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Interpolation of Rational Functions on a
Geometric Mesh

Dimitar K. Dimitrov ∗

We discuss the Newton-Gregory interpolation process based on the ge-
ometric mesh 1, q, q2, . . ., with a quotient q ∈ C, |q| < 1, for rational
functions with a single pole ζ ∈ C. It is shown that the sequence of
interpolating polynomials converges in the disc {z : |z| < |ζ|.

1. Introduction

Let pm(z) = z(z − 1) . . . (z −m + 1)/m!, m > 0, p0(z) ≡ 1, be the binomial
polynomials and

∆kf(0) :=
k
∑

j=0

(−1)k+j

(

k

j

)

f(j), k = 0, 1, 2, . . . ,

be the finite differences of the function f . Then the Newton-Gregory interpo-
lating polynomials

Nn(f ; z) =

n
∑

k=0

∆kf(0)pk(z).

satisfy Nn(f ; k) = f(k), k = 0, . . . , n.
The problem about convergence of the interpolation process has been com-

pletely solved when the interpolated function is an entire function [1, 2]. A
rather curious observation about interpolation of simple rational functions was
made in [3]. It was shown that, when f(z) is a rational function with a single
pole γ that does not coincide with a non-negative integer, the sequence of in-
terpolating polynomials {Nn(f ; z)} converge to the interpolated function f(z)
for every z ∈ C with <z > <γ. Observe that the convergence holds not only
on the real line, where the function is interpolated, but on the right semi-plane
of the complex plane determined by the vertical line <γ, no matter where γ is
located. It is really surprising, especially when the real part of γ is a negative
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number with large modulus. It is worth mentioning that the proof furnished in
[3] implies that the polynomials Nn(f ; z) converge not only pointwise but also
locally uniformly to f(z) in the semi-plane. This means that the convergence is
uniform in every compact subset of <z > <γ. Also, the result can be extended
to convergence of the interpolation process not only for rational functions but
for quotients of Gamma functions. Summarizing, we may state a more general
result than the one proved in [3].

Theorem 1. Let b, c ∈ C, c 6= 0,−1,−2, . . ., and

f(z) =
Γ(z + c− b)

Γ(z + c)
.

Then the sequence {Nn(f ; z)} converges locally uniformly in <z > <(b− c).

In this short note we discuss the question of interpolation of rational func-
tions when the interpolation nodes coincide with geometric mesh 1, q, q2, . . .,
where the quotient q of the progression is in the unit disc D = {z : |z| < 1}.
Let f(z) be any function defined at qk, k = 0, 1, . . .. Denote by Nn,q(f ; z) the
polynomial of degree n which interpolates f(z) at 1, q, . . . , qn.

Theorem 2. Let q ∈ D, and f(z) be a rational function with a single pole

ζ, where ζ 6= qk, k = 0, 1, . . .. Then the sequence {Nn,q(f ; z)} converges locally
uniformly in Dζ = {z : |z| < |ζ|} to f(z), as n goes to infinity.

It is surprising again that the convergence holds not only in the unit disc D
but in the disc Dζ , no matter how large its radius is, i.e., how far the pole of
f(z) is located.

2. Proofs

Proof of Theorem 1. The proof in [3] was based on the Gauss identity about
the hypergeometric function, defined by

F (a, b; c; z) ≡ 2F1(a, b; c; z) =

∞
∑

k=0

(a)k(b)k
(c)k

zk

k!
,

where (α)k = α(α + 1) · · · (α + k − 1), k > 0, (α)0 = 1 is the Pochhammer
symbol. Gauss [6] (see also [4, p.103]) proved that the hypergeometric series
F (a, b; c; z) is absolutely convergent for |z| = 1 if <(c−a−b) > 0, c 6= 0,−1, . . .,
and in this case

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
. (1)

Observe that in the terminating case a = −n, n ∈ N it reduces to the Chu-
Vadredmond formula

F (−n, b; c; 1) =
(c− b)n
(c)n
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which holds for any value of the parameters b and c, with c 6= 0,−1,−2, . . ..
If we consider F (−z, b; c; 1), by the Gauss theorem, this series converges

absolutely to

g(z) =
Γ(c)Γ(z + c− b)

Γ(c− b)Γ(z + c)

when <z > <(b−c). Thus, the convergence is uniform in every compact subset
of this semi-plane.

