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GAUSSIAN EXTENDED CUBATURE FORMULAE FOR
POLYHARMONIC FUNCTIONS

BORISLAV D. BOJANOV AND DIMITAR K. DIMITROV

ABSTRACT. The purpose of this paper is to show certain links between uni-
variate interpolation by algebraic polynomials and the presentation of poly-
harmonic functions. This allows us to construct cubature formulae for multi-
variate functions having highest order of precision with respect to the class of
polyharmonic functions. We obtain a Gauss type cubature formula that uses
m values of linear functionals (integrals over hyperspheres) and is exact for all
2m-harmonic functions, and consequently, for all algebraic polynomials of n
variables of degree 4m — 1.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let IR™ be the real n-dimensional Euclidean space. The points of IR™ are

denoted by z = (z1,22,...,2,) and |z| is the Euclidean norm of z, that is,
2| = (X0, xf)lm. For any positive r, we denote by B(r), B(r) and S(r) the

open and the closed balls and the hypersphere with center 0 and radius r in IR".
Precisely,

B(r) = {z : |z| <7},
S(r) = Az 2| =71},
B(r) := B(r)uS(r).

In case r = 1 we shall omit the notation of the radius. The outside normal derivative
on S is denoted by %. Finally, dz is Lebesgue measure in IR"™ and do is the (n—1)-
dimensional surface measure on S(r). Recall that the area o, (r) of the sphere S(r)
in IR™ is
on(r) = nr" a2 )0 (n/2 4+ 1)
where I' is the Gamma function.
The iterates A™ of the Laplace operator in IR™ are defined recursively by

N
A = A = _
;83612’

A™ = AA™TL
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The function u is said to be polyharmonic of order m, or m-harmonic, in B if u
belongs to the space

H™(B) = {uecM*l(B)ﬂc?m(B) . A™u=0 on B}.

In particular, if m = 1 or m = 2, u is said to be harmonic or biharmonic, respec-
tively.

Being null spaces of the even-order differential operator A™, the polyharmonic
functions of order m inherit many of the properties of the univariate algebraic poly-
nomials of odd degree 2m — 1. Some recent developments reveal the importance
of polyharmonic functions as an appropriate tool in multivariate approximation.
Classical results in approximation theory have been extended to theorems treating
approximation of multivariate functions by m-harmonic functions (see [4], [1], for
example, and the references in the papers therein which contain such results). The
purpose of this paper is to show certain links between univariate interpolation by
algebraic polynomials and the representation of polyharmonic functions. We give
natural polyharmonic analogues of the Lagrange and Newton representations of al-
gebraic polynomials. This allows us to construct cubature formulae for multivariate
functions having highest degree of precision with respect to the class of polyhar-
monic functions. We obtain a Gauss type cubature formula that uses m values of
linear functionals (integrals over hyperspheres) and is exact for all 2m-harmonic
functions, and consequently, for all algebraic polynomials of n variables of degree
4m—1. In order to formulate this result precisely, let us first recall some definitions
from [3] where polyharmonic extensions of other well-known quadrature rules have
been obtained.

Every linear functional Q(f) approximating the integral I(f) = [, f(z) dz
in terms of values of A’f, i = 0,..., at certain points and/or surface integrals of
them and their normal derivatives is called an extended cubature formula or extended
cubature rule. An extended formula is said to have polyharmonic order of precision
m (indicated briefly as PHOP(Q) = m), it I(f) = Q(f) for all f € H™(B) and
there exists a function f such that A™f # 0 in B and I(f) # Q(f).

Typical examples of extended cubature formulae are the Gaussian mean-value

property

(1.1) / u(x) de =" [7"?/T(n/2 +1)] u(0)
B(r)

and the following consequence of the first Green formula

(1.2) /B(T) u(z) de = r/n /S(T) u(§) do(€)

which hold for every harmonic function u(z). They can be looked upon as striking
multivariate analogues of the midpoint and of the trapezoid quadrature formulae,
respectively.

Note here the following immediate consequence of the above formulae which also
holds for every harmonic function u(z) and will be frequently used in the sequel.

(1.3) /S( : w(€) do(€) = yr" tu(0), = na™?/T(n/2+1).
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A univaruate function u(t), defined on the interval [a, b], is said to be an weight

function on [a,b] if p(t) is non-negative there and all the moments f: t*u(t)dt,
s=0,1,... exist.
In this paper we prove the following.

THEOREM 1. Let u(t) be any given weight function on [0,1]. There exists a unique
sequence of distinct radii 0 < Ry < --- < Ry, < 1 and real weights Ay, k =
1,---,m, such that the extended cubature formula

(1.4) /B u(@) pz)de ~ 3 A [S ul€) dor(€)
k=1

(Rk)

has polyharmonic order of precision 2m. Moreover, the radit Ry coincide with the
positive zeros of the polynomial Po,(t; u*) of degree 2m, which is orthogonal on
[—1,1] with respect to the weight function u*(t) = [t|*~1u(|t]) to any polynomial of
degree 2m — 1.

There is no extended cubature formula of the form (1.4) with PHOP > 2m.

The coefficients {Ay} are explicitly determined as integrals of univariate poly-
nomials and they are positive.

Formula (1.4) can be considered as a polyharmonic extension of the relation
(1.2). The problem of extending the Gaussian quadrature formula to the multi-
variate setting has been of constant interest. The central concept was developed in
an attempt to answer the following natural question: Are there ordinary cubature
formulae (linear combinations of values of the integrand at certain points) of high-
est possible total algebraic degree of precision and what is the relation between the
number of the values of the integrand involved and the highest possible algebraic
degree of precision? Although upper and lower bounds are known, and a few ex-
plicit examples are constructed, there are still many open questions in this difficult
domain of ordinary cubature formulae. The above stated result solves the problem
of existence and uniqueness of extended cubature formulae for integrals over balls
in IR™.

Note that the Gaussian extended cubature formula (1.4) approximates the inte-
gral of f over B in terms of m pieces of information about the integrand, namely, the
“average” values of f over m hyperspheres. It integrates exactly all polyharmonic
functions of order 2m. The space H?™(B) obviously contains the class 7y (IR") of
all algebraic polynomials of n variables of total degree N := 4m — 1. Thus the ex-
tended cubature (1.4) is precise for any polynomial from 7y (IR"™) and particularly
for the basic polynomials there. Note that, if n > 1, the number dimmy (IR™) of
these polynomials is essentially greater than the number m of pieces of information
(the spherical integrals) the cubature unvolves. The classical Gaussian quadrature
formula integrates exactly the polynomials in the space 7o, 1 (IR), whose dimention
is only two times bigger than the number m of the function values the quadrature
uses. It is shown in the proof of Theorem 1 that (1.4) is the cubature of highest
algebraic degree of precision of the type considered. Cubature formulae which are
precise for algebraic polynomials have been intensively studied (see for example
[8], where the results of Kantorovich and Lusternik concerning algebraic degree of
precision of formulae of type (1.4) are given). We show here that some of these
known polynomial type formulae integrate exactly the wider class of polyharmonic
functions.
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The problem of extending Hermite interpolation formulae and multiple node
Gaussian quadratures is also considered in Section 5.

2. REPRESENTATIONS OF POLYHARMONIC FUNCTIONS

In this section we discuss various representations of an m-harmonic function
which are induced by univariate polynomial bases. In particular, we get represen-
tations that are similar to the Lagrange and Newton-Gregory interpolating poly-
nomials.

Our results are based on the following fundamental result in the theory of poly-
harmonic functions, known as Almansi’s expansion (see [2]).

LEMMA 1. If w € H™(B), then there exist unique functions ho(x),hi(z), ...,
hm-1(x), each harmonic in B, such that

,_a

(2.1) W]h ) for x € B.
7=0

It is also known that any expression of the form (2.1), with harmonic functions h;
on B, is a m-harmonic function on B. Thus (2.1) exactly describes the structure of
the m-harmonic functions. Based on Almansi’s expansion and since harmonic func-
tions in B form a linear space, the following lemma concerning the representation
of m-harmonic functions easily holds.

Denote by m,, the set of algebraic polynomials of one variable, of degree less
than or equal to m.

LEMMA 2. Let ¢o(t), -+ ,dm—1(t) be any basis in the space m,—1 of univariate
algebraic polynomials of degree not exceeding m—1. If w € H™(B), then there exist
unique functions bo(z),b1(z), -, bm—1(x), each harmonic in B, such that

3
L

(2.2) u(@) = 3 6;(|e2)b;(2) for @€ B,

J

Il
o

As an immediate consequence of Lemma 2 and the of fact that the polynomials
1,t — R%, (t — R?)?,.-- (t — R?)™~! constitute a basis in 7,,_; we obtain

COROLLARY 1. If u € H™(B), then there exist unique functions by(x),by(z), ---,
bm—1(x), each harmonic in B, such that

m—1

(2.3) = (lz]* = B*)’bj(z) for x € B.

j=0

The latter representation is related to a recent result of Hayman and Korenblum
[6, Theorem 1].

Let us mention another representation which could be of some interest.

Let f be a given univariate function, defined at the distinct points ¢;, ¢ =
1,...,m. In what follows the set of points t1,... ,t,, will be denoted by T. The
unique algebraic polynomial of degree m — 1 which interpolates f at ¢q,... ,t, can
be represented in the form

Lon_1(f;t) = ZlktT
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where the basic polynomials i, (¢;T), k=1,... ,m, are given by

(6 T) = w(t)/((t = tr)o! (k)
in terms of the polynomial w(t) := (t —t1) -+ (t — tim)-

COROLLARY 2. Let 0 <t <ty < --+ <ty <1 be any set of distinct points. Then
for any uw € H™(B) there exist unique harmonic functions by(x),ba(z), - , by (),
each harmonic in B, such that

Zlk || ?; (x) for z € B.

Moreover, bi(x) is the unique harmonic function on B which coincides with u

on S(Vtx).

This is the Lagrangean type representation of polyharmonic functions in terms
of traces over (n — 1)-dimensional spheres.

Note here that the same statement holds in the slightly more general case al-
lowing t; = 0. Then b1(0) = »(0) but this condition does not characterise by
completely. We shall mention however that the condition b1(0) = u(0) defines the
integral fs(t) b(€) do(€) uniquely (because of (1.3)) and this is what is important
in the study of integration problems.

Similarly, starting from the Newton-Gregory interpolation formula

m—1

L1(f5t) =Y flto,-- o tal(t—t0) -+ (t — tr_1)

k=0

with 0 <ty < --- < t;p—1 < 1, one can get the Newton type representation of
polyharmonic functions

,_.

le2 —to) -+ (Jaf* — ti—1) bi(2).
k=0

3. (GAUSSIAN CUBATURE FORMULAE

In this section we give a simple relation between the univariate quadrature for-
mula for algebraic polynomials and extended cubature formulae for polyharmonic
functions.

We shall use the mean value

1
W /S(t)f(g) do(§)

as a main piece of information for approximate evaluation of the integral of f over
B. Let us accept here the convention to use the same notation in the case t = 0 as
well. Then clearly the mean value is just f(0).

LEMMA 3. Assume that u(t) is a fived weight function on [0,1]. Let 0 <t; < --- <
ty < 1. The extended cubature formula

(3.1) /B u(jz]) f dx~2ak N /S(tk)f(ﬁ)da(ﬁ)
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is exact for every polyharmonic function f € H™(B) if and only if the quadrature
formula

1
(3.2) 7"/0 (Ot LP(1%) dt ~ ZakP )

is exact for every algebraic polynomial P € m,,_1.

Proof. Let f be any polyharmonic function of order m. Then, by Almansi’s
representation, there exist harmonic functions {hj} in B such that

m—1
f(z) = | ()
k=0
Set
m—1
Py(r) = > h(0)7*
k=0
‘We have
m—1
[ tehs@rde = 3 [ ulolieta)fol do
B o /B
m—1

1
/ / H(EDRR(E)EPF do(€) di

0 JS(t

|
LI

_ /0 R / hi(€) do(s) dt

k
Let us apply now the relation (1.3) to the spherical integral. We get

/B plla]) f () dz = v Z / ()t 1y, (0) dt

Il
o

and therefore

1
3 dz = v, n=lp(¢2) dt.
(3.3) /B ule) £ () do = / (e Py () dt
On the other hand, by (1.3),
N 1 N
d = QJh
k:lak Tty ! L(tk)f(f) 7 kzzl tn Yty * /SW Z . 7
N m—
= Zak Z 2jh ( )
k=1  j=0
N
= D arPr(y).

B
Il
—

The assertion of the lemma then follows by comparison of the both sides of (3.3)
and the last equality.
The next theorem is an immediate consequence of Lemma 3.
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THEOREM 2. Let u(t) be a given weight function on [0, 1]. If the coefficients ay, k =
1,...,m, of the extended cubature formula

(3.4 | ulal)s dx~kzlak 1 [ 1€ 4ot

are given by
1
(3.5) o= i [ R R
k

with some 0 < Ry < --+ < R, < 1, then it is precise for every f € H™(B).
Conversely, if an extended cubature rule of the form (3.4) is precise for each f €
H™(B), then its coefficients are uniquely determined by (3.5).

For the proof, one needs to observe only that the coefficient a; can be found just
by applying the corresponding univariate quadrature formula (given as in (3.2)) to
the function [y (t%; R?,--- , R2).

Now we can give the proof of Theorem 1.

Proof of Theorem 1. In view of Lemma 3, the only thing we need to do is
to characterise all quadrature formulae of form (3.2) that are exact for all even
algebraic polynomials of degree 4m —2 (i.e., for all P € may,_1). Assume that (3.2)
is such a formula. Then the quadrature

[ w0 Zakw et + (-]

will be exact for all Q) € my,,,—1 since it integrates all even polynomials of degree
4m — 1 by assumption and all odd ones, by construction. Note that it is based
on 2N nodes. For N = m it must coincide with the Gaussian quadrature formula
n [—1,1] corresponding to the weight yu([t|)[t|*~1. Since the weight is symmetric,
then the nodes are symmetric too and moreover, they are located at the zeros of
the polynomial of degree 2m which is orthogonal on [—1,1] to all polynomials of
degree 2m — 1 with respect to the weight p*.
The positivity of the coefficients follows from the corresponding property in the
univariate case. The proof is completed.

COROLLARY 3. Let
m
P2m ‘l’l M H |‘T|2

be defined as in Theorem 1, i.e., let Ry, k: = 1, ... ,m, be the radii of the Gaussian
extended cubature formula (1.4). Then Pan,(|z|, u*) is orthogonal on B with respect
to the weight function u(|z|) to every harmonic function of order m.

Proof. We need to show that
/ Po(|], 6 ) um (2)p(|z|)dz = 0 for every w,, € H™(B).
B

Expressing u,,(x) in terms of its Almansi’s expansion, one concludes that the prod-
uct Poy (2], p1*)um (2) is in H?*™(B). Then an application of (1.4) to this product
and the fact that the radial polynomial Ps,,(|z|, #*) vanishes on the hyperspheres
S(Ry) yield the desired orthogonal property.
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It is clear how Radau and Lobatto type extended cubature formulae

| utlal)s dx~ch / [, F©80(0) + Bo510),
/f u(||) deZCk/

S(Ry)

F(€) do(€) + Bof(0) + By [ £()dor(€)

s
of highest polyharmonic order of precision can be constructed. The free “nodes”
Ry, ..., R,, are determined as the positive zeros of the polynomial P, of degree
2m which is orthogonal on [—1, 1] with respect to the weight functions t2u(|¢])[¢[* 71,

and t2(1—t2)u(|t|)|t|* 1, respectively, to all polynomials of degree 2m —1. We omit
the details.

4. AN EXTREMAL PROBLEM

Similarly to the univariate case the problem of least integral of positive expres-
sions of the form f(z) = |z|*™ + u(x) where u is 2m -harmonic can be solved using
the extended Gaussian theorem.

THEOREM 3. Among all non-negative functions of the form f(z) = |z|*™ + u(x),
u € H*™(B), the function

m

0 (2) == [ [ (|2 - R)*,

k=1
where { Ry} are the Gaussian radii, has the minimal integral over B.
The proof goes as in the univariate case and uses the positivity of the Gaussian

coefficients. Since f(x)—Q*(x) belongs to H*™(B) the extended Gaussian cubature
integrates this function exactly and thus we have

/B (1) =@ hds = 3 /S ) @]
— kz::lAk /S(Rk) flx)de >0

which shows the extremality of Q*.

5. MULTIPLE NODE CASE

The approach illustrated in the previous sections can be applied to the con-
struction of extended cubature formulae that are based on integrals of f and its
consecutive normal derivatives (or other differential operators of f) over fixed hy-
perspheres S(Ry1),...,S(Ry). To do so we need to follow, by analogy, the so called
multiple node quadrature formulae in the univariate case. These are formulae of
the form

1 m v;—1
(1) [ 0@~y > anrO)
-1 i=1 A=0
Given any set of distinct nodes ¢t; < --+ < t,, in [—1, 1] and the corresponding

multiplicities v1,... vy (M = 11 + -+ 4+ vy, — 1) there is a unique quadrature
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formula of the form (5.1) that integrates exactly all algebraic polynomials of degree
M. It can be obtained by integration of the Hermite interpolating polynomial

m v;—1

Hy(F;1) =D > fV(t:)@in(t)

i=1 A=0

where the basic polynomials {®;,} are determined by the the conditions
D\ € mprq, @Ef\)(tj):éijél,\, ,j=1,...,m, l,)\:(),...,l/i—]..

The Gaussian approach to multiple node quadrature formulae has encountered
serious difficulties that arise from the non-linearity of the corresponding extremal
problems associated with the characterisation of the extremal nodes. It was easy to
observe that for given vq, ... ,v,, the highest algebraic degree of precision that can
be achieved by a quadrature formula of the form (5.1) is 1 + - - - &, — 1, where 7;
denotes the smallest even number which is greater than or equal to v;. For example,
if v; is odd then 7; = v; + 1. The complete characterisation of the quadrature
formulae of type (5.1) that have a highest algebraic degree of precision has been
done by the efforts of several outstanding mathematicians. Firstly Turén [10] proved
the existence and uniqueness, and gave the characterisation of the optimal nodes
of (5.1) in the particular case when all multiplicities are equal, i.e., in the case
v =+ = U, = v. Then the Bulgarian mathematician L. Tschakaloff [9] proved
the existence of optimal nodes for any fixed system of multiplicities {r;}. The
uniqueness stayed as an open problem for more than 20 years. In 1975 Ghizzetti
and Ossicini [5] published an elegant and ingenious proof of the uniqueness of the
optimal nodes. Independently the uniqueness was shown in a more general situation
by Karlin and Pinkus [7].

We are going to show here that the quadratures (5.1) have natural analogues in
the polyharmonic setting. In order to do this we first need to present the following
polyharmonic extension of the Hermite representation of algebraic polynomials.

COROLLARY 4. Let0<t; < - - <ty <1 be fired numbers and vy,...v,, be any
giwen multiplicities associated with them, such that M = vy + -+ + vy, — 1. Set

R? :=t;, i=1,...,m. Then every M-harmonic function u can be presented in
the form
m Vifl
(5.2) u() =Y Y Bij(|z]*)hij (@)
i=1 j=0
where h;; are harmonic functions on B and ®;; are associated with t1,... ,tp,.

Moreover, h;; is a harmonic function on B which is uniquely determined by the
values of %u(az), on S; :==S(R?), for j=0,...,v;,—1 (i=1,...,m).

Proof. The existence of the harmonic coefficients follows immediately from
Lemma 2 taking into account that the polynomials {®;;} constitute a basis in
TM—1-

To determine the functions hg;, notice that for A € {0,... ,v; — 1}

m v;—1 by
= 2 X {r @sllaPi o)}
Sk i=

1 j=0

a)\
w“(ﬂﬁ)

Sk
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Y] ) 201, { o)

1=1 5j=0 s= Sk
ve—1 A (A—s)

_ )@ 9

- Z ( ) =Ry {31,0\5) hi; (55)}
7j=0 s=0 Sk

The last equality is justified by the observation that

(@, (%)) =0 fori#k, s=0,1,...,0—1,

as seen from the definition of ®;;. Besides,

[ ()]

=0 fors<j
t=Ry

and

[®15(°)] (J)‘ = (2Ry)’ + @i (R + {- - }L_

t=Ry,
where the expression in {---} is a linear combination of derivatives of ®;; of order
smaller than j. Then it vanishes at ¢ = Ry. Recalling that @kj(Ri)(j) =1 by
definition we finally get

(5.3)

6>\ A-1 A (s) 6(>\—s) N

(@ EZEZ() oy ()] | goom @)+ QR )|
Sk 7=0 s=0 Sk

Thus, if hyo, ... ,hgr—1 are found, we can determine hjy uniquely from this rela-

tion. The proof is complete.
Now we are going to integrate (5.2) over the ball in order to get a cubature
formula. The following observation will be very useful.

LEMMA 4. If h is a harmonic function on B, then
9 h(&)
S (91/’“

Proof. The claim is well-known for k¥ = 1. It follows directly from the Green
formula

do(&§) =0 for every k=1,2,...

/BAhda::/S%h(f) do(©).

Then one can prove the lemma by induction. To do this, note first the fact that if
h is harmonic in B, then the function

n
Oh(z
RER
1 81‘,'
is harmonic too (see Proposition 1.1 in [2]). Since
Z ZT; 8}1
|z &rl
at any point z € S, we conclude that the function g; () := |z|22 3> and consequently
the k-th iterate

0
gu(@) = o] ot k=120 (0= )
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is harmonic. Next we show that g; can be presented in the form
(5.4) gr(x) = \xlk + Z Pk |:c|

with certain functions ¢y;(t). Indeed, assume that the representation holds for gj.

Then, taking into account that ‘ ‘ =1, we get
Jk+1 = |$|6Vk = |${Jf|k%+k|x|k1%
k— 1 j §it1
+ 6J+<p](| |)aa+1]}
3:1
2

kTl +Z<pk+1] |x|

where the functions (41 ; can be given expllcltly in terms of ¢i;. Having (5.4)
proven we use it to perform the induction step. Assume that
&h
81/

and for every harmonic function h. Since gx_1 is harmonic, then

0:/3%1 /\lgklda—/gk()d

= /| ‘k_do—&—ZgokJ |z|) /—do

OFh
= — do.
S 8uk
The induction is completed and so is the proof of the lemma.
Now integrating over B both sides of the Hermite representation (5.2) and mak-
ing use of the radiality of some of the terms we get as in the Lagrangean case the
following extended cubature formula for polyharmonic functions.

do=0 for j=1,... ,k—1,

THEOREM 4. Let 0 < t; < -+ < t,, < 1 be fized numbers and vy,...vy be any
given multiplicities assoctated with them, such that M = vy + -+ -+ vy,. Then there
erists a unique cubature formula of the form

(5.5) JREE d%i”’“zlm/ S ul€) doe)

k=1 A=0

which integrates exactly all M -harmonic functions. Moreover,

1 ' 2\yn—1
o /O (t) By ()17 .

Ak,l/k—l =
Proof. Integrating (5.2) we get

60 [uldua =3 Y [unene) [ @
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Note that

n—1
/  a€) d(€) = 3" a(0) = (Ri%) / () doe)

Now integrating (5.3) and using Lemma 4 we find

[ (€ do(©) = o, T 0] | S g (€) do©

+(2Rp)* [g () do(§).
This is a linear system of equations in unknowns

X, ::/S ha(€) do(€), A=0,... v — 1.

The determinant is triangular with non-zero entries in the diagonal, thus non-zero.
Then the quantities X are uniquely determined as linear combinations of

Y; = o %u(f) do(§), 7=0,... A\
More precisely,
RPN BV
(2R,)> par 3 ¥

with certain coefficients {ay;}. Then (5.6) becomes

m vg—1 1 ) t n—1 1 A—1
Jytnre =32 3 [Caoeae) (77) dtigrs o Saws)

k=1 A=0

which is a formula of the desired form (5.5). It is clear that the coefficient Ay ,, —1
can be found by the formula given in the theorem. The existence part of the
theorem is proved.

In order to show the uniqueness, put u(z) := ®;(|z|?) in (5.5). Then we get

l/k—l

/B u(l2) @2l de = 3 Ay RE {02}

A=0

, J=0, 0 — 1,
t=Ry

which is a linear system for {Ay,,—1} with a non-zero determinant. Thus the
coeflicients of the cubature are determined uniquely. O

Let us turn now to the optimal choice of the nodes. Assume that v4,...v,, are
arbitrary positive integers. Set M := 1y + --- + 1, and consider cubatures of the
form (5.5)

Using the example

f@) = (al* = t)" e (ol = t)

one can deduce that the maximal PHOP(5.5) < M + m. The next theorem
characterises the optimal cubature of this type. Set

AP) = (P — 1) (22—t ),
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THEOREM b. For any given set of odd multiplicities vy, ... vy, with M = 11 +
-+ + vy, there exists a unique extended cubature formula of the form (5.5) that is
exact for all (M + m)-harmonic functions. The nodes Ry, ... Ry, of this cubature

are located at the zeros of the polynomial Q(t) satisfying the orthogonality relations:

1
/ QUEHQUH" () dt =0 for every Q€ Tp_1.

-1

Proof. Consider the interpolatory type cubature with multiplicities {v; + 1}. It
would produce a rule of a maximal polyharmonic order of precision if Ay ,, = 0.
But, as seen from Theorem 4,

Ay = C /0 T -t Qu(t)u(t) dt
s=1

where @ is a polynomial of degree m — 1 and C is some constant. Thus the
existence and uniqueness of the extremal points ¢; follows from the corresponding
univariate results. O
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