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Abstract

It is well-known and easy to see that the zeros of both the associated polynomial
and the derivative of an orthogonal polynomial pn(x) interlace with the zeros of
pn(x) itself. The natural question of how these zeros interlace is under discussion.
We give a sufficient condition for the mutual location of k-th, 1 ≤ k ≤ n − 1,
zeros of the associated polynomial and the derivative of an orthogonal polynomial
in terms of inequalities for the corresponding Cotes numbers. Applications to the
zeros of the associated polynomials and the derivatives of the classical orthogonal
polynomials are provided. Various inequalities for zeros of higher order associated
polynomials and higher order derivatives of orthogonal polynomials are proved. The
results involve both classical and discrete orthogonal polynomials, where, in the
discrete case, the differential operator is substituted by the difference operator.

Key words: Classical orthogonal polynomials, discrete orthogonal polynomials,
associated polynomials, interlacing, Cotes numbers.

1 Introduction and statement of the general problem

Let {pn}∞n=0 be a sequence of polynomials, orthogonal on the interval (a, b)
with respect to the positive measure dµ(x). As it is well-known, the zeros
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x1, . . . , xn of pn(x) are all real, distinct and belong to (a, b). In what follows
we suppose that x1, . . . , xn are enumerated in increasing order. By Rolle’s
theorem, the zeros ξ1, . . . , ξn−1 of Dpn(x) := p′n(x) are also real and interlace
with the zeros of pn(x), i.e. xk < ξk < xk+1, k = 1, . . . , n − 1. Denote by
Apn(x) the associated polynomial of degree n− 1,

Apn(x) =
1

µ0

b∫
a

pn(x)− pn(t)

x− t
dµ(t), µ0 =

b∫
a

dµ(t).

It is well-known and easy to see that Apn(x) has n − 1 real simple zeros
z1, . . . , zn−1, which also interlace with the zeros of pn(x), xk < zk < xk+1, k =
1, . . . , n − 1. Then the natural question about the mutual location of zk and
ξk, k = 1, . . . , n− 1, arises, and for families of classical continuous orthogonal
polynomials it was posed in a form of conjecture by the second of us in [11].

Elbert and Laforgia [3] proved the inequalities zk > ξk for the positive zeros
of the associated polynomial and the derivative of the Hermite polynomial
Hn(x) and of the ultraspherical polynomial Cλ

n(x) in the case λ > 0. They
pointed out in Remark 2 of [3] that ξk < zk for all the zeros of the associated
polynomial and the derivative of the Jacobi polynomial Pα,β

n (x) provided

(α, β) ∈ Ω := {α ≥ −1/2, −1 < β ≤ −1/2, (α, β) 6= (−1/2,−1/2)} ,

and that the opposite inequalities ξk > zk hold if (α, β) is in the semi-infinite
strip Ω̂ of the (α, β)-plane that is symmetric to Ω with respect to the line
α = β. Note that earlier Peherstorfer [8] established the inequalities ξk > zk for
the positive zeros of associated polynomial and derivative of the ultraspherical
polynomial Cλ

n(x) in the case −1/2 < λ < 0. It is worth mentioning that for
λ = 0 both the associated polynomial and the derivative of the Chebyshev
polynomial Tn(x) coincide with the Chebyshev polynomial of the second kind
Un−1(x) and then the equalities ξk = zk hold for all k and n if λ = 0. Thus
the problem for the Hermite and Gegenbauer polynomials has been settled
completely. Peherstorfer and Schmuckenschläger [9] investigated in details the
Jacobi case. Unaware of the above mentioned remark of [3], they proved the
inequalities ξk < zk for a subregion of Ω and conjectured the above mentioned
inequalities of Elbert and Laforgia. Peherstorfer and Schmuckenschläger [9]
established an important fact: if (α, β) is in the complement of Ω

⋃
Ω̂ to {α >

−1, β > −1}, then for any n > 3 there exist some indices k, 1 ≤ k ≤ n − 1,
for which ξk < zk and other indices k for which the opposite inequalities are
true. As it was mentioned in [3], the corresponding inequalities for the zeros of
associated polynomial and the derivative of the Laguerre polynomial L(α)

n (x)
can be obtained as a limit of the inequalities for the Jacobi case and formally,
we can state that ξk < zk for all n and k = 1, . . . , n− 1 if −1 < α ≤ −1/2.

