

Departamento de Ciências de Computação e Estatística, Universidade Estadual Paulista,
 15054-000 São José do Rio Preto, SP, Brazil
 eliana@dcce.ibilce.unesp.br and dimitrov@dcce.ibilce.unesp.br

ABSTRACT. Let $0 < j < m \leq n$. Kolmogoroff type inequalities of the form

$$\|f^{(j)}\|^2 \leq A\|f^{(m)}\|^2 + B\|f\|^2$$

which hold for algebraic polynomials of degree n are established. Here the norm is defined by $\int f^2(x)d\mu(x)$, where $d\mu(x)$ is any distribution associated with the Jacobi, Laguerre or Bessel orthogonal polynomials. In particular we characterize completely the positive constants A and B , for which the Landau weighted polynomial inequalities

$$\|f'\|^2 \leq A\|f''\|^2 + B\|f\|^2$$

hold. For some special values of A and B this second result reduces to a Stein type of inequality obtained by Agarwal and Milovanović [1].

AMS (MOS) Subject Classification. Primary 41A17, 26D15; Secondary 33C45.

Keywords. Landau and Kolmogoroff type inequalities, Markov's inequality, Jacobi polynomials, Laguerre polynomials, Bessel polynomials, extremal polynomials, Rayleigh-Ritz theorem.

1. INTRODUCTION AND STATEMENT OF RESULTS

A classical result of Landau [7] states that, for every $f \in C^2[0, 1]$, the inequality $\|f'\| \leq 4$ holds provided $\|f\| = 1$ and $\|f''\| = 4$, where $\|\cdot\|$ denotes the uniform norm in $[0, 1]$. Kolmogoroff [6] generalized this result establishing inequalities of the form

$$\|f^{(j)}\| \leq K(m, j) \|f^{(m)}\|^{\frac{j}{m}} \|f\|^{1-\frac{j}{m}}, \quad 0 < j < m, \quad f \in C^m[0, 1],$$

with the best possible constants $K(m, j)$.

Denote by π_n the space of real algebraic polynomials of degree not exceeding n . In what follows we suppose $0 < j < m \leq n$.

In the recent paper [2], Kolmogoroff type inequalities

$$\|f^{(j)}\|^2 \leq A\|f^{(m)}\|^2 + B\|f\|^2, \quad f \in \pi_n,$$

were obtained for various values of the constants A and B , where the norm was defined by $\|f\|^2 = \int_{-\infty}^{\infty} f^2(x) \exp(-x^2) dx$. Moreover, complete characterization of the positive constants A and B , for which the corresponding Landau type polynomial inequalities

$$\|f'\|^2 \leq A\|f''\|^2 + B\|f\|^2,$$

hold, was given. Thus the principal inequalities obtained in [2] generalize previous results of Varma [13] and Bojanov and Varma [4].

The research is supported by the Brazilian Science Foundations FAPESP under Grants 00/07856-8, 99/12054-9 and 97/6280-0, and CNPq under Grant 300645/95-3.

The main purpose of this paper is to extend further the result of [2] to various weighted Landau and Kolmogoroff type polynomial inequalities. The norms under consideration are

$$(1.1) \quad \|f\|_{(0,J)}^2 := \|f\|_{(\alpha,\beta)}^2 = \int_{-1}^1 f^2(x)(1-x)^\alpha(1+x)^\beta dx, \quad \alpha > -1, \beta > -1,$$

$$(1.2) \quad \|f\|_{(0,L)}^2 := \|f\|_{(\alpha)}^2 = \int_0^\infty f^2(x)x^\alpha e^{-x} dx, \quad \alpha > -1,$$

and

$$(1.3) \quad \|f\|_{(0,B)}^2 := \|f\|_{(\alpha,\pi_n)}^2 = \int_0^\infty f^2(x)x^{\alpha-2}e^{-\beta/x} dx.$$

Recall that the Jacobi polynomials

$$p_n^{(J)}(x) := P_n^{(\alpha,\beta)}(x) = \frac{(\alpha+1)_n}{n!} {}_2F_1(-n, n+\alpha+\beta+1; \alpha+1; \frac{1-x}{2})$$

and the Laguerre polynomials

$$p_n^{(L)}(x) := L_n^{(\alpha)}(x) = \frac{(\alpha+1)_n}{n!} {}_1F_1(-n; \alpha+1; x)$$

are orthogonal with respect to the inner products which generate the norms (1.1) and (1.2). Recently, Srivastava [12] proved that the generalized Bessel polynomials

$$p_n^{(B)}(x) = y_n(x; \alpha, \beta) = {}_2F_0(-n, \alpha+n-1; -; -x/\beta)$$

obey the orthogonal property

$$(1.4) \quad \int_0^\infty x^{\alpha-2}e^{-\beta/x} y_r(x; \alpha, \beta) y_s(x; \alpha, \beta) dx = \beta^{\alpha-1} \frac{r!}{1-\alpha-2r} \Gamma(2-\alpha-r) \delta_{rs},$$

$$Re(\alpha) < 1-s-r, \quad Re(\beta) > 0, \quad r, s \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}.$$

For $\alpha, \beta \in \mathbb{R}$, $\beta > 0$, $n \in \mathbb{N}_0$ and $2n < 1-\alpha$, the norm (1.3) is well-defined in the space π_n . Moreover, the above property (1.4) yields that $\{y_k(x; \alpha, \beta)\}_{k=0}^n$ are orthogonal with respect to the inner product that generates the norm (1.3). Under the same restriction on α, β and n , $\|p^{(i)}\|_{(\alpha+2i, \pi_{n-i})}$ is well-defined for every $p \in \pi_n$ since the inequality $2n < 1-\alpha$ is equivalent to $2(n-i) < 1 - (\alpha+2i)$. As it was pointed out in [3],

$$(1.5) \quad y_n^{(i)}(x; \alpha, \beta) = \frac{(-1)^i}{\beta^i} \frac{n!}{(n-i)!} \frac{\Gamma(2-\alpha-n)}{\Gamma(2-\alpha-n-i)} y_n(x; \alpha+2i, \beta)$$

and the latter polynomial is orthogonal with respect to the inner product which generates

$$\|f\|_{(i,B)} := \|f\|_{(\alpha+2i, \pi_{n-i})}.$$

It is known also that for any positive integers i the polynomials $P_n^{(\alpha+i, \beta+i)}(x)$ and $L_n^{(\alpha+i)}(x)$ are orthogonal with respect to the inner products which generate the norms

$$\|f\|_{(i,J)} := \|f\|_{(\alpha+i, \beta+i)}$$

and

$$\|f\|_{(i,L)} := \|f\|_{(\alpha+i)},$$

respectively (see formulae (4.21.7) and (5.1.14) in Szegő [11]).

