

Interpolation of Rational Functions on a Geometric Mesh

DIMITAR K. DIMITROV *

We discuss the Newton-Gregory interpolation process based on the geometric mesh $1, q, q^2, \dots$, with a quotient $q \in \mathbb{C}$, $|q| < 1$, for rational functions with a single pole $\zeta \in \mathbb{C}$. It is shown that the sequence of interpolating polynomials converges in the disc $\{z : |z| < |\zeta|\}$.

1. Introduction

Let $p_m(z) = z(z-1)\dots(z-m+1)/m!$, $m > 0$, $p_0(z) \equiv 1$, be the binomial polynomials and

$$\Delta^k f(0) := \sum_{j=0}^k (-1)^{k+j} \binom{k}{j} f(j), \quad k = 0, 1, 2, \dots,$$

be the finite differences of the function f . Then the Newton-Gregory interpolating polynomials

$$N_n(f; z) = \sum_{k=0}^n \Delta^k f(0) p_k(z).$$

satisfy $N_n(f; k) = f(k)$, $k = 0, \dots, n$.

The problem about convergence of the interpolation process has been completely solved when the interpolated function is an entire function [1, 2]. A rather curious observation about interpolation of simple rational functions was made in [3]. It was shown that, when $f(z)$ is a rational function with a single pole γ that does not coincide with a non-negative integer, the sequence of interpolating polynomials $\{N_n(f; z)\}$ converge to the interpolated function $f(z)$ for every $z \in \mathbb{C}$ with $\Re z > \Re \gamma$. Observe that the convergence holds not only on the real line, where the function is interpolated, but on the right semi-plane of the complex plane determined by the vertical line $\Re \gamma$, no matter where γ is located. It is really surprising, especially when the real part of γ is a negative

*Supported by the Brazilian foundations CNPq under Grant 300645/95-3 and FAPESP under Grant 03/01874-2.

number with large modulus. It is worth mentioning that the proof furnished in [3] implies that the polynomials $N_n(f; z)$ converge not only pointwise but also locally uniformly to $f(z)$ in the semi-plane. This means that the convergence is uniform in every compact subset of $\Re z > \Re \gamma$. Also, the result can be extended to convergence of the interpolation process not only for rational functions but for quotients of Gamma functions. Summarizing, we may state a more general result than the one proved in [3].

Theorem 1. *Let $b, c \in \mathbb{C}$, $c \neq 0, -1, -2, \dots$, and*

$$f(z) = \frac{\Gamma(z + c - b)}{\Gamma(z + c)}.$$

Then the sequence $\{N_n(f; z)\}$ converges locally uniformly in $\Re z > \Re(b - c)$.

In this short note we discuss the question of interpolation of rational functions when the interpolation nodes coincide with geometric mesh $1, q, q^2, \dots$, where the quotient q of the progression is in the unit disc $D = \{z : |z| < 1\}$. Let $f(z)$ be any function defined at $q^k, k = 0, 1, \dots$. Denote by $N_{n,q}(f; z)$ the polynomial of degree n which interpolates $f(z)$ at $1, q, \dots, q^n$.

Theorem 2. *Let $q \in D$, and $f(z)$ be a rational function with a single pole ζ , where $\zeta \neq q^k, k = 0, 1, \dots$. Then the sequence $\{N_{n,q}(f; z)\}$ converges locally uniformly in $D_\zeta = \{z : |z| < |\zeta|\}$ to $f(z)$, as n goes to infinity.*

It is surprising again that the convergence holds not only in the unit disc D but in the disc D_ζ , no matter how large its radius is, i.e., how far the pole of $f(z)$ is located.

2. Proofs

Proof of Theorem 1. The proof in [3] was based on the Gauss identity about the hypergeometric function, defined by

$$F(a, b; c; z) \equiv {}_2F_1(a, b; c; z) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k} \frac{z^k}{k!},$$

where $(\alpha)_k = \alpha(\alpha + 1) \cdots (\alpha + k - 1)$, $k > 0$, $(\alpha)_0 = 1$ is the Pochhammer symbol. Gauss [6] (see also [4, p.103]) proved that the hypergeometric series $F(a, b; c; z)$ is absolutely convergent for $|z| = 1$ if $\Re(c - a - b) > 0$, $c \neq 0, -1, \dots$, and in this case

$$F(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)}. \quad (1)$$

Observe that in the terminating case $a = -n, n \in \mathbb{N}$ it reduces to the Chu-Vadredmond formula

$$F(-n, b; c; 1) = \frac{(c - b)_n}{(c)_n}$$

which holds for any value of the parameters b and c , with $c \neq 0, -1, -2, \dots$

