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ABSTRACT. Let 0 < j < m ≤ n. Kolmogoroff type inequalities of the form

‖f (j)‖2 ≤ A‖f (m)‖2 + B‖f‖2

which hold for algebraic polynomials of degree n are established. Here the norm is defined by
∫

f2(x)dµ(x), where

dµ(x) is any distribution associated with the Jacobi, Laguerre or Bessel orthogonal polynomials. In particular we

characterize completely the positive constants A and B, for which the Landau weighted polynomial inequalities

‖f ′‖2 ≤ A‖f ′′‖2 + B‖f‖2

hold. For some special values of A and B this second result reduces to a Stein type of inequality obtained by Agarwal

and Milovanović [1].
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1. INTRODUCTION AND STATEMENT OF RESULTS

A classical result of Landau [7] states that, for every f ∈ C2[0, 1], the inequality ‖f ′‖ ≤ 4
holds provided ‖f‖ = 1 and ‖f ′′‖ = 4, where ‖.‖ denotes the uniform norm in [0, 1]. Kolmogoroff [6]
generalized this result establishing inequalities of the form

‖f (j)‖ ≤ K(m, j) ‖f (m)‖
j
m ‖f‖1−

j
m , 0 < j < m, f ∈ Cm[0, 1],

with the best possible constants K(m, j).

Denote by πn the space of real algebraic polynomials of degree not exceeding n. In what follows
we suppose 0 < j < m ≤ n.

In the recent paper [2], Kolmogoroff type inequalities

‖f (j)‖2 ≤ A‖f (m)‖2 + B‖f‖2, f ∈ πn,

were obtained for various values of the constants A and B, where the norm was defined by ‖f‖2 =∫∞
−∞ f2(x) exp(−x2)dx. Moreover, complete characterization of the positive constants A and B, for

which the corresponding Landau type polynomial inequalities

‖f ′‖2 ≤ A‖f ′′‖2 + B‖f‖2,

hold, was given. Thus the principal inequalities obtained in [2] generalize previous results of Varma
[13] and Bojanov and Varma [4].
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99/12054-9 and 97/6280-0, and CNPq under Grant 300645/95-3.
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The main purpose of this paper is to extend further the result of [2] to various weighted Landau
and Kolmogoroff type polynomial inequalities. The norms under consideration are

(1.1) ‖f‖2(0,J) := ‖f‖2(α,β) =
∫ 1

−1

f2(x)(1− x)α(1 + x)βdx, α > −1, β > −1,

(1.2) ‖f‖2(0,L) := ‖f‖2(α) =
∫ ∞

0

f2(x)xαe−xdx, α > −1,

and

(1.3) ‖f‖2(0,B) := ‖f‖2(α,πn) =
∫ ∞

0

f2(x)xα−2e−β/xdx.

Recall that the Jacobi polynomials

p(J)
n (x) := P (α,β)

n (x) =
(α + 1)n

n! 2F1(−n, n + α + β + 1;α + 1;
1− x

2
)

and the Laguerre polynomials

p(L)
n (x) := L(α)

n (x) =
(α + 1)n

n! 1F1(−n;α + 1;x)

are orthogonal with respect to the inner products which generate the norms (1.1) and (1.2). Recently,
Srivastava [12] proved that the generalized Bessel polynomials

p(B)
n (x) = yn(x;α, β) = 2F0(−n, α + n− 1;−;−x/β)

obey the orthogonal property

(1.4)
∫ ∞

0

xα−2e−β/xyr(x;α, β)ys(x;α, β)dx = βα−1 r!
1− α− 2r

Γ(2− α− r)δrs,

Re(α) < 1− s− r, Re(β) > 0, r, s ∈ IN0 := IN ∪ {0}.

For α, β ∈ IR, β > 0, n ∈ IN0 and 2n < 1 − α, the norm (1.3) is well-defined in the space
πn. Moreover, the above property (1.4) yields that {yk(x;α, β)}n

k=0 are orthogonal with respect
to the inner product that generates the norm (1.3). Under the same restriction on α, β and n,
‖p(i)‖(α+2i,πn−1) is well-defined for every p ∈ πn since the inequality 2n < 1 − α is equivalent to
2(n− i) < 1− (α + 2i). As it was pointed out in [3],

(1.5) y(i)
n (x;α, β) =

(−1)i

βi

n!
(n− i)!

