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ABSTRACT. Let 0 < 5 < m < n. Kolmogoroff type inequalities of the form
1PN < AlFI2 + BIFIP

which hold for algebraic polynomials of degree n are established. Here the norm is defined by [ f2(z)du(x), where
du(z) is any distribution associated with the Jacobi, Laguerre or Bessel orthogonal polynomials. In particular we

characterize completely the positive constants A and B, for which the Landau weighted polynomial inequalities
2 2 2
IF11% < AlLF“1° + B

hold. For some special values of A and B this second result reduces to a Stein type of inequality obtained by Agarwal

and Milovanovié [1].
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1. INTRODUCTION AND STATEMENT OF RESULTS

A classical result of Landau [7] states that, for every f € C?[0,1], the inequality |f’| < 4
holds provided || f|| = 1 and || f”|| = 4, where ||.|| denotes the uniform norm in [0, 1]. Kolmogoroff [6]

generalized this result establishing inequalities of the form
LFDN < K(m, ) [1F = £, 0<j<m, fec™,1],

with the best possible constants K (m, j).

Denote by 7, the space of real algebraic polynomials of degree not exceeding n. In what follows

we suppose 0 < j <m < n.

In the recent paper [2], Kolmogoroff type inequalities
IFDNP < AP + BIFIZ, f €,

were obtained for various values of the constants A and B, where the norm was defined by || f||* =
ffooo f?(x) exp(—a?)dx. Moreover, complete characterization of the positive constants A and B, for

which the corresponding Landau type polynomial inequalities
117 < AlLFI1P + BILFI%,

hold, was given. Thus the principal inequalities obtained in [2] generalize previous results of Varma

[13] and Bojanov and Varma [4].

The research is supported by the Brazilian Science Foundations FAPESP under Grants 00/07856-8,
99/12054-9 and 97/6280-0, and CNPq under Grant 300645/95-3.
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The main purpose of this paper is to extend further the result of [2] to various weighted Landau

and Kolmogoroff type polynomial inequalities. The norms under consideration are

1
(L1) 112, = 112 = / P01+ a)fdn, o> 15> -1,
(1.2) 1£130.0) = /112 = / Ple)ete=de, a> -1,
and
(1.3) 1£12 5 = 1 12um) = / £ () 2e e e

Recall that the Jacobi polynomials

+ 1), 1-—-
% Fl(—n,n+oz—|—ﬂ+1;oz—|—l;Tx)

p) (@) == PP () =
and the Laguerre polynomials

(a+1)n
n'

P (2) == L) (2) = Fi(—nja+1;z)

are orthogonal with respect to the inner products which generate the norms (1.1) and (1.2). Recently,

Srivastava [12] proved that the generalized Bessel polynomials

PP (@) = yn(@;0, B) = 2Fo(—n,a+n — ;= —/B)
obey the orthogonal property

r!

(1.4) /OO 2 2e Py, (x5, B)ys(z; a, B)da = B! [(2—a—7r)d.s,

0 1-— o — 27'
Re(a) <1—s—r, Re(B) >0, r,s € INg := IN U{0}.
For a,86 € R, 8 > 0, n € INyg and 2n < 1 — @, the norm (1.3) is well-defined in the space
. Moreover, the above property (1.4) yields that {yx(z;a, ﬁ)}zzo are orthogonal with respect
to the inner product that generates the norm (1.3). Under the same restriction on «, and n,
1P| (a42i7, 1) is well-defined for every p € m, since the inequality 2n < 1 — « is equivalent to
2(n—1) <1— (a+2i). As it was pointed out in [3],

(=" n! r2—a-n)
B (n—)!T2—-—a—n—1)

(1.5) Y (250, B) = Yn(@; o0 4 21, 5)

and the latter polynomial is orthogonal with respect to the inner product which generates

