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INEQUALITIES

CLAUDIA R. R. ALVES AND DIMITAR K. DIMITROV

ABSTRACT. Let 0 < j < m < n be integers. Denote by || - || the norm
I£I1?2 = [°2_ f?(x) exp(—a?)da. For various positive values of A and B we
establish Kolmogoroff type inequalities
Allfm12 + BI£I1?

Aek + B/J,k ’
with certain constants 0 e uy, which hold for every f € m, (7, denotes the
space of real algebraic polynomials of degree not exceeding n).

For the particular case 7 = 1 and m = 2, we provide a complete characteri-
sation of the positive constants A and B, for which the corresponding Landau
type polynomial inequalities

Allf"II” + B fII?

I£11% <
A0 + B
hold. In each case we determine the corresponding extremal polynomials for
which equalities are attained.

F9)2 <

1. INTRODUCTION AND STATEMENT OF RESULTS

Let ||f||w7[a,b] = SUPy<,<p |f(2)]. In 1913, Landau [4] proved that ||f'||oo,[071} <4
for every f € C?[0,1], for which ||f|lof0,1) = 1 and || f”|s0,(0,1] = 4. Kolmogoroff
[3] proved, for sufficiently smooth functions, inequalities of the form

(1) 1D oeor < Km, ) 1N o 11 e

with the best constant K (m, j) and determined the functions for which inequality in
(1) is attained. These extremal functions are perfect splines and in none of the cases
algebraic polynomials. On the other hand, the classical A. Markov’s inequality [5]

19" loo,1=1,1] < n? Iplls,(=1,15 P € Tn,

and its extension,

||p(k)||oo,[—1,1] S ” H Hp”oo [-1,1]» 1<k< n, p € my,

given by V. Markov [6], are typical examples of inequalities connecting norms of
derivatives of different orders of polynomials.
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These facts motivated some author [1, 8] to look for polynomial analogues of
Landau’s and Kolmogoroff’s inequalities. In particular, Varma [8] established
a sharp Landau type inequality and in a recent paper Bojanov and Varma [1]
proved a Kolmogoroff type polynomial inequality for the weighted norm || f||? =
J75. f?(2) exp(—2?)dz. The extremal polynomials for which the inequalities in [8]
and [1] reduce to equalities are the classical Hermite polynomials H,, (x), orthogonal
on (—o0,00) with respect to the weight function exp(—x?).

In this paper we suggest a somehow more systematic approach than the one de-
veloped in [1], which allows us to establish the following Kolmogoroff type weighted
polynomial inequalities:

Theorem 1. Let j < m < n be positive integers and A and B positive constants.
(¢) If
A ( ' g
2 Zcommlil I
) = < . 3

then
AllS“? + BIIfIIP
A2 (n — ) [(n — m)!]=1 + B2=7(n — j)!(n)~!
for every f € m,. Moreover, equality is attained if and only if f(x) is a constant

multiple of H,(z).

(3) LFN? <

(i) If
2" J < é < 2‘m7j
mADim—7 B <% mim—j)’
then
(4) IFD)? < Al + B f11?

A2m=i(m — j)! + B273(m — j)!(m!)~!
for every f € m,. Moreover, equality is attained if and only if f(x) is a constant
multiple of Hy,(x).

(idi) If
A >27" J
B m!(m — j)’
then
(5) 1792 < AllF™ 12 + BJIf]1?

B2=i(m—j—![(m—-1)]-1
for every f € m,. Moreover, equality is attained if and only if f(x) is a constant
multiple of Hp,—1(x).

(w) If A/B =27"5/((m — j)m!), then the inequalities (4) and (5) coincide and
they hold for every f € m,. In this case equality is attained if and only if f(x) is
any linear combination of H,,_1(x) and Hp,(z).

As an immediate consequence of Theorem 1 (i) we obtain
Corollary 1. Let

— 15
o< mml
— 2m=i(n—j)Im
Then the inequality

IFDN2 < allf™)2 + {Qj < ;L )j! —a2™ < :1 > m!} [Fils
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holds for every f € m,. Moreover, equality is attained if and only if f(x) is a
constant multiple of H, (z).

This is exactly the result of Bojanov and Varma [1] mentioned above.

In the case j = 1 and m = 2 we provide a complete characterisation of the
positive constants A and B, for which the corresponding Landau type polynomial
inequalities hold.

Theorem 2. Let A and B be positive constants.
(i) If 0 < A/B < (4n(n —1))7L, then
A
<
~ 2A(n—1)+ B(2n)

B
(n—1) + B(2n)

(6) 1112 1%+ 54 — I /1P
for every f € m,. Moreover, equality is attained if and only if f(x) = cH,(z),
where ¢ is a constant.