Γ(2− α− n)
Γ(2− α− n− i)

yn(x;α + 2i, β)

and the latter polynomial is orthogonal with respect to the inner product which generates

‖f‖(i,B) := ‖f‖(α+2i,πn−i).

It is known also that for any positive integers i the polynomials P
(α+i,β+i)
n (x) and L

(α+i)
n (x)

are orthogonal with respect to the inner products which generate the norms

‖f‖(i,J) := ‖f‖(α+i,β+i)

and

‖f‖(i,L) := ‖f‖(α+i),

respectively (see formulae (4.21.7) and (5.1.14) in Szegő [11]).
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In order to formulate more succinctly our Kolmogoroff type polynomial inequalities, we need to
introduce some additional denotations. When an inequality concerns the norms ‖ . ‖(0,J), ‖ . ‖(j,J)

and ‖ . ‖(m,J) and the indexed constants θk, µk and Sk appear, we shall mean the following values:

θk =
(k − j)!
(k −m)!

Γ(k + m + α + β + 1)
Γ(k + j + α + β + 1)

, k = m, . . . , n,

µk =
(k − j)!

k!
Γ(k + α + β + 1)

Γ(k + j + α + β + 1)
, k = j, . . . , n,(1.6)

Sk =
µk − µk+1

θk+1 − θk

=
j(k −m + 1)!

(m− j)(k + 1)!
Γ(k + α + β + 1)

Γ(k + m + α + β + 1)
, k = m− 1, . . . , n− 1.

In the inequalities associated with the weighted norms ‖ . ‖(0,L), ‖ . ‖(j,L) and ‖ . ‖(m,L), the
constants are understood to be

θk =
(k − j)!
(k −m)!

, k = m, . . . , n,

µk =
(k − j)!

k!
, k = j, . . . , n,(1.7)

Sk =
j(k −m + 1)!

(m− j)(k + 1)!
, k = m− 1, . . . , n− 1.

Finally, the values of θk, µk and Sk in the Kolmogoroff inequalities involving the norms ‖ . ‖(0,B),

‖ . ‖(j,B) and ‖ . ‖(m,B), are

θk =
(k − j)!
(k −m)!

Γ(2− α− k − j)
Γ(2− α− k −m)

, k = m, . . . , n,

µk =
(k − j)!

k!
Γ(2− α− k − j)

Γ(2− α− k)
, k = j, . . . , n,(1.8)

Sk =
j(k −m + 1)!

(m− j)(k + 1)!
Γ(2− α− k −m)

Γ(2− α− k)
, k = m− 1, . . . , n− 1.

Furthermore, in all the cases we set θk = 0, k = j, . . . , m− 1.

Thus, we formulate our main Kolmogoroff type weighted polynomial inequalities:

Theorem 2.1. Let j < m ≤ n be positive integers and D positive constant.

(i) If D ≤ Sn−1, then

(1.9) ‖f (j)‖2(j,ν) ≤
1

Dθn + µn

{
D‖f (m)‖2(m,ν) + ‖f‖2(0,ν)

}
, ν = J, L,B,

for every f ∈ πn. Moreover, equality is attained if and only if f(x) is a constant multiple of
p
(ν)
n (x), ν = J, L, B.

(ii) If Sm < D < Sm−1, then

(1.10) ‖f (j)‖2(j,ν) ≤
1

Dθm + µm

{
D‖f (m)‖2(m,ν) + ‖f‖2(0,ν)

}
, ν = J, L,B,

for every f ∈ πn. Moreover, equality is attained if and only if f(x) = cp
(ν)
m (x), ν = J, L, B, where c

is a constant.

(iii) If D > Sm−1, then

(1.11) ‖f (j)‖2(j,ν) ≤
1

µm−1

{
D‖f (m)‖2(m,ν) + ‖f‖2(0,ν)

}
, ν = J, L,B,
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for every f ∈ πn. Moreover, equality is attained if and only if f(x) is a constant multiple of
p
(ν)
m−1(x), ν = J, L,B.

(iv) If D = Sm−1, then the inequalities (1.10) and (1.11) coincide and they hold for every f ∈ πn.
In this case equality is attained if and only if f(x) = c1p

(ν)
m (x) + c2p

(ν)
m−1(x), ν = J, L,B, where c1

and c2 are constants.