Hf”(z‘,B) = ||f||(a+2i,7rn,i)-
It is known also that for any positive integers i the polynomials plotis +i)(x) and Lgf‘“)(x)
are orthogonal with respect to the inner products which generate the norms
”f”(i,J) = ||fH(a+i,ﬁ+i)
and
||f||(z',L) = ||f|‘(a+i)a
respectively (see formulae (4.21.7) and (5.1.14) in Szegé [11]).
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In order to formulate more succinctly our Kolmogoroff type polynomial inequalities, we need to

introduce some additional denotations. When an inequality concerns the norms || . [[(0,s), || - [0
and || . [[(m,) and the indexed constants 0, sz and Sy appear, we shall mean the following values:
0, = (k=jt Dlktm+atf+]) k=m,....n
(k—m)T(k+j+a+B8+1)’ o
(k—j)! Tk+a+p+1) _
1.6 = - , k=4,...,n,
(1.6) Hk B Tk+j+a+p+1) J
Mk = HE+1
Sy = ———
F Op+1 — O

_ Jk=m+D)! Tktatp+)
= (m_j)(k+1)lr(k+m+a+ﬁ+1)a = R .

In the inequalities associated with the weighted norms || . [[o,zy, || - |,y and || . [|(m,z), the

constants are understood to be

I G ) L
919 = m, k’—’l’)’L,...,’f’L7
— 4\
(1.7) e = %, k=j,....n,
j(k—m+1)!
S ———— k=m-1,...,n— 1.
S G [
Finally, the values of 6, ui and S in the Kolmogoroff inequalities involving the norms || . ||0.B),
(’)
|- lg,B) and [| . [[(m,B), are
- N TR2-a—-k—j
O, = (k= ) I a—k=Jj) k=m,...,n,

(k—m)T(2—-a—k—m)’

(k=T -a—k—j) y

jk—m+1) T2—-—a—-k—m)
_ k=m—1,...,n—1.
Sk m—j)(k+1)! T@2—-a—Fk =~ =7 oon

Furthermore, in all the cases we set 6, =0, k=j,...,m — 1.

Thus, we formulate our main Kolmogoroff type weighted polynomial inequalities:

Theorem 2.1. Let j < m < n be positive integers and D positive constant.

(i) If D < S,,_1, then

(19) 1900 < Bz (DI Wy + £ oy} v = L1 B,

for every f € m,. Moreover, equality is attained if and only if f(z) is a constant multiple of
pgf’)(w), v=JL,B.

(ii) If S,, < D < Sy—1, then

1

1.1 @y2 @« -
(1.10) 1790 < o

{DIF 2,y + 1} v = I, LB,

for every f € m,. Moreover, equality is attained if and only if f(z) = cpg{)(q}), v=J,L,B, where c

is a constant.

(iii) If D > S;,—1, then

(L.11) £

1 m
i) < o AP iy + 1o o v = LB,
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for every f € m,. Moreover, equality is attained if and only if f(x) is a constant multiple of
pgll(x), v=JL,B.

(iv) If D = S;;,—1, then the inequalities (1.10) and (1.11) coincide and they hold for every f € mp,.
In this case equality is attained if and only if f(z) = cply) (x) + capl”) (), v=J,L,B, where ¢;

m—1

and cg are constants.

In the case 7 = 1 and m = 2 we provide a complete characterization of the positive constant
D for which the corresponding Landau type polynomial inequalities hold. In this case, we suppose
that the constants 0, ur and Ry are defined as follows. In the Landau inequalities for the norm

associated with the Jacobi polynomials, they are

0p = k—-1k+a+p8+2), k=1,...,n,
(1.12) pr = [k(k+a+B+D]7Y k=1,...,n,
R, = [k(k—Dk+a+p)(k+a+p+1)]™", k=2,...,n.

In the inequalities corresponding to the Laguerre weighted function we set:

0, = (k—-1), k=1,...,n,
(1.13) we = k7Y k=1,...,n,
Ry, = [k(k—1D]Y k=2,...,n,
and in the Bessel case
0, = (k—-1)(—a—-k), k=1,...)n,
we = [kQ—a=-k)]"" k=1,....n,
(1.14) Ry = [2(-a)(—a-1)7",
[

Ry,

Observe that the new definitions of §; and py, are not confusing to the values given previously.
Indeed, 6) and py in (1.12), (1.13) and (1.14) are obtained by setting j = 1 and m = 2 in the
correspondind formulae (1.6), (1.7) and (1.8).

Theorem 2.2. Let D be a positive constant.

