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Abstract. Let 0 < j < m ≤ n be integers. Denote by ‖ · ‖ the norm

‖f‖2 =
∫∞
−∞ f2(x) exp(−x2)dx. For various positive values of A and B we

establish Kolmogoroff type inequalities

‖f (j)‖2 ≤
A‖f (m)‖2 +B‖f‖2

Aθk +Bµk
,

with certain constants θk e µk, which hold for every f ∈ πn (πn denotes the

space of real algebraic polynomials of degree not exceeding n).
For the particular case j = 1 and m = 2, we provide a complete characteri-

sation of the positive constants A and B, for which the corresponding Landau

type polynomial inequalities

‖f ′‖2 ≤
A‖f ′′‖2 +B‖f‖2

Aθk +Bµk
,

hold. In each case we determine the corresponding extremal polynomials for
which equalities are attained.

1. Introduction and Statement of Results

Let ‖f‖∞,[a,b] = supa≤x≤b |f(x)|. In 1913, Landau [4] proved that ‖f ′‖∞,[0,1] ≤ 4
for every f ∈ C2[0, 1], for which ‖f‖∞,[0,1] = 1 and ‖f ′′‖∞,[0,1] = 4. Kolmogoroff
[3] proved, for sufficiently smooth functions, inequalities of the form

‖f (j)‖∞,[0,1] ≤ K(m, j) ‖f (m)‖
j
m

∞,[0,1] ‖f‖
1− j

m

∞,[0,1],(1)

with the best constant K(m, j) and determined the functions for which inequality in
(1) is attained. These extremal functions are perfect splines and in none of the cases
algebraic polynomials. On the other hand, the classical A. Markov’s inequality [5]

‖p′‖∞,[−1,1] ≤ n2 ‖p‖∞,[−1,1], p ∈ πn,
and its extension,

‖p(k)‖∞,[−1,1] ≤
1

(2k − 1)!!

k−1∏
i=0

(n2 − i2)‖p‖∞,[−1,1], 1 ≤ k ≤ n, p ∈ πn,

given by V. Markov [6], are typical examples of inequalities connecting norms of
derivatives of different orders of polynomials.
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These facts motivated some author [1, 8] to look for polynomial analogues of
Landau’s and Kolmogoroff’s inequalities. In particular, Varma [8] established
a sharp Landau type inequality and in a recent paper Bojanov and Varma [1]
proved a Kolmogoroff type polynomial inequality for the weighted norm ‖f‖2 =∫∞
−∞ f2(x) exp(−x2)dx. The extremal polynomials for which the inequalities in [8]

and [1] reduce to equalities are the classical Hermite polynomials Hn(x), orthogonal
on (−∞,∞) with respect to the weight function exp(−x2).

In this paper we suggest a somehow more systematic approach than the one de-
veloped in [1], which allows us to establish the following Kolmogoroff type weighted
polynomial inequalities:

Theorem 1. Let j < m ≤ n be positive integers and A and B positive constants.
(i) If

A

B
≤ 2−m

(n−m)!
n!

j

m− j
,(2)

then

‖f (j)‖2 ≤ A‖f (m)‖2 +B‖f‖2

A2m−j(n− j)![(n−m)!]−1 +B2−j(n− j)!(n!)−1
(3)

for every f ∈ πn. Moreover, equality is attained if and only if f(x) is a constant
multiple of Hn(x).

(ii) If
2−m

(m+ 1)!
j

(m− j)
<
A

B
< 2−m

j

m!(m− j)
,

then

‖f (j)‖2 ≤ A‖f (m)‖2 +B‖f‖2

A2m−j(m− j)! +B2−j(m− j)!(m!)−1
(4)

for every f ∈ πn. Moreover, equality is attained if and only if f(x) is a constant
multiple of Hm(x).

(iii) If
A

B
> 2−m

j

m!(m− j)
,

then

‖f (j)‖2 ≤ A‖f (m)‖2 +B‖f‖2

B2−j(m− j − 1)![(m− 1)!]−1
(5)

for every f ∈ πn. Moreover, equality is attained if and only if f(x) is a constant
multiple of Hm−1(x).

(iv) If A/B = 2−mj/((m− j)m!), then the inequalities (4) and (5) coincide and
they hold for every f ∈ πn. In this case equality is attained if and only if f(x) is
any linear combination of Hm−1(x) and Hm(x).

As an immediate consequence of Theorem 1 (i) we obtain

Corollary 1. Let

α ≤ (n−m)!j
2m−j(n− j)!m

.

Then the inequality

‖f (j)‖2 ≤ α‖f (m)‖2 +
{

2j
(
n
j

)
j!− α2m

(
n
m

)
m!
}
‖f‖2
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holds for every f ∈ πn. Moreover, equality is attained if and only if f(x) is a
constant multiple of Hn(x).

