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Interpolation of Rational Functions on a
Geometric Mesh

DimMITAR K. DIMITROV *
We discuss the Newton-Gregory interpolation process based on the ge-
ometric mesh 1,¢,q?, ..., with a quotient ¢ € C, |¢| < 1, for rational

functions with a single pole ( € C. It is shown that the sequence of
interpolating polynomials converges in the disc {z : |z| < [(].

1. Introduction

Let pp(2) = 2(z —1)...(z = m+ 1)/m!, m > 0, po(z) = 1, be the binomial
polynomials and

k
Ak
AFF0) =) (-1 ( ,)f(j), k=0,1,2,...,
— J
be the finite differences of the function f. Then the Newton-Gregory interpo-

lating polynomials
n

Na(f;2) =Y AFF(0)pe(2).
k=0
satisfy N,,(f;k) = f(k),k=0,...,n.

The problem about convergence of the interpolation process has been com-
pletely solved when the interpolated function is an entire function [1, 2]. A
rather curious observation about interpolation of simple rational functions was
made in [3]. It was shown that, when f(z) is a rational function with a single
pole v that does not coincide with a non-negative integer, the sequence of in-
terpolating polynomials { N, (f; z)} converge to the interpolated function f(z)
for every z € C with Rz > R~y. Observe that the convergence holds not only
on the real line, where the function is interpolated, but on the right semi-plane
of the complex plane determined by the vertical line R+, no matter where ~ is
located. It is really surprising, especially when the real part of v is a negative
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2 Interpolation on Geometric Mesh

number with large modulus. It is worth mentioning that the proof furnished in
[3] implies that the polynomials N, (f;z) converge not only pointwise but also
locally uniformly to f(z) in the semi-plane. This means that the convergence is
uniform in every compact subset of z > R~y. Also, the result can be extended
to convergence of the interpolation process not only for rational functions but
for quotients of Gamma functions. Summarizing, we may state a more general
result than the one proved in [3].

Theorem 1. Let b,c € C, c#0,—1,—-2,..., and
I'(z+c—0b)
I(z+c¢)
Then the sequence {N,(f;2)} converges locally uniformly in Rz > RN(b — ¢).

flz) =

In this short note we discuss the question of interpolation of rational func-
tions when the interpolation nodes coincide with geometric mesh 1,q,¢?, ...,
where the quotient ¢ of the progression is in the unit disc D = {z : |z| < 1}.
Let f(2) be any function defined at ¢*,k = 0,1,.... Denote by N,, ,(f;2) the
polynomial of degree n which interpolates f(z) at 1,q,...,q™.

Theorem 2. Let g € D, and f(z) be a rational function with a single pole
¢, where ( # q®, k =0,1,.... Then the sequence {Nnq(f;2)} converges locally
uniformly in D¢ = {z : |z| <[]} to f(2), as n goes to infinity.

It is surprising again that the convergence holds not only in the unit disc D

but in the disc D¢, no matter how large its radius is, i.e., how far the pole of
f(z) is located.

2. Proofs

Proof of Theorem 1. The proof in [3] was based on the Gauss identity about
the hypergeometric function, defined by
) = ey = S (@) 2
F(a,b;c;2) = oF1(a,b;c2) = Z “Oor R

k=0
where (@) = ala+1)---(a+k—1), k>0, (0)g = 1 is the Pochhammer
symbol. Gauss [6] (see also [4, p.103]) proved that the hypergeometric series
F(a,b;c; z) is absolutely convergent for |z| = 1 if R(c—a—b) > 0,c #0,—1,...,

and in this case
I(e)T'(c—a—10)

_—C 1
I'(c—a)l'(c—1b) (1)
Observe that in the terminating case a = —n,n € N it reduces to the Chu-
Vadredmond formula

F(a,b;c;1) =

F(—n,b;c1) =
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which holds for any value of the parameters b and ¢, with ¢ # 0, —1,-2,....
If we consider F(—z,b;c;1), by the Gauss theorem, this series converges
absolutely to
Fe)'(z4+c—»5
sy TOIG+e—b)
F(c—b)I'(z+¢)

when Rz > R(b—c¢). Thus, the convergence is uniform in every compact subset
of this semi-plane.
Denote by g,(z) the nth partial sum of F(—z,b;¢;1),

o) = 30k ).

k=0 QL

It remains to prove that N,(g;z) = gn(2) for every nonnegative integer n.
Thus, the theorem will be established if we show that

AFg(0) :(-1)’@8}’:, kE=0,1,...,n. (2)

In order to this, observe that

Hence

where we used simple properties of the Pochhammer symbols and the Chu-
Vandermond formula. Thus, we proved (2), and this completes the proof of
Theorem 1.

