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LAMÉ DIFFERENTIAL EQUATIONS AND ELECTROSTATICS

DIMITAR K. DIMITROV AND WALTER VAN ASSCHE

Abstract. The problem of existence and uniqueness of polynomial solutions

of the Lamé differential equation

A(x)y′′ + 2B(x)y′ + C(x)y = 0,

where A(x), B(x) and C(x) are polynomials of degree p + 1, p and p − 1, is
under discussion. We concentrate on the case when A(x) has only real ze-

ros aj and, in contrast to a classical result of Heine and Stieltjes which con-
cerns the case of positive coefficients rj in the partial fraction decomposition
B(x)/A(x) =

∑p
j=0 rj/(x − aj), we allow the presence of both positive and

negative coefficients rj . The corresponding electrostatic interpretation of the

zeros of the solution y(x) as points of equilibrium in an electrostatic field gen-
erated by charges rj at aj is given. As an application we prove that the zeros

of the Gegenbauer-Laurent polynomials are the points of unique equilibrium
in a field generated by two positive and two negative charges.

1. Introduction

Let {P (α,β)
n (x)}∞n=0 be the classical Jacobi polynomials, orthogonal on [−1, 1]

with respect to the weight function (1 − x)α(1 + x)β . One of the reasons for the
interest in the zeros of P (α,β)

n (x) is that they are the points of equilibrium of n free
unit charges in (−1, 1) in the field generated by two fixed charges (α + 1)/2 at 1
and (β + 1)/2 at −1, where the charges repel each other according to the law of
logarithmic potential. This means that the charges are not point charges but are
distributed along infinite straight wires perpendicular to the real axis [11]. This
beautiful interpretation is due to Stieltjes [13, 14, 15] who proved that the energy
of the field has a local minimum at the zeros of the Jacobi polynomial of degree
n. Szegő [16, Section 6.7] proved that the energy has a unique minimum, thus
establishing the stability of the equilibrium. The basic idea of Stieltjes’ and Szegő’s
proofs lies in the following:

Theorem A. ([16, Theorem 4.2.2]) Let α > −1 and β > −1. The differential
equation

(1− x2)y′′ + (β − α− (α+ β + 2)x) y′ + γy = 0,
where γ is a parameter, has a polynomial solution not identically zero if and only
if γ has the form n(n+α+β+ 1), n = 0, 1, . . . . Moreover, if γ = n(n+α+β+ 1),
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the polynomials cP (α,β)
n (x), where c is any constant, are solutions of this equation,

and there are no other polynomial solutions.

Stieltjes investigated the following more general situation: given p + 1 positive
charges rj at aj , a0 < . . . < ap, find all possible equilibrium locations xk of n free
unit charges. As it is shown in the next section, this problem is closely related to
the question of characterizing the polynomial solutions of the differential equation

A(x)y′′ + 2B(x)y′ + C(x)y = 0,(1.1)

where A(x) = (x− a0) · · · (x− ap), B(x) and C(x) are polynomials of degree p and
p− 1, and

B(x)
A(x)

=
p∑
j=0

rj
x− aj

.(1.2)

This equation is called a Lamé equation in algebraic form. Heine proved that, given
A(x) and B(x), there exist at most (n+p−1)!/(n!(p−1)!) polynomials C(x), such
that, for each of them, (1.1) has a polynomial solution y(x) of degree n. Stieltjes
proved that there are exactly (n+p−1)!/(n!(p−1)!) polynomials C(x), such that, for
each of them, there exists a polynomial solution y(x) of degree n with only real zeros
of the above Lamé equation. Moreover, Stieltjes proved that each case corresponds
to a distribution of the n free charges in the p intervals (aj−1, aj), j = 1, . . . , p.
This result is known as the Heine-Stieltjes theorem [16, Theorem 6.8]. The poly-
nomial C(x) is called a Van Vleck polynomial and the corresponding polynomial
solution y(x) of (1.1) is called a Stieltjes polynomial. Van Vleck [18] was the first
to prove that the zeros of C(x) lie in (a0, ap). Klein [7], Bôcher [2] and Pólya [10]
proved that the zeros of Stieltjes polynomials lie in the convex hull of a0, . . . , ap
if aj are complex provided the coefficients rj are positive. Marden [8] proved the
same result under a weaker condition. He allowed the coefficients rj to be complex
numbers with positive real parts. Alam [1] extended Marden’s result. We refer to
Chapter 2.9 of Marden’s monograph [9] for more detailed information about Lamé’s
equation and to [19, 17] for the connection with electrostatics of zeros of orthogonal
polynomials. In very recent papers Grünbaum [3] gave an electrostatic interpreta-
tion of the zeros of Koornwinder-Krall polynomials and Ismail [5] showed that the
zeros of a general class of orthogonal polynomials are points of unique equilibrium
in an electrostatic field and calculated the energy of the field. Grünbaum [4] estab-
lished a result on electrostatics of zeros of the polynomials obtained from those of
Jacobi by repeated applications of the Darboux transformation. Every application
of the transformation introduces an additional parameter into the problem. It is
interesting that the surface formed by the parameters has special points which are
critical in the sense that the corresponding electrostatic problem becomes unstable
and thus the system is not at equilibrium.