(id) If (4k(k+1))"! < A/B < (4k(k —1))71, where k € IN, 2 <k <n—1, then

!/ A 1" B

for every f € m,. Moreover, equality is attained if and only if f(x) = cHg(x),
where ¢ is a constant.
(#i) If 1/8 < A/B < oo, then

24
(8) P17 < 111 + 2071

for every f € m,. Moreover, equality is attained if and only if f(x) = cH;(x).
(iv) If A/B = (4k(k + 1))~ for some integer k, then the inequalities

/ A " B
and
! A " B
0 1P < e+ 1P

24k + B12(k + 1)]

coincide and they hold for every f € m,. In this case equality in (9) and (10) is
attained if and only if f(x) is any linear combination of Hy(x) and Hyiq1(x).

Setting B = 4n?A, in Theorem 2(i) we obtain the inequality
1

1f[” < m”f””2 +

2n?
2n—1

||f||27 f € Tn,

where equality is attained only for the polynomials f(z) that are constant multiples
of H,(x). This is nothing but Varma’s result [8].

2. A PRELIMINARY RESULT

Our idea is to study, for any given integers j,m,n,0 < 7 < m < n, and positive
constants A and B, the extremal problem

- {A||f<m>||%+ BIf|?
TE

:fewn,f<x>¢o},
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where the objective function F(A, B, f) = (A|lf™)|12+ B| ) /IIf“||* depends
on the parameters A and B. Denote by f, € m, the extremal polynomial, that is,
the polynomial for which the minimum of F(A, B, f) is attained. Thus we define

F(A,B) = F(A, B, f.) = min {F(A, B, f) : f € mn, f(x) # 0}
Let the sequences {11 };_;, {0:};—,, and {7 };_; be defined by

(=3)! g (i=3)!

pi =277

it (i —m)l’
v = Bug, k=gj,...,m—1,
v = AOp+ Bug, k=m,... n.

Lemma 1. For any given integers j < m < n and positive constants A and B

(11) F(A, B) =i %= e

Proof: We need two basic properties of the Hermite polynomials H,, (cf. (5.5.1)
and (5.5.10) in [7]):
(12) / Hy.(z)Hi(x) exp(—z?)dz = /728 k!5,

where ;5 is the Kronecker delta, and
(13) H!(x) = 2iH;_1(z).

In what follows a different normalisation of the Hermite polynomials will be used.
Set H;(x) = ¢;H;(x), where

e 1/2
ci=1 for i=0,...,5—1, and c¢; = (\/ETHW) for i=13,...,n.
Since {H,} are orthogonal, the polynomials Ho(z),...,H,(z) form a basis

in m,. Then every f € m, can be uniquely represented as a linear combination
f(z) =Y 1_o axHg(x). Hence the orthogonality relation (12) and the definition of
the polynomials H;(x) yield

0o n 2 n
1% = / (Z aﬂﬂ'(@) exp(—z”)dz = Zuia?,
=00 \i=0 i=0
where p; = /w2l for i = 0,...,j — 1 and y; for i = j,... ,n are defined above.
Similarly, the relations (12), (13) and the definition of H;(x) imply

n n
IFON2 =" a2 HD |2 =" a.
i=j i=j
In the same manner we obtain
n
LI =S 6,
i=m

where 6;, i =m,... ,n, are defined above.
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Thus the problem formulated in the beginning of this section reduces to the
following one:

m—1 n n
min (Z Buia? + Z(Aﬂi JrBui)af) /Z:az2 D ag,...,an € R
i=0 i=m i=j

Obviously the above minimum is attained for ap = ... = aj—1 = 0, that is,
m—1 n n
F(A, B) = min Z Buia? + Z(Aﬂi + Bu)a? : aj,...,an € IR, Za? =1
i=j i=m i=j
Let @ = (aj,... ,a,). Therefore our problem reduces to determine the minimum

of a*Ca, subject a‘a = 1, where C is the diagonal matrix
diag (Buj, ... ,Bim—1,A0n + Blm, ... , A0, + Bu,) .