(i) If 0 < D < R,, then

(1.15) {DIF Wy + 1110 } + v = 1L, B,

1
7112

[
for every f € m,. Moreover, equality is attained if and only if f(z) is a constant multiple of
(@), v=J,L,B.
(ii) a) If Rgy1 < D < Ry, where k € IN, 2 <k <n—1, then

1

(116) 171 < B AN Moy + 1oy o v = L.
for every f € m,. Moreover, equality is attained if and only if f(z) = cpg’) (x), v =J, L, where c is

a constant.

b) If R, < D < R,, then

1
(1.17) 17 5) < By L PN Wy + 170 }
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for every f € m,. Moreover, equality is attained if and only if f(z) = cpéB) (), where ¢ is a constant.

(iii) If Ry < D < o0, then

(1.18) 110 < {D||f”|| 2y + 110 b v = I, LB,

for every f € m,. Moreover, equahty is attained if and only if f(z) is a constant multiple of
pgu)(x), v=JL,B.

(iv) If D = Sy, for some integer k, then the inequalities

(1.19) IRy < pats (DI Wy + 17120, }
) V= J’ L?

(1.20) 1By < o { PN, + 171, }

coincide and they hold for every f € m,. In this case equality is attained if and only if f(z) =
dlp(”)( )+ d2pk+1( z), v =J, L, where d; and dy are constants.

Setting D = [n(n+ a + #+1)]7> in Theorem 2.2. (i) we obtain, for v = .J, the inequality

1
2 < "2
”f ||(17J) = (2717 1)(0[+ﬂ) +2(7’L2 +n— 1) ”f ||(2,J)

n’(n+a+ 4 +1)2
+(2n—1)(a+ﬁ)+2(n2+n )”f”(OJ f €,

where equality is attained if and only if f(z) is a constant multiple of i (x).
If, in Theorem 2.2 (i), we set D = n~2 and v = L we obtain the inequality

1
111y < m”f”\\(z LT 2n )Hf|| 0.0y, J €,

with equality if and only if f(z) = cp%L) (z), where ¢ is a constant. These are exactly the result of

the Theorem 1.10.4 in [10] for the Jacobi and Laguerre polynomials, respectively.

2. PROOFS OF THE THEOREMS

Following the ideas given in [2], for each v = J, L, B our objective is to study the extremal

problem
CLllF™2, , + CallfI2,,,

1O

for any given integers j,m,n, 0 < j < m < n, and positive constants C; and Cj.

F.c = remni)

For this purpose let the sequences {’yl} . be defined by

i = C iy j = '7 L) - ]-7

(2.1) g 24 Z J m
Yi = 0191‘4’02#1', T=m,...,N.
where {/”'i}?:j and {6;}._,  are given in (1.6), (1.7) and (1.8) for v = J, L, B respectively.
We need also some basic properties of the Jacobi and Laguerre polynomials:
Tla+i+1)I(B+i+1)
MNa+p8+i+1)
ga+p+1

“Qitatpriy

(22) / @ @ (@)

'62k7



6 ELIANA X. L. DE ANDRADE, DIMITAR K. DIMITROV, AND LISANDRA E. DE SOUSA

where w;)(z) = (1 — 2)*(1 + 2)”, and a, 3> —1,

*® a a r 41
(2.3) / L (@) L (2) 2% dz = wéi,;ﬁ a> -1,
0 2.
d k+1
(24) & plei () = CXPIRE L platisin g
dx 2
d (@) \_ rla+l)
(2.5) %Lk (#) = =L,y ().
The identities (2.2), (2.3), (2.4) and (2.5) correspond to (4.3.3), (5.1.1), (4.2.7) and (5.1.14) in
[11].
Consider now the following normalization of the orthogonal polynomials pgy)(z)7 v=JL,B:
B () = eip” (2),
where the constants ¢;,7 = 0,...,n, are defined by: ¢; =1,i=0,...,j—1,and fori=j,...,n
Cl_{ ga+B+1 F(a+z‘+1)F(ﬁ+i+1)r(a+ﬂ+i+j+1)}1/2
’ (2i+a+B+1)(i—j) C(a+B8+i+1)]? ’
if v=J,

when v = L and, in the Bessel case (v = B),

o = {((z’!)2 gt F?(_Q_HQ))}—W.

i— ) (—a—2i+ )T (—a—i—j+2

Obviously, every f € 7, can be uniquely represented in the form

f2) =Y ap (@), v=1JL,B.
k=0

(From the relations (2.2), (2.3), (1.4) and the definition of the polynomials ]32”) (x),v=J,L,B,

we have

||f||(20,1/) = Zﬂkai7 v= JuLvB7
k=0

where g, k = j,...,n, are defined in (1.6), (1.7), ( 1.8), respectively for v = J, L, B.
For £k =0,...,j — 1, the constants u are given by

20+l Ila+k+1)I(B+k+1)
Wi = for v =J,
2k +a+8+1Dk!  T(a+8+k+1)
MNa+k+1)
=T

for the Laguerre case and, if v = B,

k!