The electrostatic problem with both positive and negative charges has not been
completely analyzed before; in particular the unicity of a Van Vleck polynomial
(or the unicity of the equilibrium position) has not been obtained earlier. The first
appearance of negative charges is in a recent paper by Grünbaum [3] who deals with
a problem containing two negative charges between two positive charges, but he does
not prove the unicity of the equilibrium. In this paper we prove the unicity of a Van
Vleck polynomial C(x) for certain situations involving both positive and negative
coefficients rj , which implies the existence and unicity of a Stieltjes polynomial y(x)



LAMÉ DIFFERENTIAL EQUATIONS AND ELECTROSTATICS 3

of (1.1). The zeros of y(x) are located between two consecutive zeros aj−1 and aj
of A(x) for which rj−1 and rj are positive. As an application we prove that the
zeros of Gegenbauer-Laurent polynomials are points of unique equilibrium in an
electrostatic field generated by two positive and two negative charges.

2. Electrostatics and Lamé’s equation

Consider an electrostatic field which obeys the logarithmic potential law and
which is described as follows. Charges rj are distributed along long wires which
are perpendicular to the real axes and intersect it at the points aj , j = 0, . . . , p.
The n movable positive unit charges are also distributed along long wires which are
perpendicular to the real axes and pass through the points x1, . . . , xn. We require
that the free charges move only between consecutive positive fixed charges in order
to avoid coalescence. This means that the point (x1, . . . , xn) belongs to the simplex

Ξ :=
s⋂

ν=1

{ajν < xµν < . . . xµν+1−1 < ajν+1 : rjν , rjν+1 > 0},

where 1 = µ1 ≤ µ2 ≤ · · ·µs ≤ µs+1 − 1 = n and s is the number of intervals
[ajν , ajν+1] for which there are positive charges rjν and rjν+1 at the endpoints.
The energy of the field is given by

L(x1, . . . , xn) =
p∑
j=0

rj

n∑
k=1

log
1

|aj − xk|
+

∑
1≤i<k≤n

log
1

|xk − xi|
.

It is clear that the energy is minimal if and only if the function

T (x1, . . . , xn) :=
p∏
j=0

n∏
k=1

|aj − xk|2rj
∏

1≤i<k≤n

(xk − xi)2.(2.1)

is maximal. Observe that T (x1, . . . , xn) vanishes on the boundary of Ξ and is
strictly positive inside Ξ. Hence the maximum of T is attained at a point (x1, . . . , xn)
in Ξ where ∂T/∂xk = 0 for k = 1, . . . , n. On the other hand

T (x1, . . . , xn) = τ(x̄ \ xk)
p∏
j=0

|xk − aj |2rj
∏
i 6=k

(xk − xi)2

= τ(x̄ \ xk)
p∏
j=0

|xk − aj |2rjω2
k(xk),

where the function τ(x̄ \ xk) does not depend on xk, ωk(x) := ω(x)/(x − xk) and
ω(x) :=

∏n
i=1(x− xi).
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Differentiating the latter identity and using the equalities ω(l+1)(xk) = (l +
1)ω(l)

k (xk), l = 0, 1, 2, we obtain consecutively

∂

∂xk
T (x1, . . . , xn) = τ(x̄ \ xk)

∂

∂xk

 p∏
j=0

|xk − aj |2rjω2
k(xk)


= τ(x̄ \ xk) ωk(xk)

p∏
j=0

|xk − aj |2rj−1

×2A(xk)

ω′k(xk) +

 p∑
j=0

rj/(xk − aj)

ωk(xk)


= τ(x̄ \ xk)ωk(xk)

p∏
j=0

(xk − aj)2rj−1

{A(xk)ω′′(xk) + 2B(xk)ω′(xk)} .