Observe that if we set b = 1 and ¢ = 1 — 7y, we obtain immediately the
uniform convergence of N,,(f;z) to the interpolated function f(z) = v/(v — z),
in the compact subsets of Rz > R~.

The proof of Theorem 2 uses the so-called g-analogue of Gauss’ summation
formula that was established by Heine in 1847. We need some definitions results
from the book of Gasper and Rahman [5]. Let

1, k=0;
(a;Q)k = { (1 _a)(]_ _ aq)...(]_ — aqkil), k € N.
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be the g-shifted factorial. Then the basic hypergeometric series is defined by
a; q)k(b;
$la,biciq52) = 20n(abiciqi2) =) Wzk.

If (a;9) o0 = [1;2o(1 — ag’), then obviously

_ _(39)w
(aq*;q)oo

Heine [7] (see also [5, (1.5.1)]) proved that

(¢/a; @)oo (c/a; @)oo

(¢ 9)oo(c/(ab); @)oo

It is the g-analogue of Gauss’ summation formula (1). In the terminating case

—m

(a; @)k

d(a,b;c; q; ¢/ (ab)) =

when |c¢/(ab)| < 1. (3)

a=q ™, m € NU{0}, Heine’s formula reduces to the following g-anlogue of
the Chu-Vandermond formula:
- (c/b; @)m
(g™, bsc;q;¢4™/b) = - 4
( /b) D (4)

Proof of Theorem 2. Setting 1/a = z and b = ¢ and ¢ = ¢/ in the
left-hand side of Heine’s formula and using the the expression for the basic
hypergeometric series, we obtain

CalCann . 1/ZQk( Q)k 2*
(Z*l)(Z*Q)"'(Z*qk’l)
sz:l C—oC—a) - ©

It is clear that this series converges absolutely when ¢ € D and |z| < |¢|. Hence
it converges locally uniformly in D¢. On the other hand, Heine’s formula (3)
implies

(92/¢ @)oo (1/¢ )0
(4/€ @)oo (2/C )0

Denote by h(z) the function that appears on the right-hand side of the latter
identity. Then

o(1/2,q;q9/Cq;2/C) =

for |z/¢] < 1.

1-2¢ /O = ¢ /<)
=gt/ = 2¢/C)

hz) = []

7=0

(
(
(
(

17 =) -2
B JI:[O C— ) (¢ — 2¢9)
_ -1
-
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Let
~(z-D(-q) - (z—¢")
— ((=a)(C—q*) - (C—d")

be the nth partial sum of (5).Obvously h,(z) is algebraic polynomial of degree
n. Moreover, (4) implies that h,(¢™) = h(¢™) for m = 0,1,...,n. Therefore
hy(z) coincides with N, 4(h; z), the Newton-Gregory polynomial that interpo-
lates h(z) at 1,q,...,¢". This completes the proof of Theorem 2.

ho(z) =14

3. Some graphs

We provide some graphs which illustrate the results of Theorem 1 and Theorem
2. The first two graphs show the error function R4(f, 2z) = |f(2) — Ny4(f, 2)| for
the rational function f(z) = 1/(y — z), with the pole v =i — 1. On the first
one Ry(f,z) is shown as a bivariate function, of the real and imaginary part of
z. The second one shows the pole 7 together with the level curves of Ry(f, 2),
where, the darker the region, the smaller the value of R4(f,z) is. It is seen
that already for n = 4 the error function is small for Rz > Rey = —1, at least
close to the real axes.
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The error function R4(f;z) and its level curves.

Next figures illustrate the result of Theorem 2. The following two graphs
show the error function Rg ,(f; z) for the same rational function f(z) = 1/(y—
2), v = i—1. Here the nodes coincide with the geometric progression 1,q, ..., ¢°,
with quotient ¢ = (1 —4)/2. Observe that |q| = 1/v/2.
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The error function Re,q(f;2) and its level curves, for ¢ = (1 —1)/2.

In the previous example |q| = 1/4/2. It is natural to expect that when
the quotient ¢ of the geometric mesh close to one, the interpolating polyno-
mials would approximate the rational function better than for ¢ close to the
origin. The last two graphs of the error function Rg ,(f;z) for the interpo-
lation of the same rational function f(z) = 1/(y — z), v = ¢ — 1 but with
q = 0.9(i — 1)/v/2. This means that ¢ has the same direction as the pole v and
modulus 0.9. It might be of interest to investigate how the speed of conver-
gence of the Newton-Gregory interpolation process of a fixed rational function,
based on the geometric mesh with quotient ¢, depends on ¢ itself. It is pretty
natural to expect that this speed will be faster for quotients close to the unit
circumference. It is not clear what should be the choice of the direction of ¢,
though we might guess that a natural choice could be such that g has the same
argument as the pole 7.

The error function Rgq(f;2) and its level curves, for ¢ = 0.9(i — 1)/v/2.
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