By the Rayleigh-Ritz Theorem (cf. Theorem 4.2.2 on page 176 in Horn and Johnson
[2]), F(A, B) is equal to the smallest eigenvalue of C, that is,

F(A,B) =min{vy;,... ,7}.
Moreover, if F(A, B) = 7, the extremal polynomial f,(x), for which F(A, B) =
F(A, B, f.), is a constant multiple of Hj(x).
3. PROOFS OF THE THEOREMS

Proof of Theorem 1. The sequence p is decreasing. Indeed,

i — iy = 27 <(i__j)! B (i—j+1)!> =i

7! (t+1)! G+ —
Then the smallest among the numbers B, ... , Bty —1 is By, —1. Thus, according
to Lemma 1, we need to find the smallest v, among v, ... ,7, and to compare 7,
with By,—1.

Consider the monotonicy of the sequence {vx},_, . Since

Vit1 — Vi = A(Ok+1 — Ok) + Bk — pg+1)s
then a) {yx},_,, is increasing if A/B > (up — pr1)/(Opr1 — ) =: Sy for k =
m,...,n—1and b) {yx},_,, is decreasing if A/B < Sy for k=m,... ,n—1.

Straightforward calculations show that
g Mk Hkt1 oo (k—m A DI
k Op+1 — O (k+1)! m-—j’

and then Sky1/Sk = (k—m+2)/(k+2) < 1. This means that {Sj} is a decreasing
sequence. Hence, if A/B > S,,, then, 74 is increasing and then v, = ~,,. Thus, in
this case we have

F(A,B) = i v = min {Ym—1,Ym} -
In order to compare ,,—1 and 7,,, observe that v,,—1 < Ym if (-1 — tm)/Om <
A/B and 7;,—1 > v otherwise. In view of the identity (tm—1 — pim)/0m =
275/((m — j)m!) we can conclude:
(WIfA/B> S, and A/B > 27"j/((m—j)m!), then v,,—1 < v, and F(4, B) =
Tm—1,
(2) It Sy, < A/B < 27™5/((m — 5)m!), then vym_1 > vm and F(A, B) = yp,.
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It is worth mentioning that the interval [S,,,27™5/((m — j)m!))] is not empty
because the inequality S, < 27™j/((m — j)m!) is equivalent to the obvious one
m > 0.

The latter cases (1) and (2) correspond to the statements (i7) and (i¢) of The-
orem 1.

The above observation b) and the monotonicy of Sy imply that the sequence
{7 }r_,, is decreasing provided A/B < S,_;. Hence, in this case we have F(A, B) =
min {¥;m—1,7.}. In order to compare 7,—1 and v,, note that v,_1 < 7, if
(-1 — pn) /0, < A/B and 7,,—1 > 7, otherwise.

In view of the identity

i1 =ty = m)! [(m = )it = (n = 5)!(m — 19
0, N (n—j)! (m —1)In! ’

we need a relation between the latter expression and A/B. On the other hand, the

inequality
m n .
S < V), j<m<n,
() <(5)
yields
—m(m=m) [(m—j —Dnl = (n—j5)l(m—1)!]
n—1 <27 )
Sn-1 < (n—j)! (m—1)n!
which means that (-1 — pn)/0n < Sp—1. If
A A —m(n=m) [(m—j—Dlnl = (n—j)l(m-1)!]
< - m
g S Snmu and p <O m— 1) )

then v,,—1 > v, and F(A, B) = 7,. This corresponds to the statement () of the
theorem.
Proof of Theorem 2. Since j = 1 and m = 2, Lemma 1 shows that we need to
determine
min { By, Afs + Bua, ... ,Ab, + Bu,} .

In order to this, we shall find the smallest among the numbers A0>+ Buso, ... , A0, +
B, say v,, and in each case we shall compare 7, to Bu;.

In what follows, up to the final observation in this proof, we shall assume that
2™ A+ B = 1. Then we have

Yk = A0y + Bup, = (B/k+ (1= B)(k—1))/2 for k=2,... ,n.
Define the function
gx)=(B/z+(1-B)(x—-1))/2 for 2<z<n.
Since g(k) = v for k = 2,...,n, then our problem reduces to investigate the
behaviour of g(x) when A and B belong to the segment 2" A+ B =1, A, B > 0.
Note that 2¢/(x) = —B/2? 4+ (1 — B) = 0 if and only if z = +(B/(1 — B))'/? and
g"(x) = B/x3 > 0 for z > 0. Hence g(x) is convex on the positive half-line and it

attains its absolute minimum there at = (B/(1 — B))'/2. Thus, we can conclude
that:

If,/%<2, then v, = v9;

If % > n, then v, = ;3

Ifk < % < k+1, where 2 <k <n—1, then v, = min {7y, Yx+1} -
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In order to deternine the smaller among 7, and yx41, observe that

k(k + 1)

Wt < Y g

and ygt1 > v, otherwise. It is clear that v = 41 if and only if B = k(k +
1)/(k* +k+1).
Set y := (B/(1— B))"/? for any B,0 < B< 1. If B=k(k+1)/(k*+k+1) the

point of minimum of g(z) is
yr =V E(k+1).