This is exactly the result of Bojanov and Varma [1] mentioned above.
In the case j = 1 and m = 2 we provide a complete characterisation of the

positive constants A and B, for which the corresponding Landau type polynomial
inequalities hold.

Theorem 2. Let A and B be positive constants.
(i) If 0 < A/B < (4n(n− 1))−1, then

‖f ′‖2 ≤ A

2A(n− 1) +B(2n)−1
‖f ′′‖2 +

B

2A(n− 1) +B(2n)−1
‖f‖2(6)

for every f ∈ πn. Moreover, equality is attained if and only if f(x) = cHn(x),
where c is a constant.

(ii) If (4k(k+ 1))−1 < A/B < (4k(k− 1))−1, where k ∈ IN, 2 ≤ k ≤ n− 1, then

‖f ′‖2 ≤ A

2A(k − 1) +B(2k)−1
‖f ′′‖2 +

B

2A(k − 1) +B(2k)−1
‖f‖2(7)

for every f ∈ πn. Moreover, equality is attained if and only if f(x) = cHk(x),
where c is a constant.

(iii) If 1/8 < A/B <∞, then

‖f ′‖2 ≤ 2A
B
‖f ′′‖2 + 2‖f‖2(8)

for every f ∈ πn. Moreover, equality is attained if and only if f(x) = cH1(x).
(iv) If A/B = (4k(k + 1))−1 for some integer k, then the inequalities

‖f ′‖2 ≤ A

2A(k − 1) +B(2k)−1
‖f ′′‖2 +

B

2A(k − 1) +B(2k)−1
‖f‖2(9)

and

‖f ′‖2 ≤ A

2Ak +B[2(k + 1)]−1
‖f ′′‖2 +

B

2Ak +B[2(k + 1)]−1
‖f‖2(10)

coincide and they hold for every f ∈ πn. In this case equality in (9) and (10) is
attained if and only if f(x) is any linear combination of Hk(x) and Hk+1(x).

Setting B = 4n2A, in Theorem 2(i) we obtain the inequality

‖f ′‖2 ≤ 1
2(2n− 1)

‖f ′′‖2 +
2n2

2n− 1
‖f‖2, f ∈ πn,

where equality is attained only for the polynomials f(x) that are constant multiples
of Hn(x). This is nothing but Varma’s result [8].

2. A Preliminary Result

Our idea is to study, for any given integers j,m, n, 0 < j < m ≤ n, and positive
constants A and B, the extremal problem

min
{
A‖f (m)‖2 +B‖f‖2

‖f (j)‖2
: f ∈ πn, f(x) 6= 0

}
,
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where the objective function F (A,B, f) =
(
A‖f (m)‖2 +B‖f‖2

)
/‖f (j)‖2 depends

on the parameters A and B. Denote by f∗ ∈ πn the extremal polynomial, that is,
the polynomial for which the minimum of F (A,B, f) is attained. Thus we define

F (A,B) = F (A,B, f∗) = min {F (A,B, f) : f ∈ πn, f(x) 6= 0} .

Let the sequences {µi}ni=j , {θi}
n
i=m and {γk}nk=j be defined by

µi = 2−j
(i− j)!
i!

, θi = 2m−j
(i− j)!
(i−m)!

,

γk = Bµk, k = j, . . . ,m− 1,
γk = Aθk +Bµk, k = m, . . . , n.

Lemma 1. For any given integers j < m ≤ n and positive constants A and B

F (A,B) = min
j≤i≤n

γi := γk.(11)

Proof: We need two basic properties of the Hermite polynomials Hn (cf. (5.5.1)
and (5.5.10) in [7]):∫ ∞

−∞
Hk(x)Hi(x) exp(−x2)dx =

√
π2kk!δik,(12)

where δik is the Kronecker delta, and

H ′i(x) = 2iHi−1(x).(13)

In what follows a different normalisation of the Hermite polynomials will be used.
Set H̃i(x) = ciHi(x), where

ci = 1 for i = 0, . . . , j − 1, and ci =
(√

π2i+j
(i!)2

(i− j)!

)−1/2

for i = j, . . . , n.

Since {Hn} are orthogonal, the polynomials H̃0(x), . . . , H̃n(x) form a basis
in πn. Then every f ∈ πn can be uniquely represented as a linear combination
f(x) =

∑n
k=0 akH̃k(x). Hence the orthogonality relation (12) and the definition of

the polynomials H̃i(x) yield

‖f‖2 =
∫ ∞
−∞

(
n∑
i=0

aiH̃i(x)

)2

exp(−x2)dx =
n∑
i=0

µia
2
i ,

where µi =
√
π2ii! for i = 0, . . . , j − 1 and µi for i = j, . . . , n are defined above.