In order to formulate more succinctly our Kolmogoroff type polynomial inequalities, we need to introduce some additional denotations. When an inequality concerns the norms $\|\cdot\|_{(0,J)}$, $\|\cdot\|_{(j,J)}$ and $\|\cdot\|_{(m,J)}$ and the indexed constants θ_k, μ_k and S_k appear, we shall mean the following values:

$$(1.6) \quad \begin{aligned} \theta_k &= \frac{(k-j)!}{(k-m)!} \frac{\Gamma(k+m+\alpha+\beta+1)}{\Gamma(k+j+\alpha+\beta+1)}, \quad k = m, \dots, n, \\ \mu_k &= \frac{(k-j)!}{k!} \frac{\Gamma(k+\alpha+\beta+1)}{\Gamma(k+j+\alpha+\beta+1)}, \quad k = j, \dots, n, \\ S_k &= \frac{\mu_k - \mu_{k+1}}{\theta_{k+1} - \theta_k} \\ &= \frac{j(k-m+1)!}{(m-j)(k+1)!} \frac{\Gamma(k+\alpha+\beta+1)}{\Gamma(k+m+\alpha+\beta+1)}, \quad k = m-1, \dots, n-1. \end{aligned}$$

In the inequalities associated with the weighted norms $\|\cdot\|_{(0,L)}$, $\|\cdot\|_{(j,L)}$ and $\|\cdot\|_{(m,L)}$, the constants are understood to be

$$(1.7) \quad \begin{aligned} \theta_k &= \frac{(k-j)!}{(k-m)!}, \quad k = m, \dots, n, \\ \mu_k &= \frac{(k-j)!}{k!}, \quad k = j, \dots, n, \\ S_k &= \frac{j(k-m+1)!}{(m-j)(k+1)!}, \quad k = m-1, \dots, n-1. \end{aligned}$$

Finally, the values of θ_k, μ_k and S_k in the Kolmogoroff inequalities involving the norms $\|\cdot\|_{(0,B)}$, $\|\cdot\|_{(j,B)}$ and $\|\cdot\|_{(m,B)}$, are

$$(1.8) \quad \begin{aligned} \theta_k &= \frac{(k-j)!}{(k-m)!} \frac{\Gamma(2-\alpha-k-j)}{\Gamma(2-\alpha-k-m)}, \quad k = m, \dots, n, \\ \mu_k &= \frac{(k-j)!}{k!} \frac{\Gamma(2-\alpha-k-j)}{\Gamma(2-\alpha-k)}, \quad k = j, \dots, n, \\ S_k &= \frac{j(k-m+1)!}{(m-j)(k+1)!} \frac{\Gamma(2-\alpha-k-m)}{\Gamma(2-\alpha-k)}, \quad k = m-1, \dots, n-1. \end{aligned}$$

Furthermore, in all the cases we set $\theta_k = 0$, $k = j, \dots, m-1$.

Thus, we formulate our main Kolmogoroff type weighted polynomial inequalities:

Theorem 2.1. Let $j < m \leq n$ be positive integers and D positive constant.

(i) If $D \leq S_{n-1}$, then

$$(1.9) \quad \|f^{(j)}\|_{(j,\nu)}^2 \leq \frac{1}{D\theta_n + \mu_n} \left\{ D\|f^{(m)}\|_{(m,\nu)}^2 + \|f\|_{(0,\nu)}^2 \right\}, \quad \nu = J, L, B,$$

for every $f \in \pi_n$. Moreover, equality is attained if and only if $f(x)$ is a constant multiple of $p_n^{(\nu)}(x)$, $\nu = J, L, B$.

(ii) If $S_m < D < S_{m-1}$, then

$$(1.10) \quad \|f^{(j)}\|_{(j,\nu)}^2 \leq \frac{1}{D\theta_m + \mu_m} \left\{ D\|f^{(m)}\|_{(m,\nu)}^2 + \|f\|_{(0,\nu)}^2 \right\}, \quad \nu = J, L, B,$$

for every $f \in \pi_n$. Moreover, equality is attained if and only if $f(x) = cp_m^{(\nu)}(x)$, $\nu = J, L, B$, where c is a constant.

(iii) If $D > S_{m-1}$, then

$$(1.11) \quad \|f^{(j)}\|_{(j,\nu)}^2 \leq \frac{1}{\mu_{m-1}} \left\{ D\|f^{(m)}\|_{(m,\nu)}^2 + \|f\|_{(0,\nu)}^2 \right\}, \quad \nu = J, L, B,$$

for every $f \in \pi_n$. Moreover, equality is attained if and only if $f(x)$ is a constant multiple of $p_{m-1}^{(\nu)}(x)$, $\nu = J, L, B$.

(iv) If $D = S_{m-1}$, then the inequalities (1.10) and (1.11) coincide and they hold for every $f \in \pi_n$. In this case equality is attained if and only if $f(x) = c_1 p_m^{(\nu)}(x) + c_2 p_{m-1}^{(\nu)}(x)$, $\nu = J, L, B$, where c_1 and c_2 are constants.

In the case $j = 1$ and $m = 2$ we provide a complete characterization of the positive constant D for which the corresponding Landau type polynomial inequalities hold. In this case, we suppose that the constants θ_k, μ_k and R_k are defined as follows. In the Landau inequalities for the norm associated with the Jacobi polynomials, they are

$$(1.12) \quad \begin{aligned} \theta_k &= (k-1)(k+\alpha+\beta+2), \quad k = 1, \dots, n, \\ \mu_k &= [k(k+\alpha+\beta+1)]^{-1}, \quad k = 1, \dots, n, \\ R_k &= [k(k-1)(k+\alpha+\beta)(k+\alpha+\beta+1)]^{-1}, \quad k = 2, \dots, n. \end{aligned}$$

In the inequalities corresponding to the Laguerre weighted function we set:

$$(1.13) \quad \begin{aligned} \theta_k &= (k-1), \quad k = 1, \dots, n, \\ \mu_k &= k^{-1}, \quad k = 1, \dots, n, \\ R_k &= [k(k-1)]^{-1}, \quad k = 2, \dots, n, \end{aligned}$$

and in the Bessel case

$$(1.14) \quad \begin{aligned} \theta_k &= (k-1)(-\alpha-k), \quad k = 1, \dots, n, \\ \mu_k &= [k(1-\alpha-k)]^{-1}, \quad k = 1, \dots, n, \\ R_2 &= [2(-\alpha)(-\alpha-1)]^{-1}, \\ R_n &= [2n(1-\alpha-n)(-\alpha-1)]^{-1}. \end{aligned}$$

Observe that the new definitions of θ_k and μ_k are not confusing to the values given previously. Indeed, θ_k and μ_k in (1.12), (1.13) and (1.14) are obtained by setting $j = 1$ and $m = 2$ in the correspondind formulae (1.6), (1.7) and (1.8).