(2.2)

The expression A(x)ω′′(x) + 2B(x)ω′(x) is a polynomial of degree n+ p− 1 and
at a maximum of T this polynomial vanishes at the zeros of ω(x), hence

A(x)ω′′(x) + 2B(x)ω′(x) + C(x)ω(x) = 0,

for some polynomial C(x) of degree p − 1. Thus, if the energy of the electrostatic
field under discussion has a unique point of minimum in Ξ, then there exists a
unique pair (C, y) of a Van Vleck and a Stieltjes polynomial for the Lamé equation
(1.1). Conversely, if there exists a unique pair (C, y) of a Van Vleck and a Stieltjes
polynomial for (1.1), such that the zeros of the Stieltjes polynomial belong to Ξ,
then the energy of the field has a unique minimum.

We will consider this electrostatic problem with both positive and negative
charges. The following situations lead to a unique Van Vleck polynomial, and
thus to a unique equilibrium.
Theorem 1. Let A(x) = (x − a0)(x − a1)(x − a2)(x − a3), a0 < · · · < a3 be a
quartic and B(x) be a cubic polynomial, for which the coefficients rj−1 and rj in the
partial fraction decomposition (1.2) are positive and the remaining two coefficients
are negative. If

a) the sequence r0, r1, r2, r3 admits only one sign change, i.e., if j = 1 or j = 3,
or

b) the sequence r0, r1, r2, r3 admits two sign changes, i.e., if r0 < 0, r1 > 0, r2 >
0, r3 < 0, and n > 2 + r0 + r1 + r2 + r3,

then there exists a unique pair (C, y) with C(x) a quadratic polynomial and y(x) =
(x− x1) · · · (x− xn) a solution of (1.1) for which aj−1 < x1 < · · ·xn < aj.

Proof. As it is seen from the discussion in Section 2, the existence of the Stieltjes
polynomial with the desired properties is equivalent to the existence of a point of
maximum x∗ = (x1, . . . , xn) of T (x1, . . . , xn) in the simplex Ξ := {aj−1 < x1 <
. . . < xn < aj}. As was already mentioned, T (x1, . . . , xn) is strictly positive in Ξ
and vanishes on the boundary of Ξ and thus such a point x∗ exists.

In order to establish the unicity, assume that there exists a polynomial D(x) of
degree p− 1, D(x) 6≡ C(x), such that the differential equation

A(x)z′′ + 2B(x)z′ +D(x)z = 0
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also admits a solution z(x) = (x− ξ1) · · · (x− ξn) with distinct zeros in (aj−1, aj).
Following Szegő [16, §6.83], we introduce the function H(x) =

∏3
j=0 |x−aj |2rj and

obtain, for x 6= aν , ν = 0, . . . , 3,

d

dx
{H(x)(y′(x)z(x)− y(x)z′(x))} =

D(x)− C(x)
A(x)

y(x)z(x)H(x).(2.3)

Set x0 = ξ0 = aj−1 and xn+1 = ξn+1 = aj . A close inspection of Szegő’s proof in
the above mentioned §6.83 in [16] shows that:

1. If (D(x)−C(x))/A(x) is positive between two consecutive xi and xi+1, with
0 ≤ j ≤ n, then z(x) must have a zero in (xi, xi+1) and if (D(x)−C(x))/A(x)
is negative between two consecutive ξi and ξi+1, with 0 ≤ i ≤ n, then y(x)
must have a zero in (ξi, ξi+1).

2. D(x)− C(x) must change sign at least once in (aj−1, aj).
Since we may restrict ourselves to monic solutions of the Lamé equation, the leading
coefficients of D(x) and C(x) are equal and then D(x)− C(x) is a linear function.
In order to prove the unicity of the Van Vleck polynomial, we shall show that
D(x)− C(x) has at least one more zero, which is only possible if C ≡ D. Assume
the contrary; then by 2) D(x)−C(x) has a unique zero in (aj−1, aj) and by 1) we
can conclude that the zeros of y(x) and z(x) interlace. Therefore the coefficients
δk in the decomposition

y(x)
z(x)

= 1 +
n∑
k=1

δk
x− ξk

have all the same sign. On the other hand,

H(x)(y′(x)z(x)− y(x)z′(x)) = H(x)z2(x)
(
y(x)
z(x)

)′
.

Since obviously (
y(x)
z(x)

)′
= −

n∑
k=1

δk
(x− ξk)2

,

then

H(x)(y′(x)z(x)− y(x)z′(x)) = −H(x)
n∑
k=1

δkz
2
k(x),

where zk(x) = z(x)/(x− ξk).
Suppose that all δk are positive (the case where all δk are negative can be handled

in a similar way). Then the function G(x) = −H(x)
∑n
k=1 δkz

2
k(x) is non-positive,

vanishes only at the zeros of H(x), and converges to −∞ at the poles of H(x).
Consider first the case a). Except for the two consecutive zeros aj−1 and aj of

H(x), we have also two consecutive poles. Then the derivative of G(x) must change
its sign in the interval between the poles of H(x) since G(x) will have a maximum
between these two poles. In view of (2.3), this gives the desired additional zero of
D(x)− C(x) and proves the unicity in this case.