In the case j = 1 and m = 2 we provide a complete characterization of the positive constant
D for which the corresponding Landau type polynomial inequalities hold. In this case, we suppose
that the constants θk, µk and Rk are defined as follows. In the Landau inequalities for the norm
associated with the Jacobi polynomials, they are

θk = (k − 1)(k + α + β + 2), k = 1, . . . , n,

µk = [k(k + α + β + 1)]−1, k = 1, . . . , n,(1.12)

Rk = [k(k − 1)(k + α + β)(k + α + β + 1)]−1, k = 2, . . . , n.

In the inequalities corresponding to the Laguerre weighted function we set:

θk = (k − 1), k = 1, . . . , n,

µk = k−1, k = 1, . . . , n,(1.13)

Rk = [k(k − 1)]−1, k = 2, . . . , n,

and in the Bessel case

θk = (k − 1)(−α− k), k = 1, . . . , n,

µk = [k(1− α− k)]−1, k = 1, . . . , n,

R2 = [2(−α)(−α− 1)]−1,(1.14)

Rn = [2n(1− α− n)(−α− 1)]−1.

Observe that the new definitions of θk and µk are not confusing to the values given previously.
Indeed, θk and µk in (1.12), (1.13) and (1.14) are obtained by setting j = 1 and m = 2 in the
correspondind formulae (1.6), (1.7) and (1.8).

Theorem 2.2. Let D be a positive constant.

(i) If 0 < D ≤ Rn then

(1.15) ‖f ′‖2(1,ν) ≤
1

Dθn + µn

{
D‖f ′′‖2(2,ν) + ‖f‖2(0,ν)

}
, ν = J, L,B,

for every f ∈ πn. Moreover, equality is attained if and only if f(x) is a constant multiple of
p
(ν)
n (x), ν = J, L, B.

(ii) a) If Rk+1 < D < Rk, where k ∈ IN, 2 ≤ k ≤ n− 1, then

(1.16) ‖f ′‖2(1,ν) ≤
1

Dθk + µk

{
D‖f ′′‖2(2,ν) + ‖f‖2(0,ν)

}
, ν = J, L,

for every f ∈ πn. Moreover, equality is attained if and only if f(x) = cp
(ν)
k (x), ν = J, L, where c is

a constant.

b) If Rn < D < R2, then

(1.17) ‖f ′‖2(1,B) ≤
1

Dθ2 + µ2

{
D‖f ′′‖2(2,B) + ‖f‖2(0,B)

}
,
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for every f ∈ πn. Moreover, equality is attained if and only if f(x) = cp
(B)
2 (x), where c is a constant.

(iii) If R2 < D < ∞, then

(1.18) ‖f ′‖2(1,ν) ≤
1
µ1

{
D‖f ′′‖2(2,ν) + ‖f‖2(0,ν)

}
, ν = J, L,B,

for every f ∈ πn. Moreover, equality is attained if and only if f(x) is a constant multiple of
p
(ν)
1 (x), ν = J, L, B.

(iv) If D = Sk, for some integer k, then the inequalities

‖f ′‖2(1,ν) ≤ 1
Dθk+µk

{
D‖f ′′‖2(2,ν) + ‖f‖2(0,ν)

}
(1.19)

, ν = J, L,

‖f ′‖2(1,ν) ≤ 1
Dθk+1+µk+1

{
D‖f (′′‖2(2,ν) + ‖f‖2(0,ν)

}
(1.20)

coincide and they hold for every f ∈ πn. In this case equality is attained if and only if f(x) =
d1p

(ν)
k (x) + d2p

(ν)
k+1(x), ν = J, L, where d1 and d2 are constants.

Setting D = [n(n + α + β + 1)]−2 in Theorem 2.2. (i) we obtain, for ν = J , the inequality

‖f ′‖2(1,J) ≤ 1
(2n− 1)(α + β) + 2(n2 + n− 1)

‖f ′′‖2(2,J)

+
n2(n + α + β + 1)2

(2n− 1)(α + β) + 2(n2 + n− 1)
‖f‖2(0,J), f ∈ πn,

where equality is attained if and only if f(x) is a constant multiple of p
(J)
n (x).

If, in Theorem 2.2 (i), we set D = n−2 and ν = L we obtain the inequality

‖f ′‖2(1,L) ≤
1

(2n− 1)
‖f ′′‖2(2,L) +

n2

(2n− 1)
‖f‖2(0,L), f ∈ πn,

with equality if and only if f(x) = cp
(L)
n (x), where c is a constant. These are exactly the result of

the Theorem 1.10.4 in [10] for the Jacobi and Laguerre polynomials, respectively.