Theorem 2.2. Let D be a positive constant.

(i) If $0 < D \leq R_n$ then

$$(1.15) \quad \|f'\|_{(1,\nu)}^2 \leq \frac{1}{D\theta_n + \mu_n} \left\{ D\|f''\|_{(2,\nu)}^2 + \|f\|_{(0,\nu)}^2 \right\}, \quad \nu = J, L, B,$$

for every $f \in \pi_n$. Moreover, equality is attained if and only if $f(x)$ is a constant multiple of $p_n^{(\nu)}(x)$, $\nu = J, L, B$.

(ii) a) If $R_{k+1} < D < R_k$, where $k \in \mathbb{N}$, $2 \leq k \leq n-1$, then

$$(1.16) \quad \|f'\|_{(1,\nu)}^2 \leq \frac{1}{D\theta_k + \mu_k} \left\{ D\|f''\|_{(2,\nu)}^2 + \|f\|_{(0,\nu)}^2 \right\}, \quad \nu = J, L,$$

for every $f \in \pi_n$. Moreover, equality is attained if and only if $f(x) = cp_k^{(\nu)}(x)$, $\nu = J, L$, where c is a constant.

b) If $R_n < D < R_2$, then

$$(1.17) \quad \|f'\|_{(1,B)}^2 \leq \frac{1}{D\theta_2 + \mu_2} \left\{ D\|f''\|_{(2,B)}^2 + \|f\|_{(0,B)}^2 \right\},$$

for every $f \in \pi_n$. Moreover, equality is attained if and only if $f(x) = cp_2^{(B)}(x)$, where c is a constant.

(iii) If $R_2 < D < \infty$, then

$$(1.18) \quad \|f'\|_{(1,\nu)}^2 \leq \frac{1}{\mu_1} \left\{ D\|f''\|_{(2,\nu)}^2 + \|f\|_{(0,\nu)}^2 \right\}, \quad \nu = J, L, B,$$

for every $f \in \pi_n$. Moreover, equality is attained if and only if $f(x)$ is a constant multiple of $p_1^{(\nu)}(x)$, $\nu = J, L, B$.

(iv) If $D = S_k$, for some integer k , then the inequalities

$$(1.19) \quad \|f'\|_{(1,\nu)}^2 \leq \frac{1}{D\theta_k + \mu_k} \left\{ D\|f''\|_{(2,\nu)}^2 + \|f\|_{(0,\nu)}^2 \right\}, \quad \nu = J, L,$$

$$(1.20) \quad \|f'\|_{(1,\nu)}^2 \leq \frac{1}{D\theta_{k+1} + \mu_{k+1}} \left\{ D\|f''\|_{(2,\nu)}^2 + \|f\|_{(0,\nu)}^2 \right\}$$

coincide and they hold for every $f \in \pi_n$. In this case equality is attained if and only if $f(x) = d_1 p_k^{(\nu)}(x) + d_2 p_{k+1}^{(\nu)}(x)$, $\nu = J, L$, where d_1 and d_2 are constants.

Setting $D = [n(n + \alpha + \beta + 1)]^{-2}$ in Theorem 2.2. (i) we obtain, for $\nu = J$, the inequality

$$\begin{aligned} \|f'\|_{(1,J)}^2 &\leq \frac{1}{(2n-1)(\alpha+\beta)+2(n^2+n-1)} \|f''\|_{(2,J)}^2 \\ &\quad + \frac{n^2(n+\alpha+\beta+1)^2}{(2n-1)(\alpha+\beta)+2(n^2+n-1)} \|f\|_{(0,J)}^2, \quad f \in \pi_n, \end{aligned}$$

where equality is attained if and only if $f(x)$ is a constant multiple of $p_n^{(J)}(x)$.

If, in Theorem 2.2 (i), we set $D = n^{-2}$ and $\nu = L$ we obtain the inequality

$$\|f'\|_{(1,L)}^2 \leq \frac{1}{(2n-1)} \|f''\|_{(2,L)}^2 + \frac{n^2}{(2n-1)} \|f\|_{(0,L)}^2, \quad f \in \pi_n,$$

with equality if and only if $f(x) = cp_n^{(L)}(x)$, where c is a constant. These are exactly the result of the Theorem 1.10.4 in [10] for the Jacobi and Laguerre polynomials, respectively.

2. PROOFS OF THE THEOREMS

Following the ideas given in [2], for each $\nu = J, L, B$ our objective is to study the extremal problem

$$F(C_1, C_2) = \min \left\{ \frac{C_1 \|f^{(m)}\|_{(m,\nu)}^2 + C_2 \|f\|_{(0,\nu)}^2}{\|f^{(j)}\|_{(j,\nu)}^2} : f \in \pi_n, f(x) \neq 0 \right\},$$

for any given integers j, m, n , $0 < j < m \leq n$, and positive constants C_1 and C_2 .

For this purpose let the sequences $\{\gamma_i\}_{i=j}^n$ be defined by

$$(2.1) \quad \begin{aligned} \gamma_i &= C_2 \mu_i, & i &= j, \dots, m-1, \\ \gamma_i &= C_1 \theta_i + C_2 \mu_i, & i &= m, \dots, n. \end{aligned}$$

where $\{\mu_i\}_{i=j}^n$ and $\{\theta_i\}_{i=m}^n$ are given in (1.6), (1.7) and (1.8) for $\nu = J, L, B$ respectively.