The requirement in b) is equivalent to the fact that G(x) converges to −∞ as x
approaches −∞ or +∞. Since a0 and a3 are poles of H(x), this means that G(x)
will have a maximum between −∞ and a0 and also between a3 and +∞. Thus we
even have two additional zeros of the derivative of G(x), which, in view of (2.3),
provide two more zeros of D(x)− C(x).
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3. Gegenbauer-Laurent polynomials and electrostatic

interpretation of their zeros

The distribution dψ(x) is said to be a strong distribution in (a, b) ⊂ (0,∞) if
ψ(x) is a real bounded nondecreasing function on (a, b) with infinitely many points
of increase there, and furthermore, all the moments

µk =
∫ b

a

xkdψ(x), k = 0,±1,±2, . . .

exist.
For any given strong distribution in (a, b) there exists a unique, up to a nonzero

constant normalizing factor, sequence of polynomials {Bn}∞0 such that Bn is a
polynomial of precise degree n and Bn satisfies the relations∫ b

a

x−n+kBn(x)dψ(x) = 0, k = 0, . . . , n− 1.(3.1)

The first systematic study of these polynomials, which may be called orthogonal
Laurent polynomials or simply orthogonal L-polynomials, was done by Jones, Thron
and Waadeland [6] in connection with the so-called strong Stieltjes moment prob-
lem. Many interesting properties of orthogonal Laurent polynomials are proven in
[6]. We are particularly interested in the behavior of the zeros of Bn. Their location
is similar as in the case of orthogonal polynomials. All the zeros of Bn are real,
distinct and lie in (a, b).

Recently Sri Ranga [12] provided a ingenious way of obtaining sequences of
orthogonal Laurent polynomials by a change of variables in a sequence {pn(t)} of
orthogonal polynomials with respect to an even weight function on a symmetric
interval (−d, d). Consider the classical Gegenbauer (ultraspherical) polynomials
C

(λ)
n (t), orthogonal on [−1, 1] with respect to the weight function (1− t2)λ−1/2. Sri

Ranga proved that the polynomials

Bλn(x) = Cλn(t),

where

t =
1√

b−
√
a

x−
√
ab√

x

are orthogonal Laurent polynomials on (a, b), 0 < a < b with respect to the strong
distribution dψ(x) = x−λ(b−x)λ−1/2(x−a)λ−1/2dx. Performing the above change
of variables in the well-known second order differential equation (cf. (4.7.5) on page
80 in [16]) satisfied by the Gegenbauer polynomials, we conclude that y(x) = Bλn(x)
is a solution of the differential equation of the form (1.1) with

A(x) = 2x(b− x)(x− a)(x+
√
ab),

B(x) = (n− λ− 1)x3 −
(

(n− 1/2)(a+ b)− (n− λ− 2)
√
ab
)
x2

−
(

(n− 3/2)(a+ b)
√
ab− (n+ λ)ab

)
x+ (n+ λ− 1)(ab)3/2,

C(x) = 2λnx2 + n
(

(n+ 4λ+ 1)
√
ab+ (n+ 1)(a+ b)/2

)
x

+n(n+ 2λ− 1)ab+ n(n− 1)(a+ b)
√
ab/2.
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Then the partial fraction decomposition of B(x)/A(x) is

B(x)
A(x)

=
2λ+ 1

4
1

x− a
+

2λ+ 1
4

1
x− b

− n+ λ− 1
2

1
x
− 1

2
1

x+
√
ab
.

Now Theorem 1 a) immediately implies:
Theorem 2. Consider the electrostatic field, which obeys the logarithmic potential
law and is generated by two positive charges of common value (2λ + 1)/4 at the
points a and b, 0 < a < b, and negative charges −1/2 at the point −

√
ab and

−(n+λ−1)/2 at the origin. Then the zeros of the Gegenbauer-Laurent polynomial
Bλn(x) are the points of unique equilibrium of n movable charges in (a, b).

The two negative charges at −
√
ab and at the origin are both to the left of the

interval [a, b] and attract the zeros of Bλn(x). This means that the zeros are more
concentrated near a than near b and their asymptotic distribution is not the arcsin
distribution on [a, b]. In fact, Sri Ranga [12] proved that the zeros of Bλn(x) are
‘symmetric’ with respect to

√
ab in the following sense: if xk is a zero, then ab/xk

is also a zero.
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