Obviously k < yr < k+ 1. Since the function g(x) is convex, then 7, = ;41 if and
only if yr < y < yr+1 and this conclusion holds for £k = 1,... ,n — 2. The latter
inequality is equivalent to
E(k+1 k+1)(k+2
(k+1) _ (- D)0+2)
E+k+1 k%2 +3k+3
Let us compare, in each of these cases, yxt1 to y1 = B/2.
For B € (0,6/7), we need to compare ~; and vs. Since v —v1 = (1 — 3B/2) /2,

then 71 < 9 for 0 < B <2/3, 71 =, for B=2/3 and 72 < 7, for 2/3 < B < 6/7.
Let now k be any integer, such that 2 < k < n and let

Be ( k(k+1) (k+1)(k+2)> AL

KE4+k+1 k2+3k+3

Since
k
—m=———=((k+1)—2B(k+2))<0
Ve+1 — M 2(k+1)((+) (k+2)) <
if and only if ﬁ—ié < B and and this latter inequality always hold for B € Ay, then

we have v,11 < 71 for every B € Ayg.
Finally, we have ~,, < 7y, for every

Be M 1) =A,_1
(@)

nZ2—n+1’

because v, —v1 = (n—1) (n — B(n + 1)) /n < 0 is equivalent to n/(n+1) < B and
obviously n/(n +1) < n(n —1)/(n* —n+1).

Recall that all considerations have been done under the restriction 2™ A+ B = 1.
The restrictions B € Ay can be easily transformed into equivalent restrictions for
A/B. We omit this detail. The result is:

If 1/8 < A/B < o0, then Ymin = 71;

If (4(k+1)(k+2))"! < A/B < (4k(k+1))~%, then ymin = Vg1 k=1,... ,n—2;

If 0 < A/B < (4n(n —1))71, then yin = Yn-

Our final observation is that we can remove the restriction 2™ A+ B = 1. Indeed,
we have proved inequalities of the form

Allf"1? + BIIfIP
Aby + By '

111 <

The quotient on the right-hand side is homogeneous with respect to A, B, so this
quotient has the same value for A, B and for dA, dB, whatever the positive constant
d is.



8 CLAUDIA R. R. ALVES AND DIMITAR K. DIMITROV

REFERENCES

[1] B. D. Bojanov and A. K. Varma, On a polynomial inequality of Kolmogoroff’s type, Proc.
Amer. Math. Soc. 124(1996), 491-496.

[2] G. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985.

[3] A. Kolmogoroff, On inequalities between the upper bounds of the successive derivatives of an
arbitrary function on an infinite interval, in Amer. Math. Soc. Transl. Ser. 1-2, Amer. Math.
Soc., Providence, RI, 1962, 233-243.

[4] E. Landau, Einige Ungleichungen fiir zweimal differenzierbare Funktionen, Proc. London
Math. Soc. (2) 13(1913), 43-49.

[5] A. A. Markov, On a problem of Mendeleev, Zap. Imp. Acad. Nauk., St. Petersburg 62(1889),
1-24.

[6] V. A. Markov, On functions least deviating from zero on a given interval, St. Petersburg,
1892 [Russian], reprinted in Uber Polynome die in einem gegebenen Intervall moglichst wenig
von Null abweichen, Math. Ann. 77(1916), 213-258.

[7] G. Szegd, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol 23, 4th ed., Amer.
Math. Soc., Providence, RI, 1975.

[8] A. K. Varma, A new characterization of Hermite polynomials, J. Approx. Theory 63(1990),
238-254.

DEPARTAMENTO DE CIENCIAS DE COMPUTACAO E EstaTisTicA, IBILCE, UNIVERSIDADE Es-
TADUAL PAULISTA, 15054-000 SA0 JOSE DO RI0 PRETO, SP, BRAZIL
E-mail address: cralves@nimitz.dcce.ibilce.unesp.br

DEPARTAMENTO DE CIENCIAS DE COMPUTAGAO E EsTaTisTiCA, IBILCE, UNIVERSIDADE Es-
TADUAL PAULISTA, 15054-000 SA0 JOSE DO RI0 PRETO, SP, BRAZIL
E-mail address: dimitrov@nimitz.dcce.ibilce.unesp.br