_ o o a—1
_71—04—21451—‘(2 a—k)pr .

M

Again using the relations (2.2), (2.3), (1.4), from (2.4), (2.5), (1.5) and the definition of the

polynomials ]b',(:)(a:), we obtain

170Gy = Y- @)Dy = D aks v =J,L,B.
k=j k=j
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In the same way, we obtain

1F T oy = S Oral, v=J,L,B,

k=m
where 0y, k =m, ..., n, are defined in the equations (1.6), (1.7), (1.8), respectively for v = J, L, B.
Thus,
m—1 n
C 2 C10; + C. 2
F(Cq,Cs) = min Lk=o Cotti + 2,:1’“:’”2( 10k + Copin) D ag,...,a, €EIRp.
Zk:j ay
Obviously, the above minimum is attained for ag = ... = a;—1 = 0. Hence, we have to

determine the minimum of a’Aa, subject to ata = 1, where A is the diagonal matrix
diag (Cguj, ey CQ,Um—la 010m + CQ,Um; ey 019n + Cgun) .

By the Rayleigh-Ritz Theorem (Theorem 4.2.2 on page 176 in [5]), our problem reduces to

determine the smallest eigenvalue of A. In summary, for each v = J, L, B, we have proven:

Lemma 2.3. For any given integers j < m < n positive constants C; and Cs
(2.6) F(C1,C2) = v :=min{vy,, ..., },

where v;, kK = j,...,n, are given in the equations (2.1). Moreover, the extremal polynomials for

which the minimum is attained is a constant multiple of pé,") (x).

Then, to prove Theorem 2.1, we need to analyze the behaviour of the sequences {'yk}Z:j for
each v = J, L, B. For this purpose, consider the following results.

Lemma 2.4. The sequences {y},_., defined in the equations (1.6), (1.7) and (1.8), respectively

:j?
for v = J, L, B, are decreasing.

Proof. i) Consider v = J. Then, by (1.6) we have
i (k—j)! T(a+B+k+1) (k+1)! T(a+p+Ek+7+2)
[l K Ta+B8+k+j+10)(k+1—j)! T(a+B+k+2)

E+1 a+B8+k+j+1

k+1—j a+p0+k+1

J J
1+—74 V(14— I Vs _1.
( +k—j+1>< +a+ﬁ+k+1)> » 008>

i) If v =L, by (1.7)

(k=) (k—j+1! . (k—j)
_ = — = -1
Pk — [k+1 I CESY J CESN >0, a>
iii) Finally, for v = B, equation (1.8) gives us
pwe (k=T —-a—-k—j) (k+1)! TA-a—k~—j)
1 k! Fr2—a—k) (k+1—j)! T(l—a—k)

k+1 l-a—k—j
= : >1,
k+1-j l-a—k

since 2n < 1 — a and, consequently, (k+1—j)1—a—-k)<(k+1)(1—-a—k—j). N

In the same manner we prove
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Lemma 2.5. The sequences {6;},_, , defined in the equations (1.6), (1.7) and (1.8), respectively

for v = J, L, B, are increasing.

Proof of Theorem 2.1 As the sequences {uk}zn:_jl is decreasing for v = J, L, B, then the smaller
among the numbers Copij, ..., Coptp—1 is Coptyy—1. Thus, according to Lemma 2.3, we need to find
the smaller among v, ...,7, and to compare with Co 1.

Now, consider the monotonicy of the sequences {vi},_,, for v = J, L, B. Since
Vet1 = Ve = C1(Oks1 — Ok) + Co (e — pis1),

then: a) the sequences {7 },_, are increasing if D := C1/Cs > S := (s — pet1)/(Ox+1 — 0x) for
k=m,...,n—1and b) {v},_,, are decreasing if D < Sj, for k =m,...,n— 1.