If we consider $F(-z, b; c; 1)$, by the Gauss theorem, this series converges absolutely to

$$g(z) = \frac{\Gamma(c)\Gamma(z+c-b)}{\Gamma(c-b)\Gamma(z+c)}$$

when $\Re z > \Re(b-c)$. Thus, the convergence is uniform in every compact subset of this semi-plane.

Denote by $g_n(z)$ the n th partial sum of $F(-z, b; c; 1)$,

$$g_n(z) = \sum_{k=0}^n (-1)^k \frac{(b)_k}{(c)_k} p_k(z).$$

It remains to prove that $N_n(g; z) \equiv g_n(z)$ for every nonnegative integer n . Thus, the theorem will be established if we show that

$$\Delta^k g(0) = (-1)^k \frac{(b)_k}{(c)_k}, \quad k = 0, 1, \dots, n. \quad (2)$$

In order to this, observe that

$$g(j) = \frac{\Gamma(c)\Gamma(j+c-b)}{\Gamma(j+c)\Gamma(c-b)} = \frac{(c-b)_j}{(c)_j}.$$

Hence

$$\begin{aligned} \Delta^k g(0) &= \sum_{j=0}^k (-1)^{k+j} \binom{k}{j} \frac{(c-b)_j}{(c)_j} \\ &= (-1)^k \sum_{j=0}^k \frac{(c-b)_j}{(c)_j} \frac{(-k)_j}{j!} \\ &= (-1)^k F(-k, c-b; c; 1) \\ &= (-1)^k (b)_k / (c)_k, \end{aligned}$$

where we used simple properties of the Pochhammer symbols and the Chu-Vandermonde formula. Thus, we proved (2), and this completes the proof of Theorem 1.

Observe that if we set $b = 1$ and $c = 1 - \gamma$, we obtain immediately the uniform convergence of $N_n(f; z)$ to the interpolated function $f(z) = \gamma/(\gamma - z)$, in the compact subsets of $\Re z > \Re \gamma$.

The proof of Theorem 2 uses the so-called q -analogue of Gauss' summation formula that was established by Heine in 1847. We need some definitions results from the book of Gasper and Rahman [5]. Let

$$(a; q)_k = \begin{cases} 1, & k = 0; \\ (1-a)(1-aq)\cdots(1-aq^{k-1}), & k \in \mathbb{N}. \end{cases}$$

be the q -shifted factorial. Then the basic hypergeometric series is defined by

$$\phi(a, b; c; q; z) \equiv {}_2\phi_1(a, b; c; q; z) = \sum_{k=0}^{\infty} \frac{(a; q)_k (b; q)_k}{(c; q)_k (q; q)_k} z^k.$$

If $(a; q)_{\infty} = \prod_{j=0}^{\infty} (1 - aq^j)$, then obviously

$$(a; q)_k = \frac{(a; q)_{\infty}}{(aq^k; q)_{\infty}}.$$

Heine [7] (see also [5, (1.5.1)]) proved that

$$\phi(a, b; c; q; c/(ab)) = \frac{(c/a; q)_{\infty} (c/a; q)_{\infty}}{(c; q)_{\infty} (c/(ab); q)_{\infty}} \quad \text{when } |c/(ab)| < 1. \quad (3)$$

It is the q -analogue of Gauss' summation formula (1). In the terminating case $a = q^{-m}$, $m \in \mathbb{N} \cup \{0\}$, Heine's formula reduces to the following q -analogue of the Chu-Vandermond formula:

$$\phi(q^{-m}, b; c; q; cq^m/b) = \frac{(c/b; q)_m}{(c; q)_m}. \quad (4)$$

Proof of Theorem 2. Setting $1/a = z$ and $b = q$ and $c = q/\zeta$ in the left-hand side of Heine's formula and using the expression for the basic hypergeometric series, we obtain

$$\begin{aligned} \phi(1/z, q; q/\zeta; q; z/\zeta) &= \sum_{k=0}^{\infty} \frac{(1/z; q)_k (q; q)_k}{(q/\zeta; q)_k (q; q)_k} \frac{z^k}{\zeta^k} \\ &= 1 + \sum_{k=1}^{\infty} \frac{(z-1)(z-q) \cdots (z-q^{k-1})}{(\zeta-q)(\zeta-q^2) \cdots (\zeta-q^k)}. \end{aligned} \quad (5)$$