We need also some basic properties of the Jacobi and Laguerre polynomials:

$$(2.2) \quad \begin{aligned} \int_{-1}^1 p_i^{(J)}(x) p_k^{(J)}(x) w_{(J)}(x) dx &= \frac{\Gamma(\alpha+i+1)\Gamma(\beta+i+1)}{\Gamma(\alpha+\beta+i+1)} \\ &\quad \times \frac{2^{\alpha+\beta+1}}{(2i+\alpha+\beta+1)i!} \delta_{i,k}, \end{aligned}$$

where $w_{(J)}(x) = (1-x)^\alpha(1+x)^\beta$, and $\alpha, \beta > -1$,

$$(2.3) \quad \int_0^\infty L_i^{(\alpha)}(x)L_k^{(\alpha)}(x)x^\alpha e^{-x}dx = \frac{\Gamma(\alpha+i+1)}{i!}\delta_{i,k}, \quad \alpha > -1,$$

$$(2.4) \quad \frac{d}{dx}P_k^{(\alpha,\beta)}(x) = \frac{\alpha+\beta+k+1}{2}P_{k-1}^{(\alpha+1,\beta+1)}(x),$$

$$(2.5) \quad \frac{d}{dx}L_k^{(\alpha)}(x) = -L_{k-1}^{(\alpha+1)}(x).$$

The identities (2.2), (2.3), (2.4) and (2.5) correspond to (4.3.3), (5.1.1), (4.2.7) and (5.1.14) in [11].

Consider now the following normalization of the orthogonal polynomials $p_i^{(\nu)}(x)$, $\nu = J, L, B$:

$$\tilde{p}_i^{(\nu)}(x) = c_i p_i^{(\nu)}(x),$$

where the constants $c_i, i = 0, \dots, n$, are defined by: $c_i = 1$, $i = 0, \dots, j-1$, and for $i = j, \dots, n$

$$c_i = \left\{ \frac{2^{\alpha+\beta+1}}{(2i+\alpha+\beta+1)(i-j)!} \frac{\Gamma(\alpha+i+1)\Gamma(\beta+i+1)\Gamma(\alpha+\beta+i+j+1)}{[\Gamma(\alpha+\beta+i+1)]^2} \right\}^{-1/2},$$

if $\nu = J$,

$$c_i = \left\{ \frac{\Gamma(\alpha+i+1)}{(i-j)!} \right\}^{-1/2}$$

when $\nu = L$ and, in the Bessel case ($\nu = B$),

$$c_i = \left\{ \frac{(i!)^2}{(i-j)!} \frac{\beta^{\alpha-1}}{(-\alpha-2i+1)} \frac{\Gamma^2(-\alpha-i+2)}{\Gamma(-\alpha-i-j+2)} \right\}^{-1/2}.$$

Obviously, every $f \in \pi_n$ can be uniquely represented in the form

$$f(x) = \sum_{k=0}^n a_k \tilde{p}_k^{(\nu)}(x), \quad \nu = J, L, B.$$

From the relations (2.2), (2.3), (1.4) and the definition of the polynomials $\tilde{p}_k^{(\nu)}(x)$, $\nu = J, L, B$, we have

$$\|f\|_{(0,\nu)}^2 = \sum_{k=0}^n \mu_k a_k^2, \quad \nu = J, L, B,$$

where $\mu_k, k = j, \dots, n$, are defined in (1.6), (1.7), (1.8), respectively for $\nu = J, L, B$.

For $k = 0, \dots, j-1$, the constants μ_k are given by

$$\mu_k = \frac{2^{\alpha+\beta+1}}{(2k+\alpha+\beta+1)k!} \frac{\Gamma(\alpha+k+1)\Gamma(\beta+k+1)}{\Gamma(\alpha+\beta+k+1)} \quad \text{for } \nu = J,$$

$$\mu_k = \frac{\Gamma(\alpha+k+1)}{k!}$$

for the Laguerre case and, if $\nu = B$,

$$\mu_k = \frac{k!}{1-\alpha-2k} \Gamma(2-\alpha-k) \beta^{\alpha-1}.$$

Again using the relations (2.2), (2.3), (1.4), from (2.4), (2.5), (1.5) and the definition of the polynomials $\tilde{p}_k^{(\nu)}(x)$, we obtain

$$\|f^{(j)}\|_{(j,\nu)} = \sum_{k=j}^n a_k^2 c_k^2 \|(\tilde{p}_k^{(\nu)})^{(j)}\|_{(j,\nu)} = \sum_{k=j}^n a_k^2, \quad \nu = J, L, B.$$

In the same way, we obtain

$$\|f^{(m)}\|_{(m,\nu)} = \sum_{k=m}^n \theta_k a_k^2, \quad \nu = J, L, B,$$

where θ_k , $k = m, \dots, n$, are defined in the equations (1.6), (1.7), (1.8), respectively for $\nu = J, L, B$.

Thus,

$$F(C_1, C_2) = \min \left\{ \frac{\sum_{k=0}^{m-1} C_2 \mu_k a_k^2 + \sum_{k=m}^n (C_1 \theta_k + C_2 \mu_k) a_k^2}{\sum_{k=j}^n a_k^2} : a_0, \dots, a_n \in \mathbb{R} \right\}.$$

Obviously, the above minimum is attained for $a_0 = \dots = a_{j-1} = 0$. Hence, we have to determine the minimum of $a^t A a$, subject to $a^t a = 1$, where A is the diagonal matrix

$$\text{diag}(C_2 \mu_j, \dots, C_2 \mu_{m-1}, C_1 \theta_m + C_2 \mu_m, \dots, C_1 \theta_n + C_2 \mu_n).$$

By the Rayleigh-Ritz Theorem (Theorem 4.2.2 on page 176 in [5]), our problem reduces to determine the smallest eigenvalue of A . In summary, for each $\nu = J, L, B$, we have proven:

Lemma 2.3. For any given integers $j < m \leq n$ positive constants C_1 and C_2

$$(2.6) \quad F(C_1, C_2) = \gamma_k := \min\{\gamma_j, \dots, \gamma_n\},$$

where γ_k , $k = j, \dots, n$, are given in the equations (2.1). Moreover, the extremal polynomials for which the minimum is attained is a constant multiple of $p_k^{(\nu)}(x)$.

Then, to prove Theorem 2.1, we need to analyze the behaviour of the sequences $\{\gamma_k\}_{k=j}^n$ for each $\nu = J, L, B$. For this purpose, consider the following results.

Lemma 2.4. The sequences $\{\mu_k\}_{k=j}^n$, defined in the equations (1.6), (1.7) and (1.8), respectively for $\nu = J, L, B$, are decreasing.