Denote by gn(z) the nth partial sum of F (−z, b; c; 1),

gn(z) =
n
∑

k=0

(−1)k
(b)k
(c)k

pk(z).

It remains to prove that Nn(g; z) ≡ gn(z) for every nonnegative integer n.
Thus, the theorem will be established if we show that

∆kg(0) = (−1)k
(b)k
(c)k

, k = 0, 1, . . . , n. (2)

In order to this, observe that

g(j) =
Γ(c)Γ(j + c− b)

Γ(j + c)Γ(c− b)
=

(c− b)j
(c)j

.

Hence

∆kg(0) =

k
∑

j=0

(−1)k+j

(

k

j

)

(c− b)j
(c)j

= (−1)k
k
∑

j=0

(c− b)j
(c)j

(−k)j
j!

= (−1)kF (−k, c− b; c; 1)

= (−1)k(b)k/(c)k,

where we used simple properties of the Pochhammer symbols and the Chu-
Vandermond formula. Thus, we proved (2), and this completes the proof of
Theorem 1.

Observe that if we set b = 1 and c = 1 − γ, we obtain immediately the
uniform convergence of Nn(f ; z) to the interpolated function f(z) = γ/(γ− z),
in the compact subsets of <z > <γ.

The proof of Theorem 2 uses the so-called q-analogue of Gauss’ summation
formula that was established by Heine in 1847. We need some definitions results
from the book of Gasper and Rahman [5]. Let

(a; q)k =

{

1, k = 0;
(1− a)(1− aq) · · · (1− aqk−1), k ∈ N.
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be the q-shifted factorial. Then the basic hypergeometric series is defined by

φ(a, b; c; q; z) ≡ 2φ1(a, b; c; q; z) =
∞
∑

k=0

(a; q)k(b; q)k
(c; q)k(q; q)k

zk.

If (a; q)∞ =
∏∞

j=0
(1− aqj), then obviously

(a; q)k =
(a; q)∞

(aqk; q)∞
.

Heine [7] (see also [5, (1.5.1)]) proved that

φ(a, b; c; q; c/(ab)) =
(c/a; q)∞(c/a; q)∞
(c; q)∞(c/(ab); q)∞

when |c/(ab)| < 1. (3)

It is the q-analogue of Gauss’ summation formula (1). In the terminating case
a = q−m, m ∈ N ∪ {0}, Heine’s formula reduces to the following q-anlogue of
the Chu-Vandermond formula:

φ(q−m, b; c; q; cqm/b) =
(c/b; q)m
(c; q)m

. (4)

Proof of Theorem 2. Setting 1/a = z and b = q and c = q/ζ in the
left-hand side of Heine’s formula and using the the expression for the basic
hypergeometric series, we obtain

φ(1/z, q; q/ζ; q; z/ζ) =
∞
∑

k=0

(1/z; q)k(q; q)k
(q/ζ; q)k(q; q)k

zk

ζk

= 1 +
∞
∑

k=1

(z − 1)(z − q) · · · (z − qk−1)

(ζ − q)(ζ − q2) · · · (ζ − qk)
. (5)

It is clear that this series converges absolutely when q ∈ D and |z| < |ζ|. Hence
it converges locally uniformly in Dζ . On the other hand, Heine’s formula (3)
implies

φ(1/z, q; q/ζ; q; z/ζ) =
(qz/ζ; q)∞(1/ζ; q)∞
(q/ζ; q)∞(z/ζ; q)∞

for |z/ζ| < 1.

