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Abstract

It is well-known and easy to see that the zeros of both the associated polynomial
and the derivative of an orthogonal polynomial p,(z) interlace with the zeros of
pn(x) itself. The natural question of how these zeros interlace is under discussion.
We give a sufficient condition for the mutual location of k-th, 1 < k < n — 1,
zeros of the associated polynomial and the derivative of an orthogonal polynomial
in terms of inequalities for the corresponding Cotes numbers. Applications to the
zeros of the associated polynomials and the derivatives of the classical orthogonal
polynomials are provided. Various inequalities for zeros of higher order associated
polynomials and higher order derivatives of orthogonal polynomials are proved. The
results involve both classical and discrete orthogonal polynomials, where, in the
discrete case, the differential operator is substituted by the difference operator.

Key words: Classical orthogonal polynomials, discrete orthogonal polynomials,
associated polynomials, interlacing, Cotes numbers.

1 Introduction and statement of the general problem

Let {pn}52, be a sequence of polynomials, orthogonal on the interval (a,b)
with respect to the positive measure du(x). As it is well-known, the zeros
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x1,..., 2T, of p,(z) are all real, distinct and belong to (a,b). In what follows

we suppose that zi,...,x, are enumerated in increasing order. By Rolle’s
theorem, the zeros &1,...,&,—1 of Dp,(z) := pl,(z) are also real and interlace
with the zeros of p,(x), i.e. 7 < & < xpy1, £ = 1,...,n — 1. Denote by

App(x) the associated polynomial of degree n — 1,

Apn(z) = Mi [0 g0y g = [ i)

x—1

It is well-known and easy to see that Ap,(x) has n — 1 real simple zeros

21, .-+, 2n—1, which also interlace with the zeros of p, (), z < 2k < Ty1, k =
1,...,n — 1. Then the natural question about the mutual location of z, and
&k, k=1,...,n—1, arises, and for families of classical continuous orthogonal

polynomials it was posed in a form of conjecture by the second of us in [11].

Elbert and Laforgia [3] proved the inequalities 2z, > & for the positive zeros
of the associated polynomial and the derivative of the Hermite polynomial
H,(z) and of the ultraspherical polynomial C(z) in the case A > 0. They
pointed out in Remark 2 of [3] that &, < 2 for all the zeros of the associated
polynomial and the derivative of the Jacobi polynomial P*#(z) provided

(0575) €= {O_f > _1/27 -1< ﬁ < _1/2? (aaﬁ) 7é (_1/2? _1/2)}a

and that the opposite inequalities & > z; hold if (o, ) is in the semi-infinite
strip Q of the (e, B)-plane that is symmetric to € with respect to the line
a = 3. Note that earlier Peherstorfer [8] established the inequalities &, > z for
the positive zeros of associated polynomial and derivative of the ultraspherical
polynomial C}(z) in the case —1/2 < A < 0. It is worth mentioning that for
A = 0 both the associated polynomial and the derivative of the Chebyshev
polynomial 7, (z) coincide with the Chebyshev polynomial of the second kind
Un—1(x) and then the equalities & = zj hold for all k£ and n if A = 0. Thus
the problem for the Hermite and Gegenbauer polynomials has been settled
completely. Peherstorfer and Schmuckenschliager [9] investigated in details the
Jacobi case. Unaware of the above mentioned remark of [3], they proved the
inequalities & < z; for a subregion of €2 and conjectured the above mentioned
inequalities of Elbert and Laforgia. Peherstorfer and Schmuckenschlager [9]
established an important fact: if («, ) is in the complement of | Q to {a >
—1,8 > —1}, then for any n > 3 there exist some indices k, 1 < k <n —1,
for which & < z; and other indices k for which the opposite inequalities are
true. As it was mentioned in [3], the corresponding inequalities for the zeros of
associated polynomial and the derivative of the Laguerre polynomial L™ (x)
can be obtained as a limit of the inequalities for the Jacobi case and formally,
we can state that &, < zp forallnand k=1,...,n—1if -1 <a < —1/2.

In the next section we prove that certain inequalities for the Cotes numbers
imply the inequalities & < z;. Then all the above stated results become



consequences of monotonicity properties of the Cotes numbers corresponding
to the classical orthogonal polynomials.