Straightforward calculations show that for v = J, L, B, Sk, k =m,...,n— 1, are given, respectively,
in the equations (1.6), (1.7) and (1.8). But, if v = J,

Ser1 (E+2—m)(a+B+k+1)

Sk (k+2)(a+B8+k+m+1)

When v =L,

Skr1_ k+2-—m
Sk k42

and, in the Bessel case,

Skr1 (k+2-—m)(1—a—k)

Sk (k+2)(1—a—k—m)

Then, Sg+1/Sk < 1 for v = J,L,B and k = m,...,n — 1. This means that {S;} are decreasing
sequences. Hence, if D > S,, then +; are increasing and ~,, = min{vx, &k = m,...,n}. Thus, we

have

F(Cy,C%) = min v = min{ym—1,Ym}, v = J,L, B.
j<k<n

Observe that v,,—1 < v if S = (tm—1 — ftm)/O0m < D and ;-1 > i, otherwise. But

J I'(a+ [+ m)

S = f =

S (m —j)m! T(a + B+ 2m) orv=J,
& ] . _

S = W lfV—L,

S = J LB —a-2m) for v = B.

(m—g3)m! T'(3—a—m)

In view of the above identities we can conclude:
(1) If D > S,, and D > S, then v,_1 < Ym and F(C1,C0%) = Ym—1;

(2)If S, <D< S, then Ym—1 > Ym and F(C1, C) = vp,.

The later cases (1) and (2) correspond to the statements (iii) and (ii) of Theorem 2.1.

The above observation b) and the monotonicy of Sk, k = m,...,n — 1, imply that the sequences
{’Yk}zzm are decreasing provided D < S,,_;. Hence, in these cases we have F(C1, Cs) = min {~V;m—1,Vn },
v =J,L,B. In order to compare v,,—1 and v, note that v,,—1 < v if R:= (tm-1 — ttn)/0n < D

and 7v,,—1 > ¥, otherwise.
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In view of the identities
B o= m—m)!' T(a+B+n+j+1) {(m—j—l)! I'(a+ B +m)

=)' T(a+B+n+m+1) | (m—1)! T(a+B+m+j)

(mn—=g) T(a+B+n+1) ]
n!l T(a+B8+n+j+1)]°

=J,

A (n—m)! [(m—j—-1D!  (n—j)
R - | (m-1) n! }”’_L’
and
B o= (n—=—m)!T(2—a—n—m) {(mjl)!F(i%ozmj)
n—j! T2—a—n—j) (m—1)! '3—a—m)

= )IT2-a—-n—j)
n! r'2—a-—n)

}7V:B7

m! n!
~ < )
i i (m =) (n—j)!
j < m<mn,yields S,-1 < R, v=J LB It D <S5, 1and D < R, then v,,,_1 > 7, and
F(C1,C3) = ~y,. This corresponds to the statement (i) of the theorem. W

we need relations between the latter expressions and D. On the other hand, the inequality

Proof of Theorem 2.2 Since j = 1 and m = 2, Lemma 2.3 shows that we need to determine
min {02/1,17 C105 4+ Cops,...,C10, + 02/1,”} .

In order to this, in all the cases v = J, v = L or v = B, we shall find the smaller among the numbers
C162 4+ Cops, ..., C10, + Copiy, and we shall compare it to Copy.

In what follows, up to the final observation in this proof, we shall assume that C; + Cy = 1,
C1,Cy > 0.

Consider first the case v = J. Then, by equations in (1.12), for kK = 2,...,n we have

1

= 10y, + C. = C
Yk 10k 21k 2k(k+a+ﬁ+1)

+(1-C)k—Dk+a+3+2).

Define the function

1
C
*2(x+a+B+1)

gs(z) = +1-C)z—D(z+a+p+2) for 2<z<n.

Since gj(k) = v, for k = 2,...,n, then our problem reduces to investigate the behaviour of g;(x)
when C; and Cs belong to the segment Cy + Cy =1, C7,C5 > 0. Note that the only zero of

C
gy(x)=Q2r+a+p+1) (I—Cz—mg(x+aiﬁ+1)2)

that can belong to the interval [2,n] is

—(a+B+1)+ [(a+6+1)2+4 Cz/(l—Cz)T/2

T = 5 >0, a,0> —1.