Denote by h(z) the function that appears on the right-hand side of the latter
identity. Then

h(z) =

∞
∏

j=0

(1− zqj+1/ζ)(1− qj/ζ)

(1− qj+1/ζ)(1− zqj/ζ)

=

∞
∏

j=0

(ζ − qj)(ζ − zqj+1)

(ζ − qj+1)(ζ − zqj)

=
ζ − 1

ζ − z
.



Dimitar K. Dimitrov 5

Let

hn(z) = 1 +

n
∑

k=1

(z − 1)(z − q) · · · (z − qk−1)

(ζ − q)(ζ − q2) · · · (ζ − qk)

be the nth partial sum of (5).Obvously hn(z) is algebraic polynomial of degree
n. Moreover, (4) implies that hn(q

m) = h(qm) for m = 0, 1, . . . , n. Therefore
hn(z) coincides with Nn,q(h; z), the Newton-Gregory polynomial that interpo-
lates h(z) at 1, q, . . . , qn. This completes the proof of Theorem 2.

3. Some graphs

We provide some graphs which illustrate the results of Theorem 1 and Theorem
2. The first two graphs show the error function R4(f, z) = |f(z)−N4(f, z)| for
the rational function f(z) = 1/(γ − z), with the pole γ = i − 1. On the first
one R4(f, z) is shown as a bivariate function, of the real and imaginary part of
z. The second one shows the pole γ together with the level curves of R4(f, z),
where, the darker the region, the smaller the value of R4(f, z) is. It is seen
that already for n = 4 the error function is small for <z > Reγ = −1, at least
close to the real axes.
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The error function R4(f ; z) and its level curves.

Next figures illustrate the result of Theorem 2. The following two graphs
show the error function R6,q(f ; z) for the same rational function f(z) = 1/(γ−
z), γ = i−1. Here the nodes coincide with the geometric progression 1, q, . . . , q6,
with quotient q = (1− i)/2. Observe that |q| = 1/

√
2.
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The error function R6,q(f ; z) and its level curves, for q = (1− i)/2.

In the previous example |q| = 1/
√
2. It is natural to expect that when

the quotient q of the geometric mesh close to one, the interpolating polyno-
mials would approximate the rational function better than for q close to the
origin. The last two graphs of the error function R6,q(f ; z) for the interpo-
lation of the same rational function f(z) = 1/(γ − z), γ = i − 1 but with
q = 0.9(i− 1)/

√
2. This means that q has the same direction as the pole γ and

modulus 0.9. It might be of interest to investigate how the speed of conver-
gence of the Newton-Gregory interpolation process of a fixed rational function,
based on the geometric mesh with quotient q, depends on q itself. It is pretty
natural to expect that this speed will be faster for quotients close to the unit
circumference. It is not clear what should be the choice of the direction of q,
though we might guess that a natural choice could be such that q has the same
argument as the pole γ.

-2
-1

0

1

2-2

-1

0

1

2

0

10

20

30

-2
-1

0

1

2 -2 -1 0 1 2
-2

-1

0

1

2

The error function R6,q(f ; z) and its level curves, for q = 0.9(i− 1)/
√
2.



Dimitar K. Dimitrov 7

References

[1] R. P. Boas and R. C. Buck, “Polynomial expansions of analytic functions,
second printing corrected”, Springer-Verlag, Berlin, 1964.

[2] R. C. Buck, Interpolation series, Trans. Amer. Math. Soc. 64 (1948) 283–298.

[3] D. K. Dimitrov and G. M. Phillips, A note on convergence of Newton inter-
polating polynomials, J. Comput. Appl. Math. 51 (1994), 127–130; Erratum 51
(1994), 401.

[4] A. Erdelyi et al., “Higher Transcendental Functions, I”, McGraw-Hill, New
York, 1953.

[5] G. Gasper and M. Rahman, “Basic Hypergeometric Series”, Cambridge Uni-
versity Press, Cambridge, 1990.

[6] C. F. Gauss, Disquisitiones generales circa seriem infinitam ..., Comm. soc. reg.
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