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Abstract

We establish sufficient conditions for a matrix to be almost totally positive, thus
extending a result of Craven and Csordas who proved that the corresponding con-
ditions guarantee that a matrix is strictly totally positive. Then we apply our main
result in order to obtain a new criteria for a real algebraic polynomial to be a Hur-
witz one. The properties of the corresponding “extremal” Hurwitz polynomials are
discussed.
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1 Introduction

A real matrix is called totally positive (TP) if all its minors are nonnegative
and strictly totally positive (STP) if they are positive. Many properties and a
variety of applications of these matrices can be found in the book of Karlin [17]
and in the comprehensive survey paper of Ando [1]. An interesting sufficient
condition for strict total positivity was established by Craven and Csordas in
[10]:

Theorem A [10, Theorem 2.2] Let A = (aij)1≤i,j≤n be a matrix with positive
entries and

aijai+1,j+1 ≥ δai,j+1ai+1,j, 1 ≤ i, j ≤ n− 1, (1)
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where δ ≈ 4.0795956235 is the unique real root of x3− 5x2 +4x− 1 = 0. Then
A is strictly totally positive.

Let us observe that (1) is far from being a necessary condition for strict total
positivity. However, it is a rather simple and convenient sufficient condition
because it allows the total positivity to be affirmed only by verifying (1) and
the positivity of the elements of the matrix, and the inequalities (1) them-
selves are a condition for the 2× 2 minors of A composed by consecutive rows
and columns. We prove this result without the requirement that the entries
of A are positive. Applications to the theory of entire function and to the
Hurwitz stable polynomials are discussed. We formulate the conjecture that
the smallest possible value of the constant δ to set in (1) is 4 if one considers
matrices of any order and it is 4 cos2(π/(n+1)) for n×n matrices. Arguments
in support of the conjecture are provided.

A special subclass of totally positive matrices, called almost strictly totally
positive (ASTP), which include those that are strictly totally positive was
introduced by Gasca, Micchelli and Peña [13]. In order to provide the formal
definition of ASTP matrices we need to introduce some notions. For k, n ∈ N,
1 ≤ k ≤ n, by Qk,n we denote the set of all increasing sequences of k natural
numbers, not exceeding n. By Q0

k,n we shall mean the set of sequences of
k consecutive natural numbers less than or equal to n. For a real matrix
n× n matrix A and a pair of multiindeces α = (α1, . . . , αk), β = (β1, . . . , βk),
α, β ∈ Qk,n, we denote by A[α|β] the k× k submatrix of A composed by rows
α1, . . . , αk and columns β1, . . . , βk of A. In particular, when α = β, we set
A[α] := A[α|α]. Thus, a nonsingular matrix A of order n is called ASTP if
it is totally positive and satisfies the following property: a minor of A formed
by consecutive rows and consecutive columns is positive if and only if all its
diagonal entries are positive. Equivalently,

detA[α|β] > 0 ⇐⇒ aαν ,βν > 0, ν = 1, . . . , k. (2)

and it must hold for any α, β ∈ Q0
k,n. It was proved in [13] that, if A is ASTP,

then (2) holds not only for the multiindeces in Q0
k,n but for any α, β ∈ Qk,n.

Consequently, for this type of matrices we know exactly the minors which
are positive and the ones which are zero. Characterization of ASTP matrices
by means of the Neville elimination, in terms of their LU -factorizations, as a
product of bidiagonal elementary matrices, as well as in terms of positivity of
certain minors determined through the so-called zero patterns, were provided
in [14].

Important ASTP matrices are the Hurwitz matrices [3] [19] and the B-splines
collocation matrices [4]. Some examples of applications of these matrices in
Approximation Theory can be seen in [6]. Recently Garloff [12] proved that,
when A1 and A2 are ASTP matrices with A1 ≺ A2, where ≺ denotes the
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so-called chequerboard partial ordering, so are all A satisfying A1 ≺ A ≺ A2.