But, for z > 2

2C5

gy(x) =2(1 - C2) + BE+atf+1)

5 [32° +3(a+ B+ Dz + (a+5+1)°] >0.

Hence g;(z) is convex on [2,00) and it can attain its absolute minimum on there at © = {—(a+ 0+
1)+ [(a+ B +1)? —4,/Cy/(1 — C3)]*/?}/2. Thus, we can conclude that:
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o If
1/2
~(a+B+1)+ [(a+B+1)2 +4y/Co/(1 - Co)]
5 <2,
then ymin = 723
o If
1/2
~(a+B+1)+ |[(a+B+1)2 +4y/Co/(1 - Ca)]
5 >n,
then Ymin = VYn}
o If
1/2
—(a+5+1)+[(a+6+1)2+4 02/(1—02)}
k< <k+1,

2
where 2 < k < n — 1, then ymin = min {yx, Ye+1} -

In order to determine the smaller between v, and g1, observe that
Ek+1)(k+a+8+1)(a+8+k+2)
kk+D(k+a+p+D(k+a+0+2)+1

and Yg41 > v otherwise. It is clear that v, = vi41 if and only if

o kE+D(E+atB+1)(a+f+k+2)
T kk+ Dk +tat+ B+ D)(k+a+rB+2)+1

< Cq

Vi1 <y if

Set
—(a+p8+1)+ [(a+ﬁ+1)2 +44/Cs/(1 —Cz)]l/z
2

y:=

for any Cy, 0 < Cy < 1.

If
k(k+1)(k+a+B8+1)(k+a+8+2)

k(k+1)(k+a+B+1)(k+a+p+2)+1

then the point of minimum of g;(z) is

Csy =

1/2
4a+ﬁ+n+[m+6+1y+4¢Mk+nw+a+ﬁ+U@+a+ﬂ+m}
5 )
Observe that k < yr < k+ 1. Since the function g;(x) is convex, then Ymin = Y41 if and only if

Yk =

Yr <y < Yr+1 and this conclusion holds for £k = 1,...,n — 2. The latter inequality is equivalent to
A < Cy < Agyq, where

k(k+1)(k+a+B8+1)(k+a+B+2)
kk+D(k+a+p+D)(k+a+p+2)+1

Let us compare, in each of these cases, yx+1 to 1 = Co/(a + (8 + 2).

Ak =

For Cy € <0, 6(2(3——; f_;?i(i—g f—l_)?— 1), we need to compare «; and 3. Since
B 20+ 8+2)(a+8+3)+1
then
20+ B+2)(a+5+3) .
o 7 <y for 0 < Cy < 2(a+ﬁ—|—2)(a+5+3)+1’
B _ 2(a+p+2)(a+ [+ 3)
e 7, = for Cy = o110t B+3)+1 and
20+ B+2)(a+3+3) 6(a+ [+ 3)(a+[+4)

< 7 f
® Yo Y1 tor 2( 2

a+pB+2)(a+p8+3)+1 6la+08+3)(a+p+4)+1



LANDAU AND KOLMOGOROFF TYPE POLYNOMIAL INEQUALITIES 11 11
Let now k be any integer, such that 2 < k < n and let
Cy e (Ak,Ak+1) =: Ap.

Since

(E+1)(k+a+pB+2)(a+8+2)+1
(k+1D(k+a+B8+2)(a+p+2)

(k+1)(k+a+B8+2)(a+B+2)

k+D)(k+ta+p+2)(a+rB+2)+1
Cs € Ag. Then we have Ypin = k41 for every Cy € Ay.

7k+1—’>’1:k’(k’+04+5+3)(1— Cz)SO

if and only if < C5 and this latter inequality always holds for

Finally, we have v, < v, for every

nn—Dn+a+B)(n+a+8+1) B
2 € <n(n—1)(n+a+ﬁ)(n+a+ﬂ—l—1)+1’1> = An-1

because

nin+a+pB+1)(a+B8+2) +1
nn+a+p+1)(a+F+2)

Vn—71—(n—1)(n+a+ﬁ+2))(1— C’2><0
nn+a+F+1)(a+6+2)

nnta++1)(a+8+2)+1
Recall that all considerations have been done under the restriction C7; + Cy = 1. The restrictions

is equivalent to < Ch.
Cy € Ay can be easily transformed into equivalent restrictions for D = C;/Cs. We omit this detail.