We also raise and investigate partially the more general question of zeros of
higher order associated polynomials and higher order derivatives (differences)
of orthogonal polynomials. Let the sequence {p,}>°, be generated by the
recurrence relation

p_1(x)=0
po(z)=1
Py () = Apg1Pns1 () + bupn(x) + anpr—_i1(z), n >0.

)
)

For any positive integer [, the sequence {A!p, (z)}>°, of the I-th associated

polynomials with the orthogonal polynomials p,(x) is generated by

Alplfl(ll?) 0
Alpl(a:) 1
x Alpn(x> =0ap+1 Alpn—i-l(x) + bn Alpn(x> + Cn Alpn—1<~r>’ n Z L.

Y
Y

We avoid the more common denotation for associated polynomials (as on p.
87 in Chihara’s book [1]) because of the confusion with the denotation for
derivatives of the corresponding orthogonal polynomials. We have chosen this
new denotation in order to emphasize the fact that we consider the “asso-
ciation” A as an operator which decreases by one the degree of orthogonal
polynomials. Thus A'p,(z) is a polynomial of degree n — [. We shall denote
by D!p,(z) the I-th derivative of p,(z). The operators A' and D' obey some
common properties. For any fixed n both {D'p,(z)}%, and {Alp,(z)}r, are
Sturm sequences in (a,b). Recall that a sequence of polynomials {g;(x)}7_,
with deg(¢;(z)) =n—j, j=0,...,n,is a Sturm sequence in an open interval
I if

(i) each ¢;(z) has exactly n — j simple zeros in I,
(ii) for each j, 1 < j <n —1, the zeros of ¢;(z) and ¢;4+1(z) strictly interlace.

See (4) on p. 45 in Szegd’s book [14] for a formally different but equivalent
definition. The fact that { A'p,(x)}1, is a Sturm sequence can be easily proved
by two simple observations. The above recurrence relations show that the zeros
of Alp,(z) are the eigenvalues of the Jacobi matrix obtained by deleting the
first [ rows and the first [ columns in the Jacobi matrix associated with the
polynomial p,(x). Then we can apply the interlacing eigenvalues theorem for
bordered matrices (see Theorem 4.3.8 in [5] and its proof). Rolle’s theorem
implies immediately that {D'p,(z)}7, is a Sturm sequence.



Observe that we can apply the operators D™A!, m,l > 0, to any sequence
of orthogonal polynomials and, for any fixed [ and m with [ + m = n, the
sequence p,, Apn, ..., Alp,, DAlp,, ..., D™Alp, is a Sturm sequence in (a, b).
The operators A'D™, m,[ > 0, can not be applied to any sequence of orthog-
onal polynomials but A!D™p, are certainly well-defined when p,, is a sequence
of classical orthogonal polynomials. Moreover, in the latter case, if [ and m,
| +m = n are fixed, then p,, Dp,,...,D™p,, AD™p,, ..., AL\D™p, forms a
Sturm sequence in (a, b).

These observations already suggest the more general and more interesting
question about the mutual location of k-th zeros of D™ Alip,(z) and of
Dm2A12pn(a:) provided l; + mqy = lo + myg = r, where r, 1 < r < n—11is
a fixed integer. It is of interest also to investigate the mutual location of the
k-th zeros of AhD™p,(x) and of A2D™2p, (x) under the same requirements
on Iy, my, ly and my when {p,(z)} is a sequence of classical orthogonal polyno-
mials. The natural analogue of these two problems to the case when {p,(x)}
is a sequence of discrete orthogonal polynomials is to simply substitute the
differential operator D by the difference operator A,

Af(x) = flz+1) = f(x).

In Section 3 we prove various results on the largest zeros of the polynomi-
als A'D™p,(x) and D™Alp, (z) for different values of the nonnegative inte-
gers [ and m when {p,(x)} is a sequence of classical orthogonal polynomials
with respect to a continuous measure. In the case of classical discrete orthog-
onal polynomials {p,(z)} we compare the largest zeros of A'A™p,(z) and
A™Alp, ().