2. PROOFS OF THE THEOREMS

Following the ideas given in [2], for each ν = J, L,B our objective is to study the extremal
problem

F (C1, C2) = min

{
C1‖f (m)‖2(m,ν) + C2‖f‖2(0,ν)

‖f (j)‖2(j,ν)

: f ∈ πn, f(x) 6= 0

}
,

for any given integers j, m, n, 0 < j < m ≤ n, and positive constants C1 and C2.

For this purpose let the sequences {γi}n
i=j be defined by

(2.1)
γi = C2µi, i = j, . . . , m− 1,

γi = C1θi + C2µi, i = m, . . . , n.

where {µi}n
i=j and {θi}n

i=m are given in (1.6), (1.7) and (1.8) for ν = J, L,B respectively.

We need also some basic properties of the Jacobi and Laguerre polynomials:∫ 1

−1

p
(J)
i (x)p(J)

k (x)w(J)(x)dx =
Γ(α + i + 1)Γ(β + i + 1)

Γ(α + β + i + 1)
(2.2)

× 2α+β+1

(2i + α + β + 1)i!
δi,k,
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where w(J)(x) = (1− x)α(1 + x)β , and α, β > −1,

(2.3)
∫ ∞

0

L
(α)
i (x)L(α)

k (x)xαe−xdx =
Γ(α + i + 1)

i!
δi,k, α > −1,

(2.4)
d

dx
P

(α,β)
k (x) =

α + β + k + 1
2

P
(α+1,β+1)
k−1 (x),

(2.5)
d

dx
L

(α)
k (x) = −L

(α+1)
k−1 (x).

The identities (2.2), (2.3), (2.4) and (2.5) correspond to (4.3.3), (5.1.1), (4.2.7) and (5.1.14) in
[11].

Consider now the following normalization of the orthogonal polynomials p
(ν)
i (x), ν = J, L,B:

p̃
(ν)
i (x) = cip

(ν)
i (x),

where the constants ci, i = 0, . . . , n, are defined by: ci = 1, i = 0, . . . , j − 1, and for i = j, . . . , n

ci =
{

2α+β+1

(2i + α + β + 1)(i− j)!
Γ(α + i + 1)Γ(β + i + 1)Γ(α + β + i + j + 1)

[Γ(α + β + i + 1)]2

}−1/2

,

if ν = J,

ci =
{

Γ(α + i + 1)
(i− j)!

}−1/2

when ν = L and, in the Bessel case (ν = B),

ci =
{

(i!)2

(i− j)!
βα−1

(−α− 2i + 1)
Γ2(−α− i + 2)

Γ(−α− i− j + 2)

}−1/2

.

Obviously, every f ∈ πn can be uniquely represented in the form

f(x) =
n∑

k=0

akp̃
(ν)
k (x), ν = J, L,B.

¿From the relations (2.2), (2.3), (1.4) and the definition of the polynomials p̃
(ν)
k (x), ν = J, L, B,

we have

‖f‖2(0,ν) =
n∑

k=0

µka2
k, ν = J, L, B,

where µk, k = j, . . . , n, are defined in (1.6), (1.7), ( 1.8), respectively for ν = J, L,B.

For k = 0, . . . , j − 1, the constants µk are given by

µk =
2α+β+1

(2k + α + β + 1)k!
Γ(α + k + 1)Γ(β + k + 1)

Γ(α + β + k + 1)
for ν = J,

µk =
Γ(α + k + 1)

k!
for the Laguerre case and, if ν = B,

µk =
k!

1− α− 2k
Γ(2− α− k)βα−1.

Again using the relations (2.2), (2.3), (1.4), from (2.4), (2.5), (1.5) and the definition of the
polynomials p̃

(ν)
k (x), we obtain

‖f (j)‖(j,ν) =
n∑

k=j

a2
kc2

k‖(p
(ν)
k )(j)‖(j,ν) =

n∑
k=j

a2
k, ν = J, L,B.
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In the same way, we obtain

‖f (m)‖(m,ν) =
n∑

k=m

θka2
k, ν = J, L,B,

where θk, k = m, . . . , n, are defined in the equations (1.6), (1.7), (1.8), respectively for ν = J, L,B.

Thus,

F (C1, C2) = min

{∑m−1
k=0 C2µka2

k +
∑n

k=m(C1θk + C2µk)a2
k∑n

k=j a2
k

: a0, . . . , an ∈ IR

}
.