Proof. i) Consider $\nu = J$. Then, by (1.6) we have

$$\begin{aligned} \frac{\mu_k}{\mu_{k+1}} &= \frac{(k-j)!}{k!} \frac{\Gamma(\alpha + \beta + k + 1)}{\Gamma(\alpha + \beta + k + j + 1)} \frac{(k+1)!}{(k+1-j)!} \frac{\Gamma(\alpha + \beta + k + j + 2)}{\Gamma(\alpha + \beta + k + 2)} \\ &= \frac{k+1}{k+1-j} \frac{\alpha + \beta + k + j + 1}{\alpha + \beta + k + 1} \\ &= \left(1 + \frac{j}{k-j+1}\right) \left(1 + \frac{j}{\alpha + \beta + k + 1}\right) > 1, \quad \alpha, \beta > -1. \end{aligned}$$

ii) If $\nu = L$, by (1.7)

$$\mu_k - \mu_{k+1} = \frac{(k-j)!}{k!} - \frac{(k-j+1)!}{(k+1)!} = j \frac{(k-j)!}{(k+1)!} > 0, \quad \alpha > -1.$$

iii) Finally, for $\nu = B$, equation (1.8) gives us

$$\begin{aligned} \frac{\mu_k}{\mu_{k+1}} &= \frac{(k-j)!}{k!} \frac{\Gamma(2 - \alpha - k - j)}{\Gamma(2 - \alpha - k)} \frac{(k+1)!}{(k+1-j)!} \frac{\Gamma(1 - \alpha - k - j)}{\Gamma(1 - \alpha - k)} \\ &= \frac{k+1}{k+1-j} \frac{1 - \alpha - k - j}{1 - \alpha - k} > 1, \end{aligned}$$

since $2n < 1 - \alpha$ and, consequently, $(k+1-j)(1 - \alpha - k) < (k+1)(1 - \alpha - k - j)$. \blacksquare

In the same manner we prove

Lemma 2.5. The sequences $\{\theta_k\}_{k=m}^n$, defined in the equations (1.6), (1.7) and (1.8), respectively for $\nu = J, L, B$, are increasing.

Proof of Theorem 2.1 As the sequences $\{\mu_k\}_{k=j}^{m-1}$ is decreasing for $\nu = J, L, B$, then the smaller among the numbers $C_2\mu_j, \dots, C_2\mu_{m-1}$ is $C_2\mu_{m-1}$. Thus, according to Lemma 2.3, we need to find the smaller among $\gamma_m, \dots, \gamma_n$ and to compare with $C_2\mu_{m-1}$.

Now, consider the monotonicity of the sequences $\{\gamma_k\}_{k=m}^n$ for $\nu = J, L, B$. Since

$$\gamma_{k+1} - \gamma_k = C_1(\theta_{k+1} - \theta_k) + C_2(\mu_k - \mu_{k+1}),$$

then: a) the sequences $\{\gamma_k\}_{k=m}^n$ are increasing if $D := C_1/C_2 \geq S_k := (\mu_k - \mu_{k+1})/(\theta_{k+1} - \theta_k)$ for $k = m, \dots, n-1$ and b) $\{\gamma_k\}_{k=m}^n$ are decreasing if $D \leq S_k$ for $k = m, \dots, n-1$.

Straightforward calculations show that for $\nu = J, L, B$, S_k , $k = m, \dots, n-1$, are given, respectively, in the equations (1.6), (1.7) and (1.8). But, if $\nu = J$,

$$\frac{S_{k+1}}{S_k} = \frac{(k+2-m)(\alpha + \beta + k + 1)}{(k+2)(\alpha + \beta + k + m + 1)}.$$

When $\nu = L$,

$$\frac{S_{k+1}}{S_k} = \frac{k+2-m}{k+2},$$

and, in the Bessel case,

$$\frac{S_{k+1}}{S_k} = \frac{(k+2-m)(1-\alpha-k)}{(k+2)(1-\alpha-k-m)}.$$

Then, $S_{k+1}/S_k < 1$ for $\nu = J, L, B$ and $k = m, \dots, n-1$. This means that $\{S_k\}$ are decreasing sequences. Hence, if $D \geq S_m$ then γ_k are increasing and $\gamma_m = \min\{\gamma_k, k = m, \dots, n\}$. Thus, we have

$$F(C_1, C_2) = \min_{j \leq k \leq n} \gamma_k = \min \{\gamma_{m-1}, \gamma_m\}, \quad \nu = J, L, B.$$

Observe that $\gamma_{m-1} < \gamma_m$ if $\tilde{S} := (\mu_{m-1} - \mu_m)/\theta_m < D$ and $\gamma_{m-1} \geq \gamma_m$ otherwise. But

$$\begin{aligned} \tilde{S} &= \frac{j}{(m-j)m!} \frac{\Gamma(\alpha + \beta + m)}{\Gamma(\alpha + \beta + 2m)} \quad \text{for } \nu = J, \\ \tilde{S} &= \frac{j}{(m-j)m!} \quad \text{if } \nu = L, \\ \tilde{S} &= \frac{j}{(m-j)m!} \frac{\Gamma(3-\alpha-2m)}{\Gamma(3-\alpha-m)} \quad \text{for } \nu = B. \end{aligned}$$

In view of the above identities we can conclude:

(1) If $D \geq S_m$ and $D > \tilde{S}$, then $\gamma_{m-1} < \gamma_m$ and $F(C_1, C_2) = \gamma_{m-1}$;

(2) If $S_m \leq D < \tilde{S}$, then $\gamma_{m-1} > \gamma_m$ and $F(C_1, C_2) = \gamma_m$.

The later cases (1) and (2) correspond to the statements (iii) and (ii) of Theorem 2.1.

The above observation b) and the monotonicity of S_k , $k = m, \dots, n-1$, imply that the sequences $\{\gamma_k\}_{k=m}^n$ are decreasing provided $D \leq S_{n-1}$. Hence, in these cases we have $F(C_1, C_2) = \min \{\gamma_{m-1}, \gamma_n\}$, $\nu = J, L, B$. In order to compare γ_{m-1} and γ_n , note that $\gamma_{m-1} < \gamma_n$ if $\tilde{R} := (\mu_{m-1} - \mu_n)/\theta_n < D$ and $\gamma_{m-1} \geq \gamma_n$ otherwise.