It is clear that this series converges absolutely when $q \in D$ and $|z| < |\zeta|$. Hence it converges locally uniformly in D_{ζ} . On the other hand, Heine's formula (3) implies

$$\phi(1/z, q; q/\zeta; q; z/\zeta) = \frac{(qz/\zeta; q)_{\infty} (1/\zeta; q)_{\infty}}{(q/\zeta; q)_{\infty} (z/\zeta; q)_{\infty}} \quad \text{for } |z/\zeta| < 1.$$

Denote by $h(z)$ the function that appears on the right-hand side of the latter identity. Then

$$\begin{aligned} h(z) &= \prod_{j=0}^{\infty} \frac{(1 - zq^{j+1}/\zeta)(1 - q^j/\zeta)}{(1 - q^{j+1}/\zeta)(1 - zq^j/\zeta)} \\ &= \prod_{j=0}^{\infty} \frac{(\zeta - q^j)(\zeta - zq^{j+1})}{(\zeta - q^{j+1})(\zeta - zq^j)} \\ &= \frac{\zeta - 1}{\zeta - z}. \end{aligned}$$

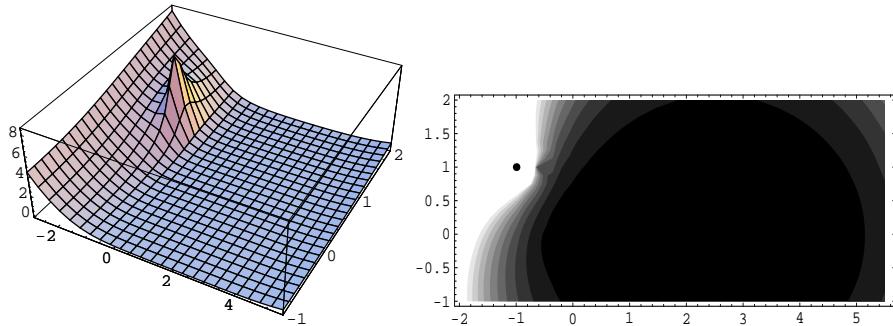
Let

$$h_n(z) = 1 + \sum_{k=1}^n \frac{(z-1)(z-q) \cdots (z-q^{k-1})}{(\zeta-q)(\zeta-q^2) \cdots (\zeta-q^k)}$$

be the n th partial sum of (5). Obviously $h_n(z)$ is algebraic polynomial of degree n . Moreover, (4) implies that $h_n(q^m) = h(q^m)$ for $m = 0, 1, \dots, n$. Therefore $h_n(z)$ coincides with $N_{n,q}(h; z)$, the Newton-Gregory polynomial that interpolates $h(z)$ at $1, q, \dots, q^n$. This completes the proof of Theorem 2.

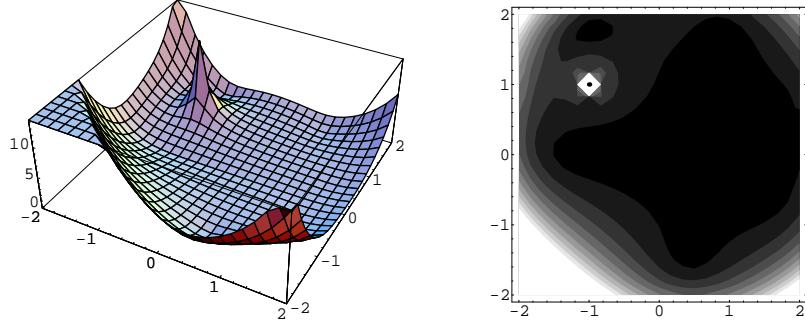
3. Some graphs

We provide some graphs which illustrate the results of Theorem 1 and Theorem 2. The first two graphs show the error function $R_4(f, z) = |f(z) - N_4(f, z)|$ for the rational function $f(z) = 1/(\gamma - z)$, with the pole $\gamma = i - 1$. On the first one $R_4(f, z)$ is shown as a bivariate function, of the real and imaginary part of z . The second one shows the pole γ together with the level curves of $R_4(f, z)$, where, the darker the region, the smaller the value of $R_4(f, z)$. It is seen that already for $n = 4$ the error function is small for $\Re z > \Re \gamma = -1$, at least close to the real axes.