The result is:

e If 2(a+B+2)(a+B+3)]"' <D < oo, then Ymin = M;

o If [(k+1)(k+2)(k+a+8+2)(k+a+3+3)]' <D < [k(k+1)(k+a+8+1)(k+a+p+2)]7 1,
then Ymin = Y641, k=1,...,n —2;

e If0<D<[n(n—1)(n+a+B+1)(n+a+B+2)]"", then Ymin = Vn.

This completes the proof for the Jacobi case.
The proof for the case v = L is similar to the Hermite case in [2]. By considering the equations in
(1.13) we obtain

1
’yk2010k+c2ﬂk:CQE"_(]._CQ)(k_].) for k=2,... n.

Observe that it is exactly the equation for ~; in the proof of (Theorem 2, [2]).

Finally, consider the Bessel case, that is, v = B. Then, by equations in (1.14) we have

1
_ _ o a- ) (—a— —2.....n
Ve = C16k + Copig C2k(—a—k+1) +(1-C)(k—1)(~a—k) for k=2,...,n
In this case, let gg(z) be defined by
1
=(Cy—F/——~ 1- - (—a— 2<x<n.
gB($) CQ{L‘(—OZ—LL’-F:[) +( 02)(17 )( «Q 1‘), ST >N

Using partial fraction decomposition, gg(x) can be written in the form

2—a\r —a—z+1

gp(@) = - (1+ ! )+<1—02><x—1><—a—x>.

Remember that 2n < 1 — « in the Bessel case. Then, 2 —a > 0 and n < (—a + 1)/2. Hence, gg(x)
is concave on [2,n].

Since g (k) = vk, k = 2,...,n, then our problem reduces to determine the smaller between 7, and 7,
and to compare it to ;. Observe that v, < v1 if 2n(—a—1)(1—a—n+]/2n(—a—1)(1—a—n)+1] <
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C5 and 7, > -1 otherwise.

Let us compare ¥2 to y1 = C2/(—a). Since

= = g e e = D = R(-a)(—a = 1) +1)Ca)
then
2(—a)(—a—1)
o vy <7 for Cy > 2(_@)(_0[_ 1) T 1’
o o =7 for Cy = 2(2(;)0(4)(;04 I)lll and
2(—a)(—a—1)
e o > for Cy < o) —a -+ 1
n(—a—-1)1—-a—mn) 2(—a)(—a—1)
For n > 2 we have l—a -1 —a—n)+1 o) —a—T) + 1 Then,
2(—a)(—a—1) 2n(—a—1)(1—a—n)

Ymin = Y2 if 2(—a)(—a—1) + 1 << 2n(—a—1)(1—a—-n)+1

In order to compare ; and -, observe that

M= = (n—1(-a—n)-C nln 1)(1nz1a—_an_)(;>a SRS —ioz

n(l —a—n)(—a)
n(l—a—n)(—a)+1

Then v, < 7 if Co > and 7, > 1 otherwise. On the other hand, for n > 2,

we have
2(—a)(—a—1) n(—a)(1 —a —n) 2n(—a—1)(1 —a—n)
2(—a)(—a—1)+1 " n(-a)l—-a-n)+1 2n(—a—1)(1—-a—-n)+1’

Thus

n(—a—1)(1—a—n)
n(—a—-1)1-a—-n)+1

2(-)(=a = 1)
n(—a)(—a—1)+1

We can again transform the restrictions for Cs into equivalent restrictions for D = Cy/Cs. This

o if < Cy < 1, then Ypmin = Yn;

e if0<(Cy < , then vpin = 1.

procedure yields:

o if 2(—a)(—ar— ]! < D < 00, then Yymin = 71
o if 2n(—a—1)(1 —a—n)]"' < D < [2(—a)(—a — 1)}, then ymin = 7a;
e if 0 <D< [2n(—a—1)(1—a—n)]"", then Ymin = Yn.

Finally, we can remove the restriction C7 + C5 = 1 in all the cases v = J, L, B. This is justified just

as in the final stage of the proof of Theorem 2 in [2]. B
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