In view of the identities

$$\begin{aligned}\tilde{R} &= \frac{(n-m)!}{(n-j)!} \frac{\Gamma(\alpha + \beta + n + j + 1)}{\Gamma(\alpha + \beta + n + m + 1)} \left[\frac{(m-j-1)!}{(m-1)!} \frac{\Gamma(\alpha + \beta + m)}{\Gamma(\alpha + \beta + m + j)} \right. \\ &\quad \left. - \frac{(n-j)!}{n!} \frac{\Gamma(\alpha + \beta + n + 1)}{\Gamma(\alpha + \beta + n + j + 1)} \right], \nu = J, \\ \tilde{R} &= \frac{(n-m)!}{(n-j)!} \left[\frac{(m-j-1)!}{(m-1)!} - \frac{(n-j)!}{n!} \right], \nu = L,\end{aligned}$$

and

$$\begin{aligned}\tilde{R} &= \frac{(n-m)!}{(n-j)!} \frac{\Gamma(2 - \alpha - n - m)}{\Gamma(2 - \alpha - n - j)} \left[\frac{(m-j-1)!}{(m-1)!} \frac{\Gamma(3 - \alpha - m - j)}{\Gamma(3 - \alpha - m)} \right. \\ &\quad \left. - \frac{(n-j)!}{n!} \frac{\Gamma(2 - \alpha - n - j)}{\Gamma(2 - \alpha - n)} \right], \nu = B,\end{aligned}$$

we need relations between the latter expressions and D . On the other hand, the inequality $\frac{m!}{(m-j)!} < \frac{n!}{(n-j)!}$, $j < m < n$, yields $S_{n-1} < \tilde{R}$, $\nu = J, L, B$. If $D \leq S_{n-1}$ and $D < \tilde{R}$, then $\gamma_{m-1} > \gamma_n$ and $F(C_1, C_2) = \gamma_n$. This corresponds to the statement (i) of the theorem. ■

Proof of Theorem 2.2 Since $j = 1$ and $m = 2$, Lemma 2.3 shows that we need to determine

$$\min \{C_2\mu_1, C_1\theta_2 + C_2\mu_2, \dots, C_1\theta_n + C_2\mu_n\}.$$

In order to this, in all the cases $\nu = J$, $\nu = L$ or $\nu = B$, we shall find the smaller among the numbers $C_1\theta_2 + C_2\mu_2, \dots, C_1\theta_n + C_2\mu_n$, and we shall compare it to $C_2\mu_1$.

In what follows, up to the final observation in this proof, we shall assume that $C_1 + C_2 = 1$, $C_1, C_2 > 0$.

Consider first the case $\nu = J$. Then, by equations in (1.12), for $k = 2, \dots, n$ we have

$$\gamma_k = C_1\theta_k + C_2\mu_k = C_2 \frac{1}{k(k + \alpha + \beta + 1)} + (1 - C_2)(k - 1)(k + \alpha + \beta + 2).$$

Define the function

$$g_J(x) = C_2 \frac{1}{x(x + \alpha + \beta + 1)} + (1 - C_2)(x - 1)(x + \alpha + \beta + 2) \quad \text{for } 2 \leq x \leq n.$$

Since $g_J(k) = \gamma_k$ for $k = 2, \dots, n$, then our problem reduces to investigate the behaviour of $g_J(x)$ when C_1 and C_2 belong to the segment $C_1 + C_2 = 1$, $C_1, C_2 > 0$. Note that the only zero of

$$g'_J(x) = (2x + \alpha + \beta + 1) \left(1 - C_2 - \frac{C_2}{x^2(x + \alpha + \beta + 1)^2} \right)$$

that can belong to the interval $[2, n]$ is

$$x = \frac{-(\alpha + \beta + 1) + \left[(\alpha + \beta + 1)^2 + 4\sqrt{C_2/(1 - C_2)} \right]^{1/2}}{2} > 0, \quad \alpha, \beta > -1.$$

But, for $x \geq 2$

$$g''_J(x) = 2(1 - C_2) + \frac{2C_2}{x^3(x + \alpha + \beta + 1)^3} [3x^2 + 3(\alpha + \beta + 1)x + (\alpha + \beta + 1)^2] > 0.$$

Hence $g_J(x)$ is convex on $[2, \infty)$ and it can attain its absolute minimum on there at $x = \{-(\alpha + \beta + 1) + [(\alpha + \beta + 1)^2 - 4\sqrt{C_2/(1 - C_2)}]^{1/2}\}/2$. Thus, we can conclude that:

- If

$$\frac{-(\alpha + \beta + 1) + \left[(\alpha + \beta + 1)^2 + 4\sqrt{C_2/(1 - C_2)} \right]^{1/2}}{2} < 2,$$

then $\gamma_{\min} = \gamma_2$;

- If

$$\frac{-(\alpha + \beta + 1) + \left[(\alpha + \beta + 1)^2 + 4\sqrt{C_2/(1 - C_2)} \right]^{1/2}}{2} > n,$$

then $\gamma_{\min} = \gamma_n$;

- If

$$k \leq \frac{-(\alpha + \beta + 1) + \left[(\alpha + \beta + 1)^2 + 4\sqrt{C_2/(1 - C_2)} \right]^{1/2}}{2} < k + 1,$$

where $2 \leq k \leq n - 1$, then $\gamma_{\min} = \min \{\gamma_k, \gamma_{k+1}\}$.

In order to determine the smaller between γ_k and γ_{k+1} , observe that

$$\gamma_{k+1} < \gamma_k \text{ if } \frac{k(k+1)(k+\alpha+\beta+1)(\alpha+\beta+k+2)}{k(k+1)(k+\alpha+\beta+1)(k+\alpha+\beta+2)+1} < C_2$$

and $\gamma_{k+1} \geq \gamma_k$ otherwise. It is clear that $\gamma_k = \gamma_{k+1}$ if and only if

$$C_2 = \frac{k(k+1)(k+\alpha+\beta+1)(\alpha+\beta+k+2)}{k(k+1)(k+\alpha+\beta+1)(k+\alpha+\beta+2)+1}.$$

Set

$$y := \frac{-(\alpha + \beta + 1) + \left[(\alpha + \beta + 1)^2 + 4\sqrt{C_2/(1 - C_2)} \right]^{1/2}}{2}$$

for any C_2 , $0 < C_2 < 1$.