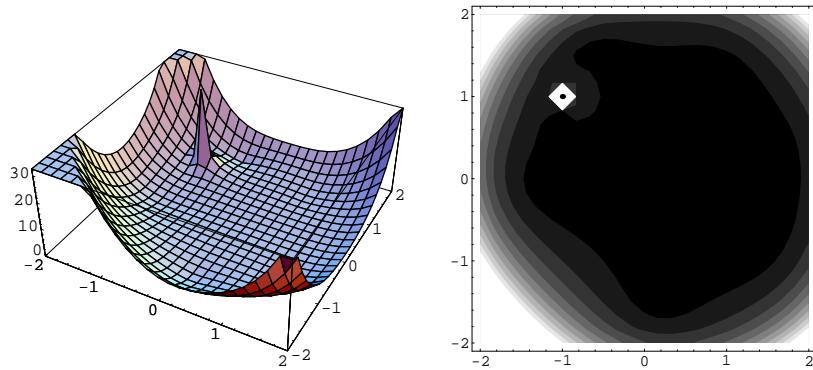
The error function $R_4(f, z)$ and its level curves.

Next figures illustrate the result of Theorem 2. The following two graphs show the error function $R_{6,q}(f; z)$ for the same rational function $f(z) = 1/(\gamma - z)$, $\gamma = i - 1$. Here the nodes coincide with the geometric progression $1, q, \dots, q^6$, with quotient $q = (1 - i)/2$. Observe that $|q| = 1/\sqrt{2}$.



The error function $R_{6,q}(f; z)$ and its level curves, for $q = (1 - i)/2$.

In the previous example $|q| = 1/\sqrt{2}$. It is natural to expect that when the quotient q of the geometric mesh close to one, the interpolating polynomials would approximate the rational function better than for q close to the origin. The last two graphs of the error function $R_{6,q}(f; z)$ for the interpolation of the same rational function $f(z) = 1/(\gamma - z)$, $\gamma = i - 1$ but with $q = 0.9(i - 1)/\sqrt{2}$. This means that q has the same direction as the pole γ and modulus 0.9. It might be of interest to investigate how the speed of convergence of the Newton-Gregory interpolation process of a fixed rational function, based on the geometric mesh with quotient q , depends on q itself. It is pretty natural to expect that this speed will be faster for quotients close to the unit circumference. It is not clear what should be the choice of the direction of q , though we might guess that a natural choice could be such that q has the same argument as the pole γ .



The error function $R_{6,q}(f; z)$ and its level curves, for $q = 0.9(i - 1)/\sqrt{2}$.

References

- [1] R. P. BOAS AND R. C. BUCK, “Polynomial expansions of analytic functions, second printing corrected”, Springer-Verlag, Berlin, 1964.
- [2] R. C. BUCK, Interpolation series, *Trans. Amer. Math. Soc.* **64** (1948) 283–298.
- [3] D. K. DIMITROV AND G. M. PHILLIPS, A note on convergence of Newton interpolating polynomials, *J. Comput. Appl. Math.* **51** (1994), 127–130; Erratum 51 (1994), 401.
- [4] A. ERDELYI *et al.*, “Higher Transcendental Functions, I”, McGraw-Hill, New York, 1953.
- [5] G. GASPER AND M. RAHMAN, “Basic Hypergeometric Series”, Cambridge University Press, Cambridge, 1990.
- [6] C. F. GAUSS, Disquisitiones generales circa seriem infinitam ..., *Comm. soc. reg. sci. Gött. rec.*, Vol. II, 1813; Reprinted in: *Werke* **3**(1876), 123–162.
- [7] E. HEINE, Untersuchungen über die Reihe ..., *J. reine angew. Math.* **34** (1847), 285–328.

DIMITAR K. DIMITROV

Departamento de Ciências de Computação e Estatística
IBILCE, Universidade Estadual Paulista
15054-000 São José do Rio Preto, SP
Brazil
E-mail: dimitrov@ibilce.unesp.br