Obviously, the above minimum is attained for a0 = . . . = aj−1 = 0. Hence, we have to
determine the minimum of atAa, subject to ata = 1, where A is the diagonal matrix

diag (C2µj , . . . , C2µm−1, C1θm + C2µm, . . . , C1θn + C2µn) .

By the Rayleigh-Ritz Theorem (Theorem 4.2.2 on page 176 in [5]), our problem reduces to
determine the smallest eigenvalue of A. In summary, for each ν = J, L,B, we have proven:

Lemma 2.3. For any given integers j < m ≤ n positive constants C1 and C2

(2.6) F (C1, C2) = γk := min{γj , . . . , γn},

where γk, k = j, . . . , n, are given in the equations (2.1). Moreover, the extremal polynomials for
which the minimum is attained is a constant multiple of p

(ν)
k (x).

Then, to prove Theorem 2.1, we need to analyze the behaviour of the sequences {γk}n
k=j for

each ν = J, L,B. For this purpose, consider the following results.

Lemma 2.4. The sequences {µk}n
k=j , defined in the equations (1.6), (1.7) and (1.8), respectively

for ν = J, L,B, are decreasing.

Proof. i) Consider ν = J . Then, by (1.6) we have

µk

µk+1
=

(k − j)!
k!

Γ(α + β + k + 1)
Γ(α + β + k + j + 1)

(k + 1)!
(k + 1− j)!

Γ(α + β + k + j + 2)
Γ(α + β + k + 2)

=
k + 1

k + 1− j

α + β + k + j + 1
α + β + k + 1

=
(

1 +
j

k − j + 1

) (
1 +

j

α + β + k + 1

)
> 1, α, β > −1.

ii) If ν = L, by (1.7)

µk − µk+1 =
(k − j)!

k!
− (k − j + 1)!

(k + 1)!
= j

(k − j)!
(k + 1)!

> 0, α > −1.

iii) Finally, for ν = B, equation (1.8) gives us

µk

µk+1
=

(k − j)!
k!

Γ(2− α− k − j)
Γ(2− α− k)

(k + 1)!
(k + 1− j)!

Γ(1− α− k − j)
Γ(1− α− k)

=
k + 1

k + 1− j

1− α− k − j

1− α− k
> 1,

since 2n < 1− α and, consequently, (k + 1− j)(1− α− k) < (k + 1)(1− α− k − j). �

In the same manner we prove
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Lemma 2.5. The sequences {θk}n
k=m, defined in the equations (1.6), (1.7) and (1.8), respectively

for ν = J, L,B, are increasing.

Proof of Theorem 2.1 As the sequences {µk}m−1
k=j is decreasing for ν = J, L, B, then the smaller

among the numbers C2µj , . . . , C2µm−1 is C2µm−1. Thus, according to Lemma 2.3, we need to find
the smaller among γm, . . . , γn and to compare with C2µm−1.

Now, consider the monotonicy of the sequences {γk}n
k=m for ν = J, L,B. Since

γk+1 − γk = C1(θk+1 − θk) + C2(µk − µk+1),

then: a) the sequences {γk}n
k=m are increasing if D := C1/C2 ≥ Sk := (µk − µk+1)/(θk+1 − θk) for

k = m, . . . , n− 1 and b) {γk}n
k=m are decreasing if D ≤ Sk for k = m, . . . , n− 1.

Straightforward calculations show that for ν = J, L,B, Sk, k = m, . . . , n− 1, are given, respectively,
in the equations (1.6), (1.7) and (1.8). But, if ν = J,

Sk+1

Sk
=

(k + 2−m)(α + β + k + 1)
(k + 2)(α + β + k + m + 1)

.

When ν = L,

Sk+1

Sk
=

k + 2−m

k + 2
,

and, in the Bessel case,

Sk+1

Sk
=

(k + 2−m)(1− α− k)
(k + 2)(1− α− k −m)

.

Then, Sk+1/Sk < 1 for ν = J, L,B and k = m, . . . , n − 1. This means that {Sk} are decreasing
sequences. Hence, if D ≥ Sm then γk are increasing and γm = min{γk, k = m, . . . , n}. Thus, we
have

F (C1, C2) = min
j≤k≤n

γk = min {γm−1, γm} , ν = J, L,B.

