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Abstract. This is a very short comment on a conjecture on the zeros of ultra-

spherical polynomials posed by Árpád Elbert, Andrea Laforgia and Panayotis
Siafarikas during the Fifth International Symposium on Orthogonal Polynomi-
als, Special Functions and their Applications, held at the University of Patras,

Greece, September 20-24, 1999.

1. The conjecture

In this section the conjecture is stated, as posed originally.
Árpád Elbert, Andrea Laforgia and Panayotis Siafarikas

A conjecture on the zeros of ultraspherical polynomials

For k = 1, 2, . . . , [n/2] and λ > − 1
2 , let x

(λ)
nk be the k-th positive zero, in decrea-

sing order, of the ultraspherical polynomial P
(λ)
n (x), of degree n, n = 1, 2, . . . . We

formulate the following conjecture:

x
(λ)
nk is a convex function of λ.

Remark. Elbert and Laforgia [1] proved that

lim
λ→∞

λ5/2 ∂2

∂λ2
x

(λ)
nk =

3
4
hn,k,

where hn,k is the k-th zero of the Hermite polynomial Hn(x), of degree n.
Kokologiannaki and Siafarikas [2] proved the conjecture under the restriction

λ > n√
3

+ 1
2 and only for k = 1.
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2. The Comment

Numerical experiments show that the above conjecture fails to hold for the largest
zero xn1(λ) := x

(λ)
n1 when λ is small and n is large enough. We provide two argu-

ments in support of our statement.
The first one is as follows. Observe that xn1(−1/2) = 1 for every natural n.

Since the zeros of P
(λ)
n (x) coincide with the zeros of the Chebyshev polynomials

of the first and of the second kind for λ = 0 and for λ = 1, respectively, then
1
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xn1(0) = cos(π/2n) and xn1(1) = cos(π/(n + 1)). If xn1(λ) is convex, then the
expression

µxn1(λ1) + (1− µ)xn1(λ2)− xn1(µλ1 + (1− µ)λ2)
must be positive for each µ ∈ [0, 1] and for every pair of real parmeters λ1, λ2 ≥
−1/2. For µ = 2/3, λ1 = −1/2 and λ2 = 1 the above expression reduces to

(2/3) + (1/3) cos(π/(n + 1))− cos(π/2n),

which is positive only for n = 1, . . . , 6, and negative for n > 6.
Various numerical experiments show that, when n is sufficiently large and fixed,

the function xn1(λ) is concave in some interval −1/2 < λ < λ0(n) and convex only
for λ > λ0(n). Execute the simple MATHEMATICA 3.0 program

tab1 = Table[N [FindRoot[GegenbauerC[10,−0.5 + k ∗ Sqrt[2]/50, x]
== 0, {x, 1}], 16], {k, 1, 100}];
Table[N [tab1[[k − 1, 1, 2]] + tab1[[k + 1, 1, 2]]− 2 ∗ tab1[[k, 1, 2]], 16],
{k, 2, 99}]

The first command determines approximately the largest zeros of P
(λ)
10 (x) by the

Newton’s method with an initial approximation x0 = 1, when λ takes values at the
arithmetic mesh −0.5+kε, k = 1, . . . , 100, with ε =

√
2/50. The second command

calculates the second finite differences of x10,1(λ) at the mesh points. The first 62
numbers in the resulting table are negative and the remaining one are positive. This
shows that x10,1(λ) is concave for −1/2 < λ < λ0(10) and convex for λ > λ0(10),
where λ0(10) ≈ 1.267766.

Kokologiannaki and Siafarikas’ result provides the upper bound n/
√

3 + 1/2 for
λ0(n). However, the above arguments show that their theorem can not be extended
to the whole range of λ. Some additional examples as well as positive results on
convexity and concavity properties of xnk(λ) will appear elsewhere.
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