It is known that no nonsingular TP matrix can have zeros as diagonal entries
[1, Corollary 3.8]. Then we can deduce from the shadows’ lemma (see Lemma
A in [5]) that, if A = (aij) is a nonsingular n× n TP matrix, then

aii > 0, for i = 1, . . . , n;

If aij = 0, i > j, then ahk = 0 for all h ≥ i and k ≤ j; (3)

If aij = 0, i < j, then ahk = 0 for all h ≤ i and k ≥ j.

Before we state our extension of Theorem A to the class of ASTP matri-
ces, recall that a matrix is called nonnegative (positive) if all its entries are
nonnegative (positive).

Theorem 1 Let A = (aij) be a nonnegative n× n matrix satisfying (3). As-
sume that, for any 1 ≤ i, j ≤ n− 1, the following condition holds:

if aijai+1,j+1 > 0, then aijai+1,j+1 ≥ δai,j+1ai+1,j, (4)

where δ is given in Theorem A. Then A is TP. Moreover, if the second in-
equality in (4) is strict, then A is nonsingular ASTP.

One of the consequences of this result is for the theory of entire functions with
real zeros. A real entire function ψ(x) is said to belong to the Laguerre-Pólya
class, written ψ ∈ L − P , if ψ(x) can be represented in the form

ψ(x) = cxme−αx2+βx
ω∏

k=1

(1 + x/xk)e
−x/xk , (0 ≤ ω ≤ ∞), (5)

where c, β, xk are real, α ≥ 0,m is a nonnegative integer,
∑
x−2

k < ∞ and
where the canonical product reduces to 1 when ω = 0. Pólya and Schur [28]
called the real entire function ϕ(x) a function of type I in the Laguerre-Pólya
class, written ϕ ∈ L − PI, if ϕ(x) or ϕ(−x) can be represented in the form

ϕ(x) = cxmeσx
ω∏

k=1

(1 + x/xk), (0 ≤ ω ≤ ∞), (6)

where c is real, σ ≥ 0,m is a nonnegative integer, xk > 0, and
∑

1/xk < ∞.
It is clear that L−PI ⊂ L−P . The importance of the Laguerre-Pólya class
L−P (L−PI, respectively) is revealed by the fact that the functions in L−P
(L−PI), and only these, are the uniform limits, on compact subsets of C, of
polynomials with only real (nonpositive) zeros [21, Chapter VIII]. Pólya and
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Schur [28] observed that, if a function

ϕ(x) :=
∞∑

k=0

γk
xk

k!
(7)

is in L−P and its Maclaurin coefficients γk are nonnegative, then ϕ ∈ L−PI.
In the same fundamental paper [28] Pólya and Schur introduced the notion
multiplier sequence calling by this any sequence {γk}∞0 of Maclaurin coeffi-
cients of a function in L − PI. The reader may consult [8], [9], [21, Chapter
VIII], [24, Kapitel II], [27] and the references therein for more information
about the properties of the functions in the Laguerre-Pólya class. We only
mention that a necessary condition for an entire function ϕ(x), defined by (7),
to belong to L − PI is that the following Turán inequalities

γ2
k − γk−1γk+1 ≥ 0, k = 1, 2, . . . ,

hold. As an immediate consequence of Theorem 1, we immediately obtain the
following sufficient conditions of a function to be in L − PI.

Corollary 2 If the coefficients γk in the formal power series
∑∞

k=0 γkx
k/k!

are positive and satisfy

γ2
k −

k

k + 1
δγk−1γk+1 ≥ 0, k = 1, 2, . . . , (8)

then it represents an entire function ϕ(x) of genus 0 and ϕ ∈ L − PI. In
particular, if the coefficients γk of the polynomial p(z) =

∑n
k=0 γkx

k/k! are
positive and satisfy (8) for k = 1, . . . , n− 1, then all the zeros of p(z) are real
and negative.