Observe that γm−1 < γm if S̃ := (µm−1 − µm)/θm < D and γm−1 ≥ γm otherwise. But

S̃ =
j

(m− j)m!
Γ(α + β + m)
Γ(α + β + 2m)

for ν = J,

S̃ =
j

(m− j)m!
if ν = L,

S̃ =
j

(m− j)m!
Γ(3− α− 2m)
Γ(3− α−m)

for ν = B.

In view of the above identities we can conclude:

(1) If D ≥ Sm and D > S̃, then γm−1 < γm and F (C1, C2) = γm−1;

(2) If Sm ≤ D < S̃, then γm−1 > γm and F (C1, C2) = γm.

The later cases (1) and (2) correspond to the statements (iii) and (ii) of Theorem 2.1.
The above observation b) and the monotonicy of Sk, k = m, . . . , n − 1, imply that the sequences
{γk}n

k=m are decreasing provided D ≤ Sn−1. Hence, in these cases we have F (C1, C2) = min {γm−1, γn},
ν = J, L,B. In order to compare γm−1 and γn, note that γm−1 < γn if R̃ := (µm−1 − µn)/θn < D

and γm−1 ≥ γn otherwise.
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In view of the identities

R̃ =
(n−m)!
(n− j)!

Γ(α + β + n + j + 1)
Γ(α + β + n + m + 1)

[
(m− j − 1)!

(m− 1)!
Γ(α + β + m)

Γ(α + β + m + j)

− (n− j)!
n!

Γ(α + β + n + 1)
Γ(α + β + n + j + 1)

]
, ν = J,

R̃ =
(n−m)!
(n− j)!

[
(m− j − 1)!

(m− 1)!
− (n− j)!

n!

]
, ν = L,

and

R̃ =
(n−m)!
(n− j)!

Γ(2− α− n−m)
Γ(2− α− n− j)

[
(m− j − 1)!

(m− 1)!
Γ(3− α−m− j)

Γ(3− α−m)

− (n− j)!
n!

Γ(2− α− n− j)
Γ(2− α− n)

]
, ν = B,

we need relations between the latter expressions and D. On the other hand, the inequality
m!

(m− j)!
<

n!
(n− j)!

,

j < m < n, yields Sn−1 < R̃, ν = J, L,B. If D ≤ Sn−1 and D < R̃, then γm−1 > γn and
F (C1, C2) = γn. This corresponds to the statement (i) of the theorem. �

Proof of Theorem 2.2 Since j = 1 and m = 2, Lemma 2.3 shows that we need to determine

min {C2µ1, C1θ2 + C2µ2, . . . , C1θn + C2µn} .

In order to this, in all the cases ν = J , ν = L or ν = B, we shall find the smaller among the numbers
C1θ2 + C2µ2, . . . , C1θn + C2µn, and we shall compare it to C2µ1.

In what follows, up to the final observation in this proof, we shall assume that C1 + C2 = 1,

C1, C2 > 0.

Consider first the case ν = J . Then, by equations in (1.12), for k = 2, . . . , n we have

γk = C1θk + C2µk = C2
1

k(k + α + β + 1)
+ (1− C2)(k − 1)(k + α + β + 2).

Define the function

gJ(x) = C2
1

x(x + α + β + 1)
+ (1− C2)(x− 1)(x + α + β + 2) for 2 ≤ x ≤ n.

Since gJ(k) = γk for k = 2, . . . , n, then our problem reduces to investigate the behaviour of gJ(x)
when C1 and C2 belong to the segment C1 + C2 = 1, C1, C2 > 0. Note that the only zero of

g′J(x) = (2x + α + β + 1)
(

1− C2 −
C2

x2(x + α + β + 1)2

)
that can belong to the interval [2, n] is

x =
−(α + β + 1) +

[
(α + β + 1)2 + 4

√
C2/(1− C2)

]1/2

2
> 0, α, β > −1.

But, for x ≥ 2

g′′J(x) = 2(1− C2) +
2C2

x3(x + α + β + 1)3
[
3x2 + 3(α + β + 1)x + (α + β + 1)2

]
> 0.