If

$$C_2 = \frac{k(k+1)(k+\alpha+\beta+1)(k+\alpha+\beta+2)}{k(k+1)(k+\alpha+\beta+1)(k+\alpha+\beta+2)+1}$$

then the point of minimum of $g_J(x)$ is

$$y_k := \frac{-(\alpha + \beta + 1) + \left[(\alpha + \beta + 1)^2 + 4\sqrt{k(k+1)(k+\alpha+\beta+1)(k+\alpha+\beta+2)} \right]^{1/2}}{2}.$$

Observe that $k < y_k < k + 1$. Since the function $g_J(x)$ is convex, then $\gamma_{\min} = \gamma_{k+1}$ if and only if $y_k < y < y_{k+1}$ and this conclusion holds for $k = 1, \dots, n - 2$. The latter inequality is equivalent to $A_k < C_2 < A_{k+1}$, where

$$A_k := \frac{k(k+1)(k+\alpha+\beta+1)(k+\alpha+\beta+2)}{k(k+1)(k+\alpha+\beta+1)(k+\alpha+\beta+2)+1}.$$

Let us compare, in each of these cases, γ_{k+1} to $\gamma_1 = C_2/(\alpha + \beta + 2)$.

For $C_2 \in \left(0, \frac{6(\alpha + \beta + 3)(\alpha + \beta + 4)}{6(\alpha + \beta + 3)(\alpha + \beta + 4) + 1}\right)$, we need to compare γ_1 and γ_2 . Since

$$\gamma_2 - \gamma_1 = (\alpha + \beta + 4) \left(1 - \frac{2(\alpha + \beta + 2)(\alpha + \beta + 3) + 1}{2(\alpha + \beta + 2)(\alpha + \beta + 3)} \right),$$

then

- $\gamma_1 < \gamma_2$ for $0 < C_2 < \frac{2(\alpha + \beta + 2)(\alpha + \beta + 3)}{2(\alpha + \beta + 2)(\alpha + \beta + 3) + 1}$;
- $\gamma_1 = \gamma_2$ for $C_2 = \frac{2(\alpha + \beta + 2)(\alpha + \beta + 3)}{2(\alpha + \beta + 2)(\alpha + \beta + 3) + 1}$ and
- $\gamma_2 < \gamma_1$ for $\frac{2(\alpha + \beta + 2)(\alpha + \beta + 3)}{2(\alpha + \beta + 2)(\alpha + \beta + 3) + 1} < C_2 < \frac{6(\alpha + \beta + 3)(\alpha + \beta + 4)}{6(\alpha + \beta + 3)(\alpha + \beta + 4) + 1}$.

Let now k be any integer, such that $2 \leq k \leq n$ and let

$$C_2 \in (A_k, A_{k+1}) =: \Delta_k.$$

Since

$$\gamma_{k+1} - \gamma_1 = k(k + \alpha + \beta + 3) \left(1 - \frac{(k+1)(k+\alpha+\beta+2)(\alpha+\beta+2)+1}{(k+1)(k+\alpha+\beta+2)(\alpha+\beta+2)} C_2 \right) \leq 0$$

if and only if $\frac{(k+1)(k+\alpha+\beta+2)(\alpha+\beta+2)}{(k+1)(k+\alpha+\beta+2)(\alpha+\beta+2)+1} < C_2$ and this latter inequality always holds for $C_2 \in \Delta_k$. Then we have $\gamma_{\min} = \gamma_{k+1}$ for every $C_2 \in \Delta_k$.

Finally, we have $\gamma_n < \gamma_1$ for every

$$C_2 \in \left(\frac{n(n-1)(n+\alpha+\beta)(n+\alpha+\beta+1)}{n(n-1)(n+\alpha+\beta)(n+\alpha+\beta+1)+1}, 1 \right) = \Delta_{n-1}$$

because

$$\gamma_n - \gamma_1 = (n-1)(n+\alpha+\beta+2) \left(1 - \frac{n(n+\alpha+\beta+1)(\alpha+\beta+2)+1}{n(n+\alpha+\beta+1)(\alpha+\beta+2)} C_2 \right) < 0$$

is equivalent to $\frac{n(n+\alpha+\beta+1)(\alpha+\beta+2)}{n(n+\alpha+\beta+1)(\alpha+\beta+2)+1} < C_2$.

Recall that all considerations have been done under the restriction $C_1 + C_2 = 1$. The restrictions $C_2 \in \Delta_k$ can be easily transformed into equivalent restrictions for $D = C_1/C_2$. We omit this detail. The result is:

- If $[2(\alpha + \beta + 2)(\alpha + \beta + 3)]^{-1} < D < \infty$, then $\gamma_{\min} = \gamma_1$;
- If $[(k+1)(k+2)(k+\alpha+\beta+2)(k+\alpha+\beta+3)]^{-1} < D < [k(k+1)(k+\alpha+\beta+1)(k+\alpha+\beta+2)]^{-1}$, then $\gamma_{\min} = \gamma_{k+1}$, $k = 1, \dots, n-2$;
- If $0 < D < [n(n-1)(n+\alpha+\beta+1)(n+\alpha+\beta+2)]^{-1}$, then $\gamma_{\min} = \gamma_n$.

This completes the proof for the Jacobi case.

The proof for the case $\nu = L$ is similar to the Hermite case in [2]. By considering the equations in (1.13) we obtain

$$\gamma_k = C_1 \theta_k + C_2 \mu_k = C_2 \frac{1}{k} + (1 - C_2)(k-1) \quad \text{for } k = 2, \dots, n.$$

Observe that it is exactly the equation for γ_k in the proof of (Theorem 2, [2]).

Finally, consider the Bessel case, that is, $\nu = B$. Then, by equations in (1.14) we have

$$\gamma_k = C_1 \theta_k + C_2 \mu_k = C_2 \frac{1}{k(-\alpha - k + 1)} + (1 - C_2)(k-1)(-\alpha - k) \quad \text{for } k = 2, \dots, n.$$

In this case, let $g_B(x)$ be defined by

$$g_B(x) = C_2 \frac{1}{x(-\alpha - x + 1)} + (1 - C_2)(x-1)(-\alpha - x), \quad 2 \leq x \leq n.$$

Using partial fraction decomposition, $g_B(x)$ can be written in the form

$$g_B(x) = \frac{C_2}{2 - \alpha} \left(\frac{1}{x} + \frac{1}{-\alpha - x + 1} \right) + (1 - C_2)(x-1)(-\alpha - x).$$

Remember that $2n < 1 - \alpha$ in the Bessel case. Then, $2 - \alpha > 0$ and $n < (-\alpha + 1)/2$. Hence, $g_B(x)$ is concave on $[2, n]$.