2 Inequalities for all the zeros of the associated polynomial and
the derivative of an orthogonal polynomial

Denote by 7, the space of the real algebraic polynomials of degree not exceed-
ing n. Let \;, j = 1,...,n, be the Cotes numbers of the n-node Gaussian
quadrature formula, corresponding to the positive measure du(z),

n

/f Jiu(a) = LA (@3). S € mn

We need to recall the basic fact that all the Cotes numbers \;, j =1,...,n,
are strictly positive. Our main result in this section follows.

Theorem 1 Let, for some k, 2 < k < n, the inequalities

M< A forj=1,....k=1 and Ny < \; forj=k+1,...,n, (2.1)



hold, where the second set of inequalities is empty when k = n. Then zp_ <
&1 and z, < &. If at least one of the inequalities (2. 1) is strict, then z,_1 <
Ek—1 and z < &. The opposite inequalities for \; versus \,, j # k, imply the
opposite inequalities for zp_1 versus Ex_1 and z versus &j.

Proof: 1t is easy to see that every function of the form

Z b; >0,

is strictly decreasing in every interval (x;,z;41), k= j,...,n — 1, and has a
unique zero there. When b; = A; the function f(z) coincides with the partial
fraction decomposition of g(z) := Ap,(x)/p.(z) and f(z) reduces to h(z) :=
Dp,(z)/pn(x) when b; = 1. Consider the function

o ) = A = Rt B i

in the intervals (xy, zx41) and (g, xg41). Since the denominators of the quo-
tients in the first sum are positive and in the second sum negative, inequalities
(2. 1) immediately yield

g(x) — MNgh(z) <0 for = € (xp_1, Tpy1).

Hence the only zero 2, of g(z) in (xk_1, zx) is not greater than the only zero
&k—1 of h(z) in the same interval. Similarly, the only zero z; of g(z) in (2, Tx41)
is not greater than the only zero & of h(x) in the same interval. Moreover, if
at least one of the inequalities (2. 1) is strict, then we have g(x) < Aph(z) for
x € (Tg_1,Trs1), which implies the strict inequalities z;_; < &1 and 2z, < &.
The statement concerning the inverse inequalities is now obvious.

A similar result can be proven for the positive zeros of the associated poly-
nomial and the derivative of a symmetric orthogonal polynomial. Let {p,}
be a sequence of polynomials which are orthogonal with respect to an even
weight function on a symmetric interval with respect to the origin. Then,
as it is well-known, the polynomials p, of even (odd) degree are even (odd)
functions. Hence their derivatives as well as the associated polynomials obey
the same property. In particular, for the zeros of these polynomials we have:
Tj=—Tppi—jforjg=1,...,nandz; = —2,_;, §§ = =§,—;forj=1,... ,n—1
Moreover, the corresponding Cotes numbers satisfy A\; = A,41—;. Then the
above difference g(z) — Aph(x) takes the form

2 _ 2 — ;
—[n13)/2] T T =k j

it S P T "N — A
g(l‘)—Akh(x):%{ > T > s (-
=[(



Thus we obtain the following result for the positive zeros of Ap,(z) and
Dp,(x).

Corollary 1 Let {p,} be a sequence of polynomials which are orthogonal with
respect to a even weight function on a symmetric interval with respect to the
origin. Let, for some k, [(n+5)/2] < k < n, the inequalities

n—+3
2

A < A, forj=] l,..osk—=Tand Ny <\ forj=k+1,...,n,(2.2)

hold, where the second subset of inequalities is empty when k = n. Then z,_1 <
&1 and z, < &. If at least one of the inequalities (2. 2) is strict, then z,_1 <
Ek—1 and z < &. The opposite inequalities for \; versus \,, j # k, imply the
opposite inequalities for zp_1 versus Ex_1 and zp versus .

Now all the results concerning the classical orthogonal polynomials, mentioned
in the first section, follow from the monotonicity properties of the correspond-
ing Cotes numbers (see Section 15.3 in Szegd [14]):

(1) Hermite polynomials H,(x): Ant3)/2 > Amts)/2 > = > An,

(2) Gegenbauer polynomials C(2): Ajn+3)/2) > Ants)2] > -+ > Ag if A >0
and )\[(n+3)/2] < )\[(n+5)/2] < e A df —1/2 < A<0.

(3) Laguerre polynomials L™ (z): Ay > Ay > -+ > N\, if —1 <a < —1/2.

(4) Jacobi polynomials P (x): Ay > Ay > --- > A, if (o, 8) € Q and

)
A <A <<\ if (o, 8) € Q.

Note that these inequalities are proved by using Sonin’s (also called Pdlya-
Sonin’s) theorem (see Theorem 7.31.1 in [14] and Theorem 8.18 in [4]) on
the behaviour of the local extremal values of a solution of a second order
differential equation. Elbert and Laforgia [3] used a somehow similar idea but
they neither formulated explicitly general results of the nature of the above
Theorem 1 and Corollary 1, nor referred to Sonin’s theorem.

Now we prove that the zeros of D™p,(z) and D™ *Ap,(z) ‘inherit’ the in-
equalities between the zeros of Dp,(x) and Ap,(x). In what follows we denote
by zx(A'D™p,) and x,(D™A'p,) the k-th zero, in increasing order, of the
n —m — [ degree polynomials A'D™p, (z) and D™ A'p, (x), respectively.

Theorem 2 Let n and m be any positive integers with m < n — 1. Then the
mequalities hold:

(a) i, (D™H,) < z (D™ YAH,) for k=[(n—m+3)/2],...,n.

(b) x(D™C?) < xx(D™TACY) if X > 0 and xx(D™C)) > x, (D™ LAC)) if
—1/2<A<0, fork=[(n—m+3)/2],...,n.



(c) xp (DMLY < 2, (D™ PAL)) for -1 <a < —1/2 and k=1,...,n —m.

(d) z,(D™PP)) < xk(Dm‘lAAPT(Laﬂ)) if (,) €Q and zx(D"PED) >
wp (D™ TAPYP) if (a,8) €, fork=1,...,n—m.

Proof. We need only to apply a theorem of V. Markov (see Lemma 2.7.1 in
Rivlin[10]) and a version of it for the positive zeros of even (odd) polynomials
proved by the first author (see Lemma 1 and Corollary 2 in [2]) to the inequal-
ities between the zeros of the Dp,(z) and Ap,(z) established by Elbert and
Laforgia and by Peherstorfer and Schmuckenschlager.

V. Markov’s theorem reads as follows: If p(z) = (z — ay) -+ (z — a,) and
q(x) = (x —by) - (x — by), where a; > by > as > by > -+ > a, > b,, then, if
t1,- -+, tn—1 are the zeros of p'(z) and wuy, - - -, u,_1 are the zeros of ¢'(x) (each
set arranged in decreasing order) we have t; > uy > to > ug > -+ > t, 1 >
Up—1.

The corresponding result for the zeros of even (odd) polynomials and the zeros
of their derivatives proved in [2] reads as follows: Let g(x) be a polynomial of
degree n > 3 with distinct real zeros. Suppose that ¢(z) is even (odd) if n is
even (odd). Then every positive zero of ¢/(z) is an increasing function of any
positive zero of ¢(z).

3 Inequalities for the largest zeros of high order associated poly-
nomials and high order derivatives (differences) of orthogonal
polynomials

As was already mention, Peherstorfer and Schmuckenschléager [9] proved that
for « > —1/2, 3 > —1/2 the mutual location of the zeros &, and z; depends
essentially on the index k. In this section we are interested on the mutual
location of the largest zeros of the polynomials A" D™ p, (z) and A2 D™2p, (x),
li + my = Iy +mg = r, when {p,(z)} is a sequence of classical continuous
orthogonal polynomials. In the case when {p,(z)} is a sequence of classical
discrete orthogonal polynomials we compare the largest zeros of AL A™ip,, ()
and AZA™2p, (z)

We apply a basic tool to investigate this question. It is based on the the above
mentioned interpretation of the zeros of the polynomials under discussion as
eigenvalues of Jacobi matrices. The zeros of p,(x) coincide with the eigenvalues
of the n x n Jacobi matrix J(p,) whose diagonal elements are a;; = b;_1, j =

1,...,n and its off-diagonal elements are a;;1; = ajj+1 =a;, j=1,...,n—
1 and the zeros of A'p,(z) coincide with the eigenvalues of the (n — ) x
(n — 1) Jacobi matrix J(A'p,) whose non-zero elements are a;; = b1, j =



1,...,n—1land aj11; = ajj41 = aj4, J=1,...,n—1—1. We apply then
the Perron-Frobenius theorem for non-negative matrices (see Theorem 8.4.5
in [5]). In our case it is applicable and we can state that the inequality p(B) <
p(C) holds for the largest eigenvalues p(B) and p(C) of the non-negative
matrices (matrices with non-negative elements) B and C' provided C' — B is a
non-negative matrix. Moreover, p(B) < p(C) if C'— B is a non-negative matrix
with at least one positive entry. To the best of our knowledge, Ismail [6] was
the first to apply the Perron—Frobenius theorem to investigate the location
and behaviour of largest zeros of orthogonal polynomials.

3.1 The largest zeros of A'D™p,(x) and of A*™p,(x) for the classical or-
thogonal polynomials

In this subsection we shall establish inequalities between the largest zeros
of the polynomials A" D™ip, (z) and A2D™2p,(x) when p,(x) is a classical
orthogonal polynomials and [y + m; = [y + my = 7. Denote these zeros by
Tp_r(A" D™p,) and z,,_, (A2 D™2p,,).

Theorem 3 Let n and r be any positive integers with r <n—1. If [y + my =
lo+my = 1 then the following inequalities for the largest zeros of A D™ip, ()
and of A2D™2p, () hold:

(a) v, .(ALD™H,) < x,_.(A2D™ H,) if and only if I, < l,.

(b) If X > 0, then the inequalities x,,_,(AL D™ C}) < z,_.(A2D™2C?) hold if
and only if 1 < 5.

(c) If a > 0, then the inequalities ,, (A" D™ L) < x,, (A2 D™ L) hold
if and only if Iy < ls.

(d) If « > B > —1, then x,_, (AL D™ PPy < g (A2D™2P@B) if and
only if l; < ls.

Proof. The families of classical orthogonal polynomials are closed under differ-
entiation. In particular, with the usual denotation (c¢), for the Pochhammer
symbol, the following identities hold (see formulae 4.21.7, 4.7.14, 5.1.14 and
5.5.10 in [14]):

D" PO (1) =27 (n + a + B + 1), P (1),
D"CN (z) =2 \mCM (1),
DL () = (=) Ly (@),
D"H,(x)=2"(n—m+ 1), H,_n(x).



In what follows we shall denote by b;(p,) and a;(p,) the diagonal and the
off-diagonal elements of the Jacobi matrix associated with p,(x).

For the Jacobi polynomials we have

(,8) B*—a?
b; (PR = Ci=0,....n—1,
U )(a+ﬁ+%+QXa+ﬁ+%) g "
(@B)y _ 2 jla+ B+ 7)(a+5)(B+7)
aj(Pn )_ . . 4 y
a+B+2j\(a+5+2j—1)(a+F+25+1)
j=1...,n—1.
Then

(B+m)? — (a+m)?
(a4 B+2m+2j+2)(a+ [+ 2m+2j)’
7=0,....,n—m—1,

bj(D™ P =

2
- X
a+B+2m+2j

jla+B+2m+j)(a+m+5)(B+m+7)
(a+0+2m+2j—1)(a+G+2m+2j+1)’

j=1...,n—m—1.

a;(D™ PP =

and, form+1=r,

(B+m)? — (a+m)?
(a+B+20r+j+1))(a+B+20r+75))
7=0,....n—m—1-1,

bi(A'D™ PPy =

2
(Al D™ pf)) = X
a( w ) a+[B+2m+20+2j

J(l+J’)(a+6+m+r+j)(a+r+j)<ﬁ+r+j)

)

(a+B+2(r+j)—Dla+B+2(r+7)+1)

j=1....n—m—1—1.

Let Iy + my = Iy +mo = r. Then, for 7 =0,...,n —r — 1, we have

bj(All D™ P,Ea’ﬁ)) N bj (Alz szpéaﬁ))
(B +ma)? — (a4 m)? — (B+ ma)® + (a + my)”

(a+B42r 425 +2)(a + B+ 2r + 2j)
2(8 — a)(my —my)

T (a+B+2r+2j—2)(a+ B+2r+2j)




and, for j=1,....,.n—7r—1,

a;(A" D™ PP — a; (AP D™ PLef))

- 2 (a+r+5)B+r+7) "
a+B+2r+2j\ (a+B8+2r+2j—1)(a+B+2r+2j+1)

{\/cj(ll,ml) - \/Cj(l27m2)}7

where ¢;(I,m) := (j +1)(a+ B+ 1+ j+m). Obviously ¢;(I,m) > 0 for every
positive integer r and

¢j(li,m1) = ¢j(l2, me) = —(o + B+ m1 + ma)(my — my)
for any index j.

Thus, for @ > 3, the inequalities

bi(A D™ PRy < p(ADm2 PRy =0 n - — 1,
B

a;(A"D™ PR < q;(A2DM2 PRy =1 n - —1,

n

hold simultaneously if and only if my < m; which is equivalent to [; < .

For the Laguerre polynomials we have

bi(LN=a+2j+1, j=0,...,n—1,
a; (LY =\/jla+3), j=1,...,n—1

Then

bi(D"LN=a+m+2j+1, j=0,....n—m—1,
a;(D"L) = \/jla+m+j) j=1,....n—m—1.

bi(AADLY=a+m+2+2j+1, j=1,....n—m—1,
(

o (ADLE) = (I +)a+m+1+j5) j=1,...,n—m—1-1.

Ifll—l—ml:lg—i-mg:rthen

bj(AND™ L) — b (ARD™ L) =1; — Iy,

va+r+g
(A D™ L@ — g (A D™ L) = — V2 h—1y).
G]( n ) a]( n ) \/ll+]+\/l2+](1 2)

10



Therefore the largest zero of AD™ L(®)(z) is greater (smaller) than the
largest zeros of A4 D™ L™ (z) if and only if I; is greater (smaller) than I,.

For the case of Hermite polynomials we have that all the matrices have zero
diagonal elements and the corresponding off-diagonal elements are

aj(Hy) = a(D™H,) = (5 +1)/2)%, a;(A'D™H,) = (5 +1+1)/2)">.

Hence a;(A"D™H,) < a;j(A2D™H,) if and only if l; < ly. This completes
the proof of Theorem 3.

3.2 Inequalities for the largest zeros of ALA™p,(z) and of A2A™p, (z),
Iy +my = lo +mo =1, for the classical discrete orthogonal polynomials

Define the difference operators A and V by
Af(z) = flz+1) = f(x), Vf(z)=Af(z-1)=f(z)—- flz-1).

It is known that the classical discrete orthogonal polynomials which involve
Charlier, Meixner, Krawtchouk and Hahn families satisfy a second order dif-
ference equations of the form (see [7])

o(z)AVy(x) + 7(x)Ay(z) + A\yy(x) = 0. (3. 3)

More precisely, the Charlier polynomial c¢#(z), u > 0 satisfies (3. 3) with
o(x) =z, 7(x) = p—x, A\, = n, Meixner polynomial m{*)(z),0 < u <1, 0 <
7 is a solution of (3. 3) with o(z) =z, 7(x) = yu — (1 — p)x, Ay = n(l — p),
for the Krawtchouk polynomial k%) (x), p > 0, ¢ > 0, p+ ¢ = 1 we have
o(r) = z, 7(x) = (Np — x)/q, \n = n/q and Hahn polynomial h{*% (z; N)
satisfies (3. 3) with o(z) = 2(N+a—z), 7(z) = (B+1)(N—1) — (a+[+2)z,
An =n(n+a-+ [+ 1). The discrete Chebyshev polynomials ¢, (z) are defined
by t,(x) = h?O(a; N)

Theorem 4 Let n and r be any positive integers with r < n — 1 and let
ly,ls,mq and mo be such that Iy + mqy = ly + mo = 7. Then the following
inequalities between the largest zeros of AW A™p,(x) and A2A™2p, (z) hold:

(a) 2 (ALA™ WY < g, (ARA™2W) if and only if [ < Is.

(b) Tp_r(ADA™IMOWY < g (AR A2 if and only if [ < .

(c) Tnr(ADA™EP)Y < g, (AR A™EP)) if and only if ) < .

(d) zp_ (ALA™PA)) < 3 (ARA™2 R if o> B, n < N, 1} <y and

l1+l2<27"+04+ﬁ.

11



Proof. For the classical discrete orthogonal polynomials we have

A" (z) = ™ (=n) el (),
AT (x) = (1= p) /) ™" (=n)mm ™ (),
Amkflp)(x, N)=k?, (z,N —m),
A" (2, NY = (n+ a + B + 1) hlTm 7™ (2 N — m)

The elements of the Jacobi matrix associated with the classical discrete or-
thogonal polynomials are

bi (e () = j + 1, a;(c¥(x)) = /i,

S TE—
gy = AT RGNy VIRE T

bj (mn (l‘)) 1 _ ,U ) a] (mn ('T)) 1 - M )

b; (kP (2, N)) = j + p(N — 25), a;(kP (2, N)) = \/jipa(N — j + 1),

J2N+a—-pF-2)(a+p+j+1)
(a+0B+2))(a+5+25+2)
(N-=D(a+p8)(B+1)
(a+B+2)(a+8+2j+2)
JU+a)G+B)+a+B)i+a+B+N)(N )
2j+a+B8-1)2+a+08)*2j+a+B+1)

bi(hi ) (z, N)) =

(e, N)) =

Then the non-zero elements of the Jacobi matrices associated with A™c(H (1)
and with A'A™cW(z) are defined by

bi(A™ e () = j +p,  a (A" () = \Jin,
bi(AA™C W (2)) =G4+ p+ 1, a;(AA™ (2)) = /(4.
For I} +my = ly + my = r both b;( Al A™c (1)) — b;(A2A™2cH (7)) and
a; (A AW (1)) — a;(A2A™ W (7)) are positive (negative) if and only if
1 — 1y is positive (negative).
The non-zero elements of the Jacobi matrices associated with A™m(#) (x)

and with A'A™m(#)(x) are defined by
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n 1_/1/ )
me; _1)1/2
aj(Ammgg,m(x)):(J“(J+71+_7Z DY
—
' ; C1)1/2
a; (ALA™ MO (1 )):((]+Z)M(]+1’Y+m+l 1)) ‘
—

If I, +my = ly +my = r then both b;( AL A™mO#) () — b;(A2A™2m{#) (1))
and a;(ALA™ M (x)) — a;(A2A™2mM) (z)) are positive (negative) if and
only if Iy — [5 is positive (negative).

The Jacobi matrices associated with A™k® (z, N) and A'A™EP)(x, N) are
determined by

bi(A™EP) (2, N
aj(A™EP) (v, N
bi(AA™ED) (1, N
a;(A'ATEP (z, N

=j+p(N =25 —m),

= (jpa(N —m — j +1))'/?,
=Jj+1+p(N =20 +1) —m),
=((j+1)pa(N —m —j — 1+ 1))"/2.

/\k: /\k:

For [; + my = ls + my = r we have
bj(A"A™EP (2, N)) — b (A2 A™EP) (2, N)) = p(ma — my + 1z — 1) = 0.
Under the same requirements on [y, mq, [y and msy the difference
aj(AllAmlk,(Lp) (2, N)) — a;(A2A™EP) (, N))
is positive (negative) if and only if [; — [y is positive (negative).

In the case of Hahn polynomials lengthly but straightforward computations
show that

(a+B+2(r+ ) (a+ B +20r+ 5)bi(AA™hP)
=0G+D(a+B8+2r—1+1)2N+1—r—1)+a—p)I
+Ha+p+20r=0D))(N+l—r—=1)(r—-1+p5+1)

13



and
a3 (AT AR x
QG+r)+a+s-DC2G+r)+a+B*Q2G+7)+a+p+1)
=(+a+r)(j+B8+r)(j+a+8+N+r)x
(N—r—7)0G+D)i+a+6+2r—1)

Then

b (AL A (B — i (Alz Amzp(e0)
=l
=2 +2(a+ B+2j+ 1)r+27°+ 2@+ B+1)j + (a+ f)(a+1)

+N(a — ().

(a+B+2(r+7)(a+8+2(r+37))

Obviously the latter expression is positive if a > 3.

Similarly, we can conclude that the sign of a?( A" A™ A7) —a2 (A2 Am2p ()
is the same as the sign of

(ll—lg)(N—T—j)(Oé—i—ﬁ-{—Q?”—ll—lg).

The proof of Theorem 4 is complete.
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