Hence gJ(x) is convex on [2,∞) and it can attain its absolute minimum on there at x = {−(α+β +
1) + [(α + β + 1)2 − 4

√
C2/(1− C2)]1/2}/2. Thus, we can conclude that:
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• If

−(α + β + 1) +
[
(α + β + 1)2 + 4

√
C2/(1− C2)

]1/2

2
< 2,

then γmin = γ2;
• If

−(α + β + 1) +
[
(α + β + 1)2 + 4

√
C2/(1− C2)

]1/2

2
> n,

then γmin = γn;
• If

k ≤
−(α + β + 1) +

[
(α + β + 1)2 + 4

√
C2/(1− C2)

]1/2

2
< k + 1,

where 2 ≤ k ≤ n− 1, then γmin = min {γk, γk+1} .

In order to determine the smaller between γk and γk+1, observe that

γk+1 < γk if
k(k + 1)(k + α + β + 1)(α + β + k + 2)

k(k + 1)(k + α + β + 1)(k + α + β + 2) + 1
< C2

and γk+1 ≥ γk otherwise. It is clear that γk = γk+1 if and only if

C2 =
k(k + 1)(k + α + β + 1)(α + β + k + 2)

k(k + 1)(k + α + β + 1)(k + α + β + 2) + 1
.

Set

y :=
−(α + β + 1) +

[
(α + β + 1)2 + 4

√
C2/(1− C2)

]1/2

2
for any C2, 0 < C2 < 1.

If

C2 =
k(k + 1)(k + α + β + 1)(k + α + β + 2)

k(k + 1)(k + α + β + 1)(k + α + β + 2) + 1

then the point of minimum of gJ(x) is

yk :=
−(α + β + 1) +

[
(α + β + 1)2 + 4

√
k(k + 1)(k + α + β + 1)(k + α + β + 2)

]1/2

2
.

Observe that k < yk < k + 1. Since the function gJ(x) is convex, then γmin = γk+1 if and only if
yk < y < yk+1 and this conclusion holds for k = 1, . . . , n− 2. The latter inequality is equivalent to
Ak < C2 < Ak+1, where

Ak :=
k(k + 1)(k + α + β + 1)(k + α + β + 2)

k(k + 1)(k + α + β + 1)(k + α + β + 2) + 1
.

Let us compare, in each of these cases, γk+1 to γ1 = C2/(α + β + 2).

For C2 ∈
(

0,
6(α + β + 3)(α + β + 4)

6(α + β + 3)(α + β + 4) + 1

)
, we need to compare γ1 and γ2. Since

γ2 − γ1 = (α + β + 4)
(

1− 2(α + β + 2)(α + β + 3) + 1
2(α + β + 2)(α + β + 3)

)
,

then

• γ1 < γ2 for 0 < C2 <
2(α + β + 2)(α + β + 3)

2(α + β + 2)(α + β + 3) + 1
;

• γ1 = γ2 for C2 =
2(α + β + 2)(α + β + 3)

2(α + β + 2)(α + β + 3) + 1
and

• γ2 < γ1 for
2(α + β + 2)(α + β + 3)

2(α + β + 2)(α + β + 3) + 1
< C2 <

6(α + β + 3)(α + β + 4)
6(α + β + 3)(α + β + 4) + 1

.
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Let now k be any integer, such that 2 ≤ k ≤ n and let

C2 ∈ (Ak, Ak+1) =: ∆k.

Since

γk+1 − γ1 = k(k + α + β + 3)
(

1− (k + 1)(k + α + β + 2)(α + β + 2) + 1
(k + 1)(k + α + β + 2)(α + β + 2)

C2

)
≤ 0

if and only if
(k + 1)(k + α + β + 2)(α + β + 2)

(k + 1)(k + α + β + 2)(α + β + 2) + 1
< C2 and this latter inequality always holds for

C2 ∈ ∆k. Then we have γmin = γk+1 for every C2 ∈ ∆k.
Finally, we have γn < γ1 for every

C2 ∈
(

n(n− 1)(n + α + β)(n + α + β + 1)
n(n− 1)(n + α + β)(n + α + β + 1) + 1

, 1
)

= ∆n−1

because

γn − γ1 = (n− 1)(n + α + β + 2))
(

1− n(n + α + β + 1)(α + β + 2) + 1
n(n + α + β + 1)(α + β + 2)

C2

)
< 0

is equivalent to
n(n + α + β + 1)(α + β + 2)

n(n + α + β + 1)(α + β + 2) + 1
< C2.