In the next section we prove that certain inequalities for the Cotes numbers
imply the inequalities ξk < zk. Then all the above stated results become

2



consequences of monotonicity properties of the Cotes numbers corresponding
to the classical orthogonal polynomials.

We also raise and investigate partially the more general question of zeros of
higher order associated polynomials and higher order derivatives (differences)
of orthogonal polynomials. Let the sequence {pn}∞n=0 be generated by the
recurrence relation

p−1(x) = 0,

p0(x) = 1,

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x), n ≥ 0.

For any positive integer l, the sequence {Alpn(x)}∞n=1 of the l-th associated
polynomials with the orthogonal polynomials pn(x) is generated by

Alpl−1(x) = 0,

Alpl(x) = 1,

x Alpn(x) = an+1 A
lpn+1(x) + bn A

lpn(x) + cn A
lpn−1(x), n ≥ l.

We avoid the more common denotation for associated polynomials (as on p.
87 in Chihara’s book [1]) because of the confusion with the denotation for
derivatives of the corresponding orthogonal polynomials. We have chosen this
new denotation in order to emphasize the fact that we consider the “asso-
ciation” A as an operator which decreases by one the degree of orthogonal
polynomials. Thus Alpn(x) is a polynomial of degree n − l. We shall denote
by Dlpn(x) the l-th derivative of pn(x). The operators Al and Dl obey some
common properties. For any fixed n both {Dlpn(x)}nl=0 and {Alpn(x)}nl=0 are
Sturm sequences in (a, b). Recall that a sequence of polynomials {qj(x)}nj=0

with deg (qj(x)) = n− j, j = 0, . . . , n, is a Sturm sequence in an open interval
I if

(i) each qj(x) has exactly n− j simple zeros in I,

(ii) for each j, 1 ≤ j ≤ n− 1, the zeros of qj(x) and qj+1(x) strictly interlace.

See (4) on p. 45 in Szegő’s book [14] for a formally different but equivalent
definition. The fact that {Alpn(x)}nl=0 is a Sturm sequence can be easily proved
by two simple observations. The above recurrence relations show that the zeros
of Alpn(x) are the eigenvalues of the Jacobi matrix obtained by deleting the
first l rows and the first l columns in the Jacobi matrix associated with the
polynomial pn(x). Then we can apply the interlacing eigenvalues theorem for
bordered matrices (see Theorem 4.3.8 in [5] and its proof). Rolle’s theorem
implies immediately that {Dlpn(x)}nl=0 is a Sturm sequence.
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Observe that we can apply the operators DmAl, m, l ≥ 0, to any sequence
of orthogonal polynomials and, for any fixed l and m with l + m = n, the
sequence pn, Apn, . . . , A

lpn, DA
lpn, . . . , D

mAlpn is a Sturm sequence in (a, b).
The operators AlDm, m, l ≥ 0, can not be applied to any sequence of orthog-
onal polynomials but AlDmpn are certainly well-defined when pn is a sequence
of classical orthogonal polynomials. Moreover, in the latter case, if l and m,
l + m = n are fixed, then pn, Dpn, . . . , D

mpn, AD
mpn, . . . , A

lDmpn forms a
Sturm sequence in (a, b).

These observations already suggest the more general and more interesting
question about the mutual location of k-th zeros of Dm1Al1pn(x) and of
Dm2Al2pn(x) provided l1 + m1 = l2 + m2 = r, where r, 1 ≤ r ≤ n − 1 is
a fixed integer. It is of interest also to investigate the mutual location of the
k-th zeros of Al1Dm1pn(x) and of Al2Dm2pn(x) under the same requirements
on l1,m1, l2 and m2 when {pn(x)} is a sequence of classical orthogonal polyno-
mials. The natural analogue of these two problems to the case when {pn(x)}
is a sequence of discrete orthogonal polynomials is to simply substitute the
differential operator D by the difference operator ∆,

∆f(x) = f(x+ 1)− f(x).

In Section 3 we prove various results on the largest zeros of the polynomi-
als AlDmpn(x) and DmAlpn(x) for different values of the nonnegative inte-
gers l and m when {pn(x)} is a sequence of classical orthogonal polynomials
with respect to a continuous measure. In the case of classical discrete orthog-
onal polynomials {pn(x)} we compare the largest zeros of Al∆mpn(x) and
∆mAlpn(x).

2 Inequalities for all the zeros of the associated polynomial and
the derivative of an orthogonal polynomial

Denote by πn the space of the real algebraic polynomials of degree not exceed-
ing n. Let λj, j = 1, . . . , n, be the Cotes numbers of the n-node Gaussian
quadrature formula, corresponding to the positive measure dµ(x),

b∫
a

f(x)dµ(x) =
n∑
j=1

λjf(xj), f ∈ π2n−1.

We need to recall the basic fact that all the Cotes numbers λj, j = 1, . . . , n,
are strictly positive. Our main result in this section follows.

Theorem 1 Let, for some k, 2 ≤ k ≤ n, the inequalities

λ1 ≤ λk for j = 1, . . . , k − 1 and λk ≤ λj for j = k + 1, . . . , n, (2. 1)
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hold, where the second set of inequalities is empty when k = n. Then zk−1 ≤
ξk−1 and zk ≤ ξk. If at least one of the inequalities (2. 1) is strict, then zk−1 <
ξk−1 and zk < ξk. The opposite inequalities for λj versus λk, j 6= k, imply the
opposite inequalities for zk−1 versus ξk−1 and zk versus ξk.

Proof: It is easy to see that every function of the form

f(x) =
n∑
j=1

bj
x− xj

, bj > 0,

is strictly decreasing in every interval (xj, xj+1), k = j, . . . , n − 1, and has a
unique zero there. When bj = λj the function f(x) coincides with the partial
fraction decomposition of g(x) := Apn(x)/pn(x) and f(x) reduces to h(x) :=
Dpn(x)/pn(x) when bj = 1. Consider the function

g(x)− λkh(x) =
Apn(x)

pn(x)
− λk

Dpn(x)

pn(x)
=

k−1∑
j=1

λj − λk
x− xj

+
n∑

j=k+1

λj − λk
x− xj

in the intervals (xk, xk+1) and (xk, xk+1). Since the denominators of the quo-
tients in the first sum are positive and in the second sum negative, inequalities
(2. 1) immediately yield

g(x)− λkh(x) ≤ 0 for x ∈ (xk−1, xk+1).

Hence the only zero zk−1 of g(x) in (xk−1, xk) is not greater than the only zero
ξk−1 of h(x) in the same interval. Similarly, the only zero zk of g(x) in (xk, xk+1)
is not greater than the only zero ξk of h(x) in the same interval. Moreover, if
at least one of the inequalities (2. 1) is strict, then we have g(x) < λkh(x) for
x ∈ (xk−1, xk+1), which implies the strict inequalities zk−1 < ξk−1 and zk < ξk.
The statement concerning the inverse inequalities is now obvious.

A similar result can be proven for the positive zeros of the associated poly-
nomial and the derivative of a symmetric orthogonal polynomial. Let {pn}
be a sequence of polynomials which are orthogonal with respect to an even
weight function on a symmetric interval with respect to the origin. Then,
as it is well-known, the polynomials pn of even (odd) degree are even (odd)
functions. Hence their derivatives as well as the associated polynomials obey
the same property. In particular, for the zeros of these polynomials we have:
xj = −xn+1−j for j = 1, . . . , n, and zj = −zn−j, ξj = −ξn−j for j = 1, . . . , n−1.
Moreover, the corresponding Cotes numbers satisfy λj = λn+1−j. Then the
above difference g(x)− λkh(x) takes the form

g(x)− λkh(x) = 2x


k−1∑

j=[(n+3)/2]

λj − λk
x2 − x2

j

+
n∑

j=k+1

λj − λk
x2 − x2

j

 .
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Thus we obtain the following result for the positive zeros of Apn(x) and
Dpn(x).

Corollary 1 Let {pn} be a sequence of polynomials which are orthogonal with
respect to a even weight function on a symmetric interval with respect to the
origin. Let, for some k, [(n+ 5)/2] ≤ k ≤ n, the inequalities

λj ≤ λk, for j = [
n+ 3

2
], . . . , k − 1 and λk ≤ λj for j = k + 1, . . . , n,(2. 2)

hold, where the second subset of inequalities is empty when k = n. Then zk−1 ≤
ξk−1 and zk ≤ ξk. If at least one of the inequalities (2. 2) is strict, then zk−1 <
ξk−1 and zk < ξk. The opposite inequalities for λj versus λk, j 6= k, imply the
opposite inequalities for zk−1 versus ξk−1 and zk versus ξk.

Now all the results concerning the classical orthogonal polynomials, mentioned
in the first section, follow from the monotonicity properties of the correspond-
ing Cotes numbers (see Section 15.3 in Szegő [14]):

(1) Hermite polynomials Hn(x): λ[(n+3)/2] > λ[(n+5)/2] > · · · > λn,
(2) Gegenbauer polynomials Cλ

n(x): λ[(n+3)/2] > λ[(n+5)/2] > · · · > λn if λ > 0
and λ[(n+3)/2] < λ[(n+5)/2] < · · ·λn if −1/2 < λ < 0.

(3) Laguerre polynomials L(α)
n (x): λ1 > λ2 > · · · > λn if −1 < α ≤ −1/2.

(4) Jacobi polynomials P (α,β)
n (x): λ1 > λ2 > · · · > λn if (α, β) ∈ Ω and

λ1 < λ2 < · · · < λn if (α, β) ∈ Ω̂.

Note that these inequalities are proved by using Sonin’s (also called Pólya-
Sonin’s) theorem (see Theorem 7.31.1 in [14] and Theorem 8.18 in [4]) on
the behaviour of the local extremal values of a solution of a second order
differential equation. Elbert and Laforgia [3] used a somehow similar idea but
they neither formulated explicitly general results of the nature of the above
Theorem 1 and Corollary 1, nor referred to Sonin’s theorem.

Now we prove that the zeros of Dmpn(x) and Dm−1Apn(x) ‘inherit’ the in-
equalities between the zeros of Dpn(x) and Apn(x). In what follows we denote
by xk(A

lDmpn) and xk(D
mAlpn) the k-th zero, in increasing order, of the

n−m− l degree polynomials AlDmpn(x) and DmAlpn(x), respectively.

Theorem 2 Let n and m be any positive integers with m ≤ n− 1. Then the
inequalities hold:

(a) xk(D
mHn) < xk(D

m−1AHn) for k = [(n−m+ 3)/2], . . . , n.

(b) xk(D
mCλ

n) < xk(D
m−1ACλ

n) if λ > 0 and xk(D
mCλ

n) > xk(D
m−1ACλ

n) if
−1/2 < λ < 0, for k = [(n−m+ 3)/2], . . . , n.
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(c) xk(D
mL(α)

n ) < xk(D
m−1AL(α)

n ) for −1 < α ≤ −1/2 and k = 1, . . . , n−m.

(d) xk(D
mP (α,β)

n ) < xk(D
m−1AP (α,β)

n ) if (α, β) ∈ Ω and xk(D
mP (α,β)

n ) >
xk(D

m−1AP (α,β)
n ) if (α, β) ∈ Ω̂, for k = 1, . . . , n−m.

Proof. We need only to apply a theorem of V. Markov (see Lemma 2.7.1 in
Rivlin[10]) and a version of it for the positive zeros of even (odd) polynomials
proved by the first author (see Lemma 1 and Corollary 2 in [2]) to the inequal-
ities between the zeros of the Dpn(x) and Apn(x) established by Elbert and
Laforgia and by Peherstorfer and Schmuckenschläger.

V. Markov’s theorem reads as follows: If p(x) = (x − a1) · · · (x − an) and
q(x) = (x− b1) · · · (x− bn), where a1 > b1 > a2 > b2 > · · · > an > bn, then, if
t1, · · · , tn−1 are the zeros of p′(x) and u1, · · · , un−1 are the zeros of q′(x) (each
set arranged in decreasing order) we have t1 > u1 > t2 > u2 > · · · > tn−1 >
un−1.

The corresponding result for the zeros of even (odd) polynomials and the zeros
of their derivatives proved in [2] reads as follows: Let q(x) be a polynomial of
degree n ≥ 3 with distinct real zeros. Suppose that q(x) is even (odd) if n is
even (odd). Then every positive zero of q′(x) is an increasing function of any
positive zero of q(x).

3 Inequalities for the largest zeros of high order associated poly-
nomials and high order derivatives (differences) of orthogonal
polynomials

As was already mention, Peherstorfer and Schmuckenschläger [9] proved that
for α > −1/2, β > −1/2 the mutual location of the zeros ξk and zk depends
essentially on the index k. In this section we are interested on the mutual
location of the largest zeros of the polynomials Al1Dm1pn(x) and Al2Dm2pn(x),
l1 + m1 = l2 + m2 = r, when {pn(x)} is a sequence of classical continuous
orthogonal polynomials. In the case when {pn(x)} is a sequence of classical
discrete orthogonal polynomials we compare the largest zeros of Al1∆m1pn(x)
and Al2∆m2pn(x)

We apply a basic tool to investigate this question. It is based on the the above
mentioned interpretation of the zeros of the polynomials under discussion as
eigenvalues of Jacobi matrices. The zeros of pn(x) coincide with the eigenvalues
of the n×n Jacobi matrix J(pn) whose diagonal elements are ajj = bj−1, j =
1, . . . , n and its off-diagonal elements are aj+1,j = aj,j+1 = aj, j = 1, . . . , n −
1 and the zeros of Alpn(x) coincide with the eigenvalues of the (n − l) ×
(n− l) Jacobi matrix J(Alpn) whose non-zero elements are ajj = bj+l−1, j =
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1, . . . , n − l and aj+1,j = aj,j+1 = aj+l, j = 1, . . . , n − l − 1. We apply then
the Perron–Frobenius theorem for non-negative matrices (see Theorem 8.4.5
in [5]). In our case it is applicable and we can state that the inequality ρ(B) ≤
ρ(C) holds for the largest eigenvalues ρ(B) and ρ(C) of the non-negative
matrices (matrices with non-negative elements) B and C provided C −B is a
non-negative matrix. Moreover, ρ(B) < ρ(C) if C−B is a non-negative matrix
with at least one positive entry. To the best of our knowledge, Ismail [6] was
the first to apply the Perron–Frobenius theorem to investigate the location
and behaviour of largest zeros of orthogonal polynomials.

3.1 The largest zeros of AlDmpn(x) and of Al+mpn(x) for the classical or-
thogonal polynomials

In this subsection we shall establish inequalities between the largest zeros
of the polynomials Al1Dm1pn(x) and Al2Dm2pn(x) when pn(x) is a classical
orthogonal polynomials and l1 + m1 = l2 + m2 = r. Denote these zeros by
xn−r(A

l1 Dm1pn) and xn−r(A
l2 Dm2pn).

Theorem 3 Let n and r be any positive integers with r ≤ n− 1. If l1 +m1 =
l2 +m2 = r then the following inequalities for the largest zeros of Al1Dm1pn(x)
and of Al2Dm2pn(x) hold:

(a) xn−r(A
l1Dm1Hn) < xn−r(A

l2Dm2Hn) if and only if l1 < l2.

(b) If λ > 0, then the inequalities xn−r(A
l1Dm1Cλ

n) < xn−r(A
l2Dm2Cλ

n) hold if
and only if l1 < l2.

(c) If α > 0, then the inequalities xn−r(A
l1Dm1L(α)

n ) < xn−r(A
l2Dm2L(α)

n ) hold
if and only if l1 < l2.

(d) If α > β > −1, then xn−r(A
l1Dm1P (α,β)

n ) < xn−r(A
l2Dm2P (α,β)

n ) if and
only if l1 < l2.

Proof. The families of classical orthogonal polynomials are closed under differ-
entiation. In particular, with the usual denotation (c)n for the Pochhammer
symbol, the following identities hold (see formulae 4.21.7, 4.7.14, 5.1.14 and
5.5.10 in [14]):

DmP (α,β)
n (x) = 2−m(n+ α + β + 1)mP

(α+m,β+m)
n−m (x),

DmC(λ)
n (x) = 2mλmC

(λ+m)
n−m (x),

DmL(α)
n (x) = (−1)mL

(α+m)
n−m (x),

DmHn(x) = 2m(n−m+ 1)mHn−m(x).
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In what follows we shall denote by bj(pn) and aj(pn) the diagonal and the
off-diagonal elements of the Jacobi matrix associated with pn(x).

For the Jacobi polynomials we have

bj(P
(α,β)
n ) =

β2 − α2

(α + β + 2j + 2)(α + β + 2j)
, j = 0, . . . , n− 1,

aj(P
(α,β)
n ) =

2

α + β + 2j

√√√√ j(α + β + j)(α + j)(β + j)

(α + β + 2j − 1)(α + β + 2j + 1)
,

j = 1, . . . , n− 1.

Then

bj(D
mP (α,β)

n ) =
(β +m)2 − (α +m)2

(α + β + 2m+ 2j + 2)(α + β + 2m+ 2j)
,

j = 0, . . . , n−m− 1,

aj(D
mP (α,β)

n ) =
2

α + β + 2m+ 2j
×√√√√ j(α + β + 2m+ j)(α +m+ j)(β +m+ j)

(α + β + 2m+ 2j − 1)(α + β + 2m+ 2j + 1)
,

j = 1, . . . , n−m− 1.

and, for m+ l = r,

bj(A
lDmP (α,β)

n ) =
(β +m)2 − (α +m)2

(α + β + 2(r + j + 1))(α + β + 2(r + j))
,

j = 0, . . . , n−m− l − 1,

aj(A
lDmP (α,β)

n ) =
2

α + β + 2m+ 2l + 2j
×√√√√(l + j)(α + β +m+ r + j)(α + r + j)(β + r + j)

(α + β + 2(r + j)− 1)(α + β + 2(r + j) + 1)
,

j = 1, . . . , n−m− l − 1.

Let l1 +m1 = l2 +m2 = r. Then, for j = 0, . . . , n− r − 1, we have

bj(A
l1Dm1P (α,β)

n )− bj(Al2Dm2P (α,β)
n )

=
(β +m1)2 − (α +m1)2 − (β +m2)2 + (α +m2)2

(α + β + 2r + 2j + 2)(α + β + 2r + 2j)

=
2(β − α)(m1 −m2)

(α + β + 2r + 2j − 2)(α + β + 2r + 2j)
,
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and, for j = 1, . . . , n− r − 1,

aj(A
l1Dm1P (α,β)

n )− aj(Al2Dm2P (α,β)
n )

=
2

α + β + 2r + 2j

√√√√ (α + r + j)(β + r + j)

(α + β + 2r + 2j − 1)(α + β + 2r + 2j + 1)
×{√

cj(l1,m1)−
√
cj(l2,m2)

}
,

where cj(l,m) := (j + l)(α+ β + r + j +m). Obviously cj(l,m) > 0 for every
positive integer r and

cj(l1,m1)− cj(l2,m2) = −(α + β +m1 +m2)(m1 −m2)

for any index j.

Thus, for α ≥ β, the inequalities

bj(A
l1Dm1P (α,β)

n ) < bj(A
l2Dm2P (α,β)

n ), j = 0, . . . , n− r − 1,

aj(A
l1Dm1P (α,β)

n ) < aj(A
l2Dm2P (α,β)

n ), j = 1, . . . , n− r − 1,

hold simultaneously if and only if m2 < m1 which is equivalent to l1 < l2.

For the Laguerre polynomials we have

bj(L
(α)
n ) =α + 2j + 1, j = 0, . . . , n− 1,

aj(L
(α)
n ) =

√
j(α + j), j = 1, . . . , n− 1.

Then

bj(D
mL(α)

n ) =α +m+ 2j + 1, j = 0, . . . , n−m− 1,

aj(D
mL(α)

n ) =
√
j(α +m+ j) j = 1, . . . , n−m− 1.

and

bj(A
lDmL(α)

n ) =α +m+ 2l + 2j + 1, j = 1, . . . , n−m− l,

aj(A
lDmL(α)

n ) =
√

(l + j)(α +m+ l + j) j = 1, . . . , n−m− l − 1.

If l1 +m1 = l2 +m2 = r then

bj(A
l1Dm1L(α)

n )− bj(Al2Dm2L(α)
n ) = l1 − l2,

aj(A
l1Dm1L(α)

n )− aj(Al1Dm1L(α)
n ) =

√
α + r + j√

l1 + j +
√
l2 + j

(l1 − l2).
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Therefore the largest zero of Al1Dm1L(α)
n (x) is greater (smaller) than the

largest zeros of Al1Dm1L(α)
n (x) if and only if l1 is greater (smaller) than l2.

For the case of Hermite polynomials we have that all the matrices have zero
diagonal elements and the corresponding off-diagonal elements are

aj(Hn) = aj(D
mHn) = ((j + 1)/2)1/2, aj(A

lDmHn) = ((j + l + 1)/2)1/2.

Hence aj(A
l1Dm1Hn) < aj(A

l2Dm2Hn) if and only if l1 < l2. This completes
the proof of Theorem 3.

3.2 Inequalities for the largest zeros of Al1∆m1pn(x) and of Al2∆m2pn(x),
l1 +m1 = l2 +m2 = r, for the classical discrete orthogonal polynomials

Define the difference operators ∆ and ∇ by

∆f(x) = f(x+ 1)− f(x), ∇f(x) = ∆f(x− 1) = f(x)− f(x− 1).

It is known that the classical discrete orthogonal polynomials which involve
Charlier, Meixner, Krawtchouk and Hahn families satisfy a second order dif-
ference equations of the form (see [7])

σ(x)∆∇y(x) + τ(x)∆y(x) + λny(x) = 0. (3. 3)

More precisely, the Charlier polynomial cµn(x), µ > 0 satisfies (3. 3) with
σ(x) = x, τ(x) = µ−x, λn = n, Meixner polynomialm(γ,µ)

n (x), 0 < µ < 1, 0 <
γ is a solution of (3. 3) with σ(x) = x, τ(x) = γµ− (1− µ)x, λn = n(1− µ),
for the Krawtchouk polynomial k(p)

n (x), p > 0, q > 0, p + q = 1 we have
σ(x) = x, τ(x) = (Np − x)/q, λn = n/q and Hahn polynomial h(α,β)

n (x;N)
satisfies (3. 3) with σ(x) = x(N+α−x), τ(x) = (β+1)(N−1)− (α+β+2)x,
λn = n(n+α+ β + 1). The discrete Chebyshev polynomials tn(x) are defined
by tn(x) = h(0,0)

n (x;N)

Theorem 4 Let n and r be any positive integers with r ≤ n − 1 and let
l1, l2,m1 and m2 be such that l1 + m1 = l2 + m2 = r. Then the following
inequalities between the largest zeros of Al1∆m1pn(x) and Al2∆m2pn(x) hold:

(a) xn−r(A
l1∆m1c(µ)

n ) < xn−r(A
l2∆m2c(µ)

n ) if and only if l1 < l2.

(b) xn−r(A
l1∆m1m(γ,µ)

n ) < xn−r(A
l2∆m2m(γ,µ)

n ) if and only if l1 < l2.

(c) xn−r(A
l1∆m1k(p)

n ) < xn−r(A
l2∆m2k(p)

n ) if and only if l1 < l2.

(d) xn−r(A
l1∆m1h(α,β)

n ) < xn−r(A
l2∆m2h(α,β)

n ) if α > β, n < N , l1 < l2 and
l1 + l2 < 2r + α + β.

11



Proof. For the classical discrete orthogonal polynomials we have

∆mc(µ)
n (x) =µ−m(−n)mc

(µ)
n−m(x),

∆mm(γ,µ)
n (x) = ((1− µ)/µ)−m(−n)mm

(γ+m,µ)
n−m (x),

∆mk(p)
n (x,N) = k

(p)
n−m(x,N −m),

∆mh(α,β)
n (x,N) = (n+ α + β + 1)mh

(α+m,β+m)
n−m (x,N −m).

The elements of the Jacobi matrix associated with the classical discrete or-
thogonal polynomials are

bj(c
(µ)
n (x)) = j + µ, aj(c

(µ)
n (x)) =

√
jµ,

bj(m
(γ,µ)
n (x)) =

j + µ(j + γ)

1− µ
, aj(m

(γ,µ)
n (x)) =

√
jµ(j + γ − 1)

1− µ
,

bj(k
(p)
n (x,N)) = j + p(N − 2j), aj(k

(p)
n (x,N)) =

√
jpq(N − j + 1),

bj(h
(α,β)
n (x,N)) =

j(2N + α− β − 2)(α + β + j + 1)

(α + β + 2j)(α + β + 2j + 2)

+
(N − 1)(α + β)(β + 1)

(α + β + 2j)(α + β + 2j + 2)
,

a2
j(h

(α,β)
n (x,N)) =

j(j + α)(j + β)(j + α + β)(j + α + β +N)(N − j)
(2j + α + β − 1)(2j + α + β)2(2j + α + β + 1)

.

Then the non-zero elements of the Jacobi matrices associated with ∆mc(µ)
n (x)

and with Al∆mc(µ)
n (x) are defined by

bj(∆
mc(µ)

n (x)) = j + µ, aj(∆
mc(µ)

n (x)) =
√
jµ,

bj(A
l∆mc(µ)

n (x)) = j + µ+ l, aj(A
l∆mc(µ)

n (x)) =
√

(j + l)µ.

For l1 + m1 = l2 + m2 = r both bj(A
l1∆m1c(µ)

n (x)) − bj(A
l2∆m2c(µ)

n (x)) and
aj(A

l1∆m1c(µ)
n (x)) − aj(A

l2∆m2c(µ)
n (x)) are positive (negative) if and only if

l1 − l2 is positive (negative).

The non-zero elements of the Jacobi matrices associated with ∆mm(γ,µ)
n (x)

and with Al∆mm(γ,µ)
n (x) are defined by

12



bj(∆
mm(γ,µ)

n (x)) =
j + µ(j + γ +m)

1− µ
,

aj(∆
mm(γ,µ)

n (x)) =
(jµ(j + γ +m− 1))1/2

1− µ
,

bj(A
l∆mm(γ,µ)

n (x)) =
j + l + µ(j + γ +m+ l)

1− µ
,

aj(A
l∆mm(γ,µ)

n (x)) =
((j + l)µ(j + γ +m+ l − 1))1/2

1− µ
.

If l1 +m1 = l2 +m2 = r then both bj(A
l1∆m1m(γ,µ)

n (x))− bj(Al2∆m2m(γ,µ)
n (x))

and aj(A
l1∆m1m(γ,µ)

n (x))− aj(Al2∆m2m(γ,µ)
n (x)) are positive (negative) if and

only if l1 − l2 is positive (negative).

The Jacobi matrices associated with ∆mk(p)
n (x,N) and Al∆mk(p)

n (x,N) are
determined by

bj(∆
mk(p)

n (x,N)) = j + p(N − 2j −m),

aj(∆
mk(p)

n (x,N)) = (jpq(N −m− j + 1))1/2,

bj(A
l∆mk(p)

n (x,N)) = j + l + p(N − 2(j + l)−m),

aj(A
l∆mk(p)

n (x,N)) = ((j + l)pq(N −m− j − l + 1))1/2.

For l1 +m1 = l2 +m2 = r we have

bj(A
l1∆m1k(p)

n (x,N))− bj(Al2∆m2k(p)
n (x,N)) = p(m2 −m1 + l2 − l1) = 0.

Under the same requirements on l1,m1, l2 and m2 the difference

aj(A
l1∆m1k(p)

n (x,N))− aj(Al2∆m2k(p)
n (x,N))

is positive (negative) if and only if l1 − l2 is positive (negative).

In the case of Hahn polynomials lengthly but straightforward computations
show that

(α + β + 2(r + j))(α + β + 2(r + j))bj(A
l∆mh(α,β)

n )

= (j + l)(α + β + 2r − l + 1)(2(N + l − r − 1) + α− β)

+(α + β + 2(r − l))(N + l − r − 1)(r − l + β + 1)

l
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and

a2
j(A

l∆mh(α,β)
n )×

(2(j + r) + α + β − 1)(2(j + r) + α + β)2(2(j + r) + α + β + 1)

= (j + α + r)(j + β + r)(j + α + β +N + r)×

(N − r − j)(j + l)(j + α + β + 2r − l)

Then

(α + β + 2(r + j))(α + β + 2(r + j))
bj(A

l1∆m1h(α,β)
n )− bj(Al2∆m2h(α,β)

n )

l1 − l2
= 2r2 + 2(α + β + 2j + 1)r + 2j2 + 2(α + β + 1)j + (α + β)(α + 1)

+N(α− β).

Obviously the latter expression is positive if α > β.

Similarly, we can conclude that the sign of a2
j(A

l1∆m1h(α,β)
n )−a2

j(A
l2∆m2h(α,β)

n )
is the same as the sign of

(l1 − l2)(N − r − j)(α + β + 2r − l1 − l2).

The proof of Theorem 4 is complete.
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