Since $g_B(k) = \gamma_k$, $k = 2, \dots, n$, then our problem reduces to determine the smaller between γ_2 and γ_n and to compare it to γ_1 . Observe that $\gamma_n < \gamma_1$ if $[2n(-\alpha-1)(1-\alpha-n+1)]/[2n(-\alpha-1)(1-\alpha-n)+1] <$

C_2 and $\gamma_n \geq \gamma_1$ otherwise.

Let us compare γ_2 to $\gamma_1 = C_2/(-\alpha)$. Since

$$\gamma_2 - \gamma_1 = \frac{-\alpha - 2}{2(-\alpha)(-\alpha - 1)} \{2(-\alpha)(-\alpha - 1) - [2(-\alpha)(-\alpha - 1) + 1] C_2\}$$

then

- $\gamma_2 < \gamma_1$ for $C_2 > \frac{2(-\alpha)(-\alpha - 1)}{2(-\alpha)(-\alpha - 1) + 1}$;
- $\gamma_2 = \gamma_1$ for $C_2 = \frac{2(-\alpha)(-\alpha - 1)}{2(-\alpha)(-\alpha - 1) + 1}$ and
- $\gamma_2 > \gamma_1$ for $C_2 < \frac{2(-\alpha)(-\alpha - 1)}{2(-\alpha)(-\alpha - 1) + 1}$.

For $n \geq 2$ we have $\frac{2n(-\alpha - 1)(1 - \alpha - n)}{2n(-\alpha - 1)(1 - \alpha - n) + 1} > \frac{2(-\alpha)(-\alpha - 1)}{2(-\alpha)(-\alpha - 1) + 1}$. Then,

$$\gamma_{min} = \gamma_2 \text{ if } \frac{2(-\alpha)(-\alpha - 1)}{2(-\alpha)(-\alpha - 1) + 1} < C_2 < \frac{2n(-\alpha - 1)(1 - \alpha - n)}{2n(-\alpha - 1)(1 - \alpha - n) + 1}.$$

In order to compare γ_1 and γ_n observe that

$$\gamma_n - \gamma_1 = (n - 1)(-\alpha - n) - C_2 \left[\frac{n(n - 1)(1 - \alpha - n)(-\alpha - n) - 1}{n(1 - \alpha - n)} + \frac{1}{-\alpha} \right].$$

Then $\gamma_n < \gamma_1$ if $C_2 > \frac{n(1 - \alpha - n)(-\alpha)}{n(1 - \alpha - n)(-\alpha) + 1}$ and $\gamma_n \geq \gamma_1$ otherwise. On the other hand, for $n \geq 2$, we have

$$\frac{2(-\alpha)(-\alpha - 1)}{2(-\alpha)(-\alpha - 1) + 1} < \frac{n(-\alpha)(1 - \alpha - n)}{n(-\alpha)(1 - \alpha - n) + 1} < \frac{2n(-\alpha - 1)(1 - \alpha - n)}{2n(-\alpha - 1)(1 - \alpha - n) + 1},$$

Thus,

- if $\frac{2n(-\alpha - 1)(1 - \alpha - n)}{2n(-\alpha - 1)(1 - \alpha - n) + 1} < C_2 < 1$, then $\gamma_{min} = \gamma_n$;
- if $0 < C_2 < \frac{2(-\alpha)(-\alpha - 1)}{n(-\alpha)(-\alpha - 1) + 1}$, then $\gamma_{min} = \gamma_1$.

We can again transform the restrictions for C_2 into equivalent restrictions for $D = C_1/C_2$. This procedure yields:

- if $[2(-\alpha)(-\alpha - 1)]^{-1} < D < \infty$, then $\gamma_{min} = \gamma_1$;
- if $[2n(-\alpha - 1)(1 - \alpha - n)]^{-1} < D < [2(-\alpha)(-\alpha - 1)]^{-1}$, then $\gamma_{min} = \gamma_2$;
- if $0 < D < [2n(-\alpha - 1)(1 - \alpha - n)]^{-1}$, then $\gamma_{min} = \gamma_n$.

Finally, we can remove the restriction $C_1 + C_2 = 1$ in all the cases $\nu = J, L, B$. This is justified just as in the final stage of the proof of Theorem 2 in [2]. ■

REFERENCES

- [1] Agarwal, R.P.; Milovanović, G.V.: On characterization of the classical orthogonal polynomials. In “Progress in Approximation Theory”, P. Nevai and A. Pincus, eds., Academic Press (1991), 1-4.
- [2] Alves, C.R.R.; Dimitrov, D.K.: Landau and Kolmogoroff Type Polynomials Inequalities. J. of Inequal. & Appl. 4 (1999), 327-338.
- [3] Andrade, E.X.L.; Dimitrov, D.K.; Sri Ranga, A.: Characterization of Generalized Bessel Polynomials in Terms of Polynomials Inequalities. J. Math. Anal. Appl. 221 (1998), 538-543.
- [4] Bojanov, B.D.; Varma, A.K.: On a polynomial inequality of Kolmogoroff’s type. Proc. Amer. Math. Soc. 124 (1996), 491-496.
- [5] Horn, G.A.; Johnson, C.R.: Matrix Analysis. Cambridge Univ. Press, Cambridge (1985).
- [6] Kolmogoroff, A.: On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval In Amer. Math. Soc. Transl. Ser. 1-2, Amer. Math. Soc. (1962), 233-243.

- [7] Landau, E.: Einige Ungleichungen für zweimal differenzierbare Funktionen. Proc. London Math. Soc. (2) 13 (1913), 43-49.
- [8] Markov, A.A.: On a problem of Mendeleev. Zap. Imp. Acad. Nauk. 62 (1889), 1-24.
- [9] Markov, V.A.: On functions least deviating from zero on a given interval. St. Petersburg (1892) [Russian], reprinted in Über Polynome die in einem gegebenen Intervall möglichst wenig von Null abweichen. Math. Ann. 77 (1916), 213-258.
- [10] Milovanović, Mitrinović, D.S.; Rassias, T.M.: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. Word Scientific Publishing Co. Pte. Ltd. (1994).
- [11] Szegő, G.: Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ., Vol 23, 4th ed., Amer. Math. Soc. (1975).
- [12] Srivastava, H.M.: Orthogonality Relations and Generating Functions for the Generalized Bessel Polynomials. Appl. Math. Comput. 61 (1994), 99-134.
- [13] Varma, A.K.: A new characterization of Hermite polynomials. J. Approx. Theory 63 (1990), 238-254.