Recall that all considerations have been done under the restriction C1 + C2 = 1. The restrictions
C2 ∈ ∆k can be easily transformed into equivalent restrictions for D = C1/C2. We omit this detail.
The result is:

• If [2(α + β + 2)(α + β + 3)]−1 < D < ∞, then γmin = γ1;
• If [(k+1)(k+2)(k+α+β+2)(k+α+β+3)]−1 < D < [k(k+1)(k+α+β+1)(k+α+β+2)]−1,

then γmin = γk+1, k = 1, . . . , n− 2;
• If 0 < D < [n(n− 1)(n + α + β + 1)(n + α + β + 2)]−1, then γmin = γn.

This completes the proof for the Jacobi case.
The proof for the case ν = L is similar to the Hermite case in [2]. By considering the equations in
(1.13) we obtain

γk = C1θk + C2µk = C2
1
k

+ (1− C2)(k − 1) for k = 2, . . . , n.

Observe that it is exactly the equation for γk in the proof of (Theorem 2, [2]).
Finally, consider the Bessel case, that is, ν = B. Then, by equations in (1.14) we have

γk = C1θk + C2µk = C2
1

k(−α− k + 1)
+ (1− C2)(k − 1)(−α− k) for k = 2, . . . , n.

In this case, let gB(x) be defined by

gB(x) = C2
1

x(−α− x + 1)
+ (1− C2)(x− 1)(−α− x), 2 ≤ x ≤ n.

Using partial fraction decomposition, gB(x) can be written in the form

gB(x) =
C2

2− α

(
1
x

+
1

−α− x + 1

)
+ (1− C2)(x− 1)(−α− x).

Remember that 2n < 1− α in the Bessel case. Then, 2− α > 0 and n < (−α + 1)/2. Hence, gB(x)
is concave on [2, n].
Since gB(k) = γk, k = 2, . . . , n, then our problem reduces to determine the smaller between γ2 and γn

and to compare it to γ1. Observe that γn < γ1 if [2n(−α−1)(1−α−n+]/[2n(−α−1)(1−α−n)+1] <
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C2 and γn ≥ γ1 otherwise.
Let us compare γ2 to γ1 = C2/(−α). Since

γ2 − γ1 =
−α− 2

2(−α)(−α− 1)
{2(−α)(−α− 1)− [2(−α)(−α− 1) + 1]C2}

then

• γ2 < γ1 for C2 >
2(−α)(−α− 1)

2(−α)(−α− 1) + 1
;

• γ2 = γ1 for C2 =
2(−α)(−α− 1)

2(−α)(−α− 1) + 1
and

• γ2 > γ1 for C2 <
2(−α)(−α− 1)

2(−α)(−α− 1) + 1
.

For n ≥ 2 we have
2n(−α− 1)(1− α− n)

2n(−α− 1)(1− α− n) + 1
>

2(−α)(−α− 1)
2(−α)(−α− 1) + 1

. Then,

γmin = γ2 if
2(−α)(−α− 1)

2(−α)(−α− 1) + 1
< C2 <

2n(−α− 1)(1− α− n)
2n(−α− 1)(1− α− n) + 1

.

In order to compare γ1 and γn observe that

γn − γ1 = (n− 1)(−α− n)− C2

[
n(n− 1)(1− α− n)(−α− n)− 1

n(1− α− n)
+

1
−α

]
.

Then γn < γ1 if C2 >
n(1− α− n)(−α)

n(1− α− n)(−α) + 1
and γn ≥ γ1 otherwise. On the other hand, for n ≥ 2,

we have
2(−α)(−α− 1)

2(−α)(−α− 1) + 1
<

n(−α)(1− α− n)
n(−α)(1− α− n) + 1

<
2n(−α− 1)(1− α− n)

2n(−α− 1)(1− α− n) + 1
,

Thus,

• if
2n(−α− 1)(1− α− n)

2n(−α− 1)(1− α− n) + 1
< C2 < 1, then γmin = γn;

• if 0 < C2 <
2(−α)(−α− 1)

n(−α)(−α− 1) + 1
, then γmin = γ1.

We can again transform the restrictions for C2 into equivalent restrictions for D = C1/C2. This
procedure yields:

• if [2(−α)(−α− 1)]−1 < D < ∞, then γmin = γ1;
• if [2n(−α− 1)(1− α− n)]−1 < D < [2(−α)(−α− 1)]−1, then γmin = γ2;
• if 0 < D < [2n(−α− 1)(1− α− n)]−1, then γmin = γn.

Finally, we can remove the restriction C1 + C2 = 1 in all the cases ν = J, L,B. This is justified just
as in the final stage of the proof of Theorem 2 in [2]. �
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