Similarly, the relations (12), (13) and the definition of H̃i(x) imply

‖f (j)‖2 =
n∑
i=j

a2
i c

2
i ‖H

(j)
i ‖

2 =
n∑
i=j

a2
i .

In the same manner we obtain

‖f (m)‖2 =
n∑

i=m

θia
2
i ,

where θi, i = m, . . . , n, are defined above.
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Thus the problem formulated in the beginning of this section reduces to the
following one:

min


(
m−1∑
i=0

Bµia
2
i +

n∑
i=m

(Aθi +Bµi)a2
i

)
/

n∑
i=j

a2
i : a0, . . . , an ∈ IR

 .

Obviously the above minimum is attained for a0 = . . . = aj−1 = 0, that is,

F (A,B) = min


m−1∑
i=j

Bµia
2
i +

n∑
i=m

(Aθi +Bµi)a2
i : aj , . . . , an ∈ IR,

n∑
i=j

a2
i = 1

 .

Let ā = (aj , . . . , an). Therefore our problem reduces to determine the minimum
of ātCā, subject ātā = 1, where C is the diagonal matrix

diag (Bµj , . . . , Bµm−1, Aθm +Bµm, . . . , Aθn +Bµn) .

By the Rayleigh-Ritz Theorem (cf. Theorem 4.2.2 on page 176 in Horn and Johnson
[2]), F (A,B) is equal to the smallest eigenvalue of C, that is,

F (A,B) = min {γj , . . . , γn} .
Moreover, if F (A,B) = γk, the extremal polynomial f∗(x), for which F (A,B) =
F (A,B, f∗), is a constant multiple of Hk(x).

3. Proofs of the Theorems

Proof of Theorem 1. The sequence µ is decreasing. Indeed,

µi − µi+1 = 2−j
(

(i− j)!
i!

− (i− j + 1)!
(i+ 1)!

)
= 2−j

(i− j)!j
(i+ 1)!

≥ 0.

Then the smallest among the numbers Bµj , . . . , Bµm−1 is Bµm−1. Thus, according
to Lemma 1, we need to find the smallest γν among γm, . . . , γn and to compare γν
with Bµm−1.

Consider the monotonicy of the sequence {γk}nk=m. Since

γk+1 − γk = A(θk+1 − θk) +B(µk − µk+1),

then a) {γk}nk=m is increasing if A/B ≥ (µk − µk+1)/(θk+1 − θk) =: Sk for k =
m, . . . , n− 1 and b) {γk}nk=m is decreasing if A/B ≤ Sk for k = m, . . . , n− 1.

Straightforward calculations show that

Sk =
µk − µk+1

θk+1 − θk
= 2−m

(k −m+ 1)!
(k + 1)!

j

m− j
,

and then Sk+1/Sk = (k−m+ 2)/(k+ 2) < 1. This means that {Sk} is a decreasing
sequence. Hence, if A/B ≥ Sm, then, γk is increasing and then γν = γm. Thus, in
this case we have

F (A,B) = min
j≤k≤n

γk = min {γm−1, γm} .

In order to compare γm−1 and γm, observe that γm−1 < γm if (µm−1 − µm)/θm <
A/B and γm−1 ≥ γm otherwise. In view of the identity (µm−1 − µm)/θm =
2−mj/((m− j)m!) we can conclude:

(1) If A/B ≥ Sm and A/B > 2−mj/((m−j)m!), then γm−1 < γm and F (A,B) =
γm−1,

(2) If Sm ≤ A/B < 2−mj/((m− j)m!), then γm−1 > γm and F (A,B) = γm.
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It is worth mentioning that the interval [Sm, 2−mj/((m − j)m!))] is not empty
because the inequality Sm < 2−mj/((m − j)m!) is equivalent to the obvious one
m > 0.

The latter cases (1) and (2) correspond to the statements (iii) and (ii) of The-
orem 1.

The above observation b) and the monotonicy of Sk imply that the sequence
{γk}nk=m is decreasing providedA/B ≤ Sn−1. Hence, in this case we have F (A,B) =
min {γm−1, γn}. In order to compare γm−1 and γn, note that γm−1 < γn if
(µm−1 − µn)/θn < A/B and γm−1 ≥ γn otherwise.

In view of the identity

µm−1 − µn
θn

= 2−m
(n−m)!
(n− j)!

[(m− j − 1)!n!− (n− j)!(m− 1!)]
(m− 1)!n!

,

we need a relation between the latter expression and A/B. On the other hand, the
inequality (

m
j

)
<

(
n
j

)
, j < m < n,

yields

Sn−1 < 2−m
(n−m)!
(n− j)!

[(m− j − 1)!n!− (n− j)!(m− 1)!]
(m− 1)!n!

,

which means that (µm−1 − µn)/θn < Sn−1. If

A

B
≤ Sn−1 and

A

B
< 2−m

(n−m)!
(n− j)!

[(m− j − 1)!n!− (n− j)!(m− 1)!]
(m− 1)!n!

,

then γm−1 > γn and F (A,B) = γn. This corresponds to the statement (i) of the
theorem.

Proof of Theorem 2. Since j = 1 and m = 2, Lemma 1 shows that we need to
determine

min {Bµ1, Aθ2 +Bµ2, . . . , Aθn +Bµn} .
In order to this, we shall find the smallest among the numbers Aθ2+Bµ2, . . . , Aθn+
Bµn, say γν , and in each case we shall compare γν to Bµ1.

In what follows, up to the final observation in this proof, we shall assume that
2mA+B = 1. Then we have

γk = Aθk +Bµk = (B/k + (1−B)(k − 1)) /2 for k = 2, . . . , n.

Define the function

g(x) = (B/x+ (1−B)(x− 1)) /2 for 2 ≤ x ≤ n.

Since g(k) = γk for k = 2, . . . , n, then our problem reduces to investigate the
behaviour of g(x) when A and B belong to the segment 2mA + B = 1, A,B > 0.
Note that 2g′(x) = −B/x2 + (1− B) = 0 if and only if x = ±(B/(1 − B))1/2 and
g′′(x) = B/x3 > 0 for x > 0. Hence g(x) is convex on the positive half-line and it
attains its absolute minimum there at x = (B/(1−B))1/2. Thus, we can conclude
that:

If
√

B
1−B < 2, then γν = γ2;

If
√

B
1−B > n, then γν = γn;

If k ≤
√

B
1−B < k + 1, where 2 ≤ k ≤ n− 1, then γν = min {γk, γk+1} .
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In order to deternine the smaller among γk and γk+1, observe that

γk+1 < γk if
k(k + 1)
k2 + k + 1

< B

and γk+1 ≥ γk otherwise. It is clear that γk = γk+1 if and only if B = k(k +
1)/(k2 + k + 1).

Set y := (B/(1−B))1/2 for any B, 0 ≤ B < 1. If B = k(k+ 1)/(k2 + k+ 1) the
point of minimum of g(x) is

yk :=
√
k(k + 1).

Obviously k < yk < k+ 1. Since the function g(x) is convex, then γν = γk+1 if and
only if yk < y < yk+1 and this conclusion holds for k = 1, . . . , n − 2. The latter
inequality is equivalent to

k(k + 1)
k2 + k + 1

< B <
(k + 1)(k + 2)
k2 + 3k + 3

.

Let us compare, in each of these cases, γk+1 to γ1 = B/2.
For B ∈ (0, 6/7), we need to compare γ1 and γ2. Since γ2 − γ1 = (1− 3B/2) /2,

then γ1 < γ2 for 0 < B < 2/3, γ1 = γ2 for B = 2/3 and γ2 < γ1 for 2/3 < B < 6/7.
Let now k be any integer, such that 2 ≤ k ≤ n and let

B ∈
(

k(k + 1)
k2 + k + 1

,
(k + 1)(k + 2)
k2 + 3k + 3

)
= ∆k.

Since

γk+1 − γ1 =
k

2(k + 1)
((k + 1)− 2B(k + 2)) ≤ 0

if and only if k+1
k+2 < B and and this latter inequality always hold for B ∈ ∆k, then

we have γk+1 < γ1 for every B ∈ ∆k.
Finally, we have γn < γ1 for every

B ∈
(

n(n− 1)
n2 − n+ 1

, 1
)

= ∆n−1

because γn−γ1 = (n−1) (n−B(n+ 1)) /n < 0 is equivalent to n/(n+1) < B and
obviously n/(n+ 1) < n(n− 1)/(n2 − n+ 1).

Recall that all considerations have been done under the restriction 2mA+B = 1.
The restrictions B ∈ ∆k can be easily transformed into equivalent restrictions for
A/B. We omit this detail. The result is:

If 1/8 < A/B <∞, then γmin = γ1;
If (4(k+1)(k+2))−1 < A/B < (4k(k+1))−1, then γmin = γk+1 k = 1, . . . , n−2;
If 0 < A/B < (4n(n− 1))−1, then γmin = γn.
Our final observation is that we can remove the restriction 2mA+B = 1. Indeed,

we have proved inequalities of the form

‖f ′‖2 ≤ A‖f ′′‖2 +B‖f‖2

Aθk +Bµk
.

The quotient on the right-hand side is homogeneous with respect to A,B, so this
quotient has the same value for A,B and for dA, dB, whatever the positive constant
d is.
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