While we were not able to prove Theorem 1 with the best possible value 4
instead of the constant δ and we provide a short proof of Corollary 2 only
for the sake of completeness and as an illustrative application of Theorem 1,
results corresponding to Corollary 2, already with the constant 4 instead of
δ, are known. In 1923 Hutchinson [16], extending the work of Petrovitch [26]
and Hardy [15], proved the following beautiful result for entire function

f(x) =
∞∑

k=0

akx
k,

whose coefficients ak are given by a0 = 1 and

ak =
1

b1b2 · · · bk
, k = 1, 2, . . . .
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Theorem B [16, Theorem A. on p.327] The relations

bk ≥ 4bk−1, k = 2, 3, . . . , (9)

are the necessary and sufficient conditions that the series f(x) may have the
properties:
1. The zeros of f(x) are real, simple and negative;
and
2. The zeros of any polynomial amx

m+· · ·+anx
n formed by taking any number

of consecutive terms of f(x) are all real, simple, and negative (excepting x =
0).

It is worth mentioning a small gap in Hutchinson’s proof. Theorem B is correct
either without the statement for simplicity of the zeros of the polynomials in
part 2 or if we substitute (9) by the corresponding strict inequalities. Indeed, if
we take f(x) = 1+x+x2/4+ · · ·, then the the partial sum f2(x) = 1+x+x2/4
has a double root at −2. Observe that the inequalities (9) are equivalent to
the inequalities a2

k − 4ak−1ak+1 ≥ 0 for the Maclaurin coefficients of f(x) =∑∞
k=0 akx

k, or to γ2
k − 4 k

k+1
γk−1γk+1 ≥ 0 if f(x) =

∑∞
k=0 γkx

k/k!. Craven and
Csordas [9] proved extensions of Hutchinson’s result.

Recently Kurtz [20] considered only the polynomial case, and proved that, if
n ≥ 2 and the coefficients ak of the polynomial

Pn(x) = a0 + a1x+ · · ·+ anx
n

are all positive and satisfy the inequalities

a2
k − 4ak−1ak+1 > 0, k = 1, . . . , n− 1, (10)

then all the zeros of Pn(x) are negative and distinct. Moreover, Kurtz observed
the sharpness of (10) showing that, for any given ε > 0 and n ∈ N, n ≥ 2,
there exists a polynomial of degree n, which has some non-real zeros and whose
coefficients are positive and satisfy a2

k−(4−ε)ak−1ak+1 > 0 for k = 1, . . . , n−1.

However, if one considers entire functions with positive coefficients, i.e. when
property 2 in Hutchinson’s theorem is omitted, then the constant α in the
inequalities

a2
k − αak−1ak+1 > 0, k = 1, 2, . . . ,

for its Maclaurin coefficients may have somehow smaller value than 4. In a
very recent paper Katkova, Lobova and Vishnyakova [18], studied in details
the extremal value of the constant α as well the properties of the corresponding
extremal entire function, the one for which inequalities reduce to equalities.
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Another application of Theorem 1 concerns the so-called Hurwitz (stable)
polynomials, namely, polynomials f(z) = cnz

n + cn−1z
n−1 + · · ·+ c0 with real

coefficients cj, whose zeros have negative real parts. We refer to Gantmacher
[11, Chapter 15] and Marden [23, Chapter 9] for comprehensive information
on the stability theory. We only mention that a necessary condition for a
polynomial f(z) with positive leading coefficient to be Hurwitz one is that all
its coefficients are positive.

Theorem 3 Let δ be defined as in Theorem A. If the coefficients of

f(z) = cnz
n + cn−1z

n−1 + · · ·+ c0

are positive and satisfy the inequalities

ckck+1 ≥ δ ck−1ck+2 for k = 1, . . . , n− 2, (11)

then f(z) is a Hurwitz polynomial. In particular, the conclusion is true if

c2k ≥
√
δ ck−1ck+1 for k = 1, . . . , n− 1. (12)

Observe that inequalities (12) imply that the zeros of f(z) have zeros with
negative real parts while the similar but stronger requirements (10) guarantee
that these zeros are real, negative and distinct. We refer to [29] [30] for some
necessary conditions for a real polynomial to be stable.

2 Proof of the main result

PROOF OF THEOREM 1. Given the matrix A satisfying (4), let us con-
struct an n× n positive matrix B = (bij) such that, for 1 ≤ i, j ≤ n− 1,

bijbi+1,j+1 ≥ δbi,j+1bi+1,j. (13)

For any (i, j) such that aij 6= 0, we define bij := aij.

If {(i, j)| aij = 0, |i− j| = 1} = {(i11, j1
1), . . . , (i

1
r1
, j1

r1
)} with i11 ≤ i12 ≤ · · · ≤ i1r1

and, if i1k = i1k+1 for some k, then j1
k < j1

k+1, clearly we can choose positive
numbers bi11,j1

1
, . . . , bi1r1 ,j1

r1
such that (13) holds for all 1 ≤ i = j ≤ n−1. Let us

now continue to fill in the lower triangular part of A. If {(i, j)| aij = 0, i− j =
2} = {(i21, j2

1), . . . , (i
2
r2
, j2

r2
)} with i21 < i22 < · · · < i2r2

, then we can choose
positive numbers bi21,j2

1
, . . . , bi2r2 ,j2

r2
such that (13) holds for all 1 ≤ i, j ≤ n− 1

with i − j = 1. Analogously, we can iterate the previous procedure until we
obtain all elements bij > 0 (with i ≥ j) satisfying (13) for 1 ≤ i, j ≤ n−1 and
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i ≥ j. In a similar way, we can fill in the upper triangular part of A in order
to obtain a positive matrix B satisfying (13) for 1 ≤ i, j ≤ n− 1.

Let 0 < ε < 1 and let Bε be the matrix obtained from B by replacing the
elements bis

k
,js

k
by the elements bis

k
,js

k
ε2s−1

. Then it can be checked that the
entries of B satisfy a condition analogous to (13). Since Bε is positive and
satisfies (13), we deduce from Theorem A that Bε is an STP matrix for each
ε. Taking limits as ε → 0, we deduce that the matrices Bε converge to A.
Since the set of TP matrices is closed, we conclude that A is TP.

Now suppose that the second inequality in (4) is strict and let us prove that
A is nonsingular ASTP. For this purpose, it is sufficient to get a contradiction
after assuming that there exists an h × h submatrix C = (cij) formed by
consecutive rows and columns of A and whose positive diagonal entries are
positive and detC = 0. Let h > 1 be the least integer satisfying the previous
property. Since A is nonnegative and satisfies (4) with the second inequality
strict, we can find τ > 0 such that

(c11 − τ)c22 > δc12c21.

Let Cτ be the matrix with the entries of C but with c11 − τ instead of c11.
Since C is a submatrix of A formed by consecutive rows and columns and
its diagonal entries are positive, we deduce that C, and so Cτ too, satisfy
the hypotheses of A. Thus, by the first part of the proof, Cτ is TP, and so
detCτ ≥ 0. Taking into account that detCτ [2, . . . , h] = detC[2, . . . , h] > 0 by
our choice of h, we can deduce by the expansion of detCτ on its first row that
detCτ < detC = 0: a contradiction which proves the result.

3 The smallest value of the constant δ

Before we prove the applications of Theorem 1 to entire functions and to
stable polynomials, we shall discuss in this section the smallest possible value
of the constant δ in Theorems A and 1. First we consider the case when the
dimension of the matrix is fixed.

Theorem 4 Let n ∈ N, n ≥ 2. Then, for any ε > 0 there exist an n × n
positive matrix An,ε = (aij) for which

aijai+1,j+1 ≥ 4(1− ε) cos2(π/(n+ 1)) ai+1,jai,j+1, 1 ≤ i, j ≤ n− 1, (14)

but An,ε is not STP.
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PROOF. Consider the n× n Jacobi matrix

An(ε, κ) =



√
1− ε κ 1/2 O

1/2
. . . . . .
. . . . . . . . .

. . . . . . 1/2
O 1/2

√
1− ε κ

 ,

where ε is any real number with 0 < ε < 1 and let Qm(x) be the characteristic
polynomial of Am(ε, κ),m ≥ 1. Then the sequence of polynomials {Qm(x)}∞m=0

is generated by the three term recurrence relation

Q0(x) := 1;

Q1(x) =
√

1− ε κ− x;

Qm+1(x) = (
√

1− ε κ− x)Qm(x)− (1/4)Qm−1(x), m = 1, 2, . . . .

On the other hand, the Chebyshev polynomials of the second kind Um(x),
defined by Um(cos θ) = sin((m + 1)θ)/ sin θ, satisfy the recurrence relation
Um+1(x) = 2xUm(x)−Um−1(x), m = 1, 2, . . ., with initial conditions U0(x) =
1 and U1(x) = 2x. Thus, the characteristic polynomial of An(ε, κ) is the Cheby-
shev polynomial Un(x) with shifted argument,

Qn(x) = (−1/2)nUn(x−
√

1− ε κ).

Then, since the zeros of Un(x) are cos(kπ/(n+1)), k = 1, . . . , n, those of Qn(x)
are ζk =

√
1− ε κ+ cos(kπ/(n+ 1)). Therefore, for κ = κn := cos(π/(n+ 1)),

if ε > 0, at least the smallest zero ζn of Qn(x) is negative. Hence, for κ = κn,
the matrix An(ε, κn) is not positive definite, and then it is not a TP matrix.
On the other hand, the inequalities (14) for i = j, reduce to equalities for this
matrix.

Let µ be any positive number with

µ < (1− ε)−1/2κ−1
n . (15)

Set k := |i−j| and let us define the n×nmatrix An(ε, κn, µ) whose elements aij

coincide with those of An(ε, κn) when k ≤ 1 and are given by aij := µk−1/2k2

when k ≥ 2. The matrix An(ε, κn, µ) is positive. As it was pointed out, (14)
holds for k = 0. The above requirements on µ guarantee that it holds for
k = 1. For k ≥ 2 (14) is obviously satisfied even for any real µ.

Observe that limµ→0An(ε, κn, µ) = An(ε, κn). Since the set of TP matrices is
closed, if the matrices An(ε, κn, µ) were STP for all values of µ which satisfy
(15), then An(ε, κn) would be a TP matrix. This contradiction implies that
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there exist positive matrices An(ε, κn, µ) satisfying (14) which are not STP
matrices and the result follows.

Letting n to tend to infinity, we see that the bound δ of Theorem A cannot
be reduced to less than 4 when we consider matrices of any order n.

Corollary 5 For any ε > 0 there exist n ∈ N, n ≥ 2, and an n × n positive
matrix A = (aij) such that

aijai+1,j+1 ≥ 4(1− ε)ai+1,jai,j+1,

and which is not STP.

We strongly believe that the matrices constructed in the proof of Theorem 4
are in some sense the extremal ones and we venture to suggest the following
conjecture.

Conjecture 6 Let A = (aij) be a nonnegative n × n matrix satisfying (3).
Assume that, for any 1 ≤ i, j ≤ n− 1, the following condition holds:

if aijai+1,j+1 > 0, then aijai+1,j+1 > 4 cos2(π/(n+ 1))ai,j+1ai+1,j. (16)

Then A is nonsingular ASTP.

In particular, if A = (aij) is a positive n× n matrix whose entries satisfy

aijai+1,j+1 > 4 cos2(π/(n+ 1))ai,j+1ai+1,j, 1 ≤ i, j ≤ n− 1,

then A is strictly totally positive.

Needless to say, when we consider matrices of any order, the above conditions
reduce to

aijai+1,j+1 ≥ 4ai,j+1ai+1,j,

and, as seen from Corollary 5, the constant 4 can not be reduced.

4 Entire functions in the Laguerre-Pólya class and Hurwitz poly-
nomials

We begin this section with some additional information about entire functions
in the Laguerre-Pólya class. Recall that an infinite sequence {ak}∞k=0 is said
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to be totally positive (or Pólya frequency sequence) if
∑∞

k=0 akx
k is an entire

function and the infinite upper triangular matrix

a0 a1 a2
. . . . . . . . .

a0 a1 a2
. . . . . .

a0 a1
. . . . . .

a0
. . . . . .
. . . . . .


(17)

is totally positive. Corollary 2 is an immediate consequence of Theorem 1 and
the following characterization of functions in the Laguerre-Pólya class with
nonnegative Maclaurin coefficients in terms of totally positive sequences, due
to Aisen, Edrei, Schoenberg and Whitney [2]:

Theorem C The real entire function ϕ(x) =
∑∞

k=0 akx
k with nonnegative

coefficients ak is in the Laguerre-Pólya class if and only if the sequence {ak}∞k=0

is totally positive.

Indeed, the Maclaurin coefficients of

ϕ(x) =
∞∑

k=0

akx
k =

∞∑
k=0

γk
xk

k!
, (18)

satisfy inequalities

a2
k ≥ δak−1ak+1 k = 1, 2, . . . . (19)

which are equivalent to (8) and so, by Theorem 1, the sequence {ak}∞k=0 is
totally positive provided ϕ(x) is an entire function. Thus, in order to prove
Corollary 2 we only need to prove that ϕ(x) is an entire function of order zero.
We shall prove that, if a positive sequence {ak}∞k=0 satisfies inequalities (19),
then

ak ≤
ak

1

ak−1
0

δ−k(k−1)/2 for k ≥ 2. (20)

If we set bk = ak+1/ak, then the inequalities (19) are equivalent to the inequal-
ities bk ≤ δ−1bk−1. These immediately yield

bk ≤ (a1/a0)δ
−k. (21)

Now we are in a position to prove (20) by induction with respect to k. Inequal-
ity (20) for k = 2 is exactly (19) for k = 1. Suppose that (20) holds for some
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natural number k. Then the induction passage follows from the following sim-
ple chain of inequalities where we use (19), (21) and the induction hypothesis
(20):

ak+1 ≤ δ−1 a2
k

ak−1

= δ−1bk−1ak ≤ δ−1a1

a0

δ−k+1 ak
1

ak−1
0

δ−k(k−1)/2 =
ak+1

1

ak
0

δ−k(k+1)/2.

It is well know that the function ϕ(x) of the form (18) is entire if its coefficients
satisfy limn→∞ |an|1/n = 0 and in this case the order ρ of ϕ(x) is given by (see
[22, Lecture 1])

ρ = lim supn→∞
n log n

log(1/|an|)
.

Observe that the inequalities (20) are equivalent to

αk := ak/a0 ≤ Ckδ−k(k−1)/2,

where C = a1/a0. Then

n log n

log(1/|αn|)
≤ log n

(n− 1) log δ1/2 − logC
.

Since the order of an entire function does not depend on multiplication by a
constant, then ϕ(x) is an entire function of order zero.

The extremal entire function for which the inequalities in Hutchinson’s theo-
rem reduce to equalities turns out to be an interesting one. If we fix a0 = 1
and a1 = 1/2, then obviously we have equalities in (9) (or, equivalently,
a2

k = 4ak−1ak+1) provided an = 2−n2
. Then the requirements of Theorem

B will be satisfied if an = qn2
, n = 0, 1 . . ., and q ≤ 1/2. Thus we conclude

that

∞∑
n=0

qn2

xn (22)

is an entire function of order zero which belongs to L−PI whenever 0 < q ≤
1/2. Katkova, Lobova and Vishnyakova [18, Theorem 4] proved the existence
of a constant q∞ ≈ 0.556415, such that the function (22) has only real zeros
if and only if q ≤ q∞ It is worth mentioning that it was proved recently in [7]
that

∞∑
n=0

qn2

n!
xn

is in L − P if |q| < 1. In fact, the equivalent fact that the sequence {qn2} is
a multiplier (or zero-increasing) sequence for |q| < 1 was pointed out in [7],
while the result in [18] shows {n!qn2} is a multiplier sequence if and only if
0 < q ≤ q∞.
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The proof of Theorem 3 is an immediate consequence of Theorem 1 and a result
of Hurwitz. Here we only provide the necessary definitions and formulate the
Hurwitz theorem. With the polynomial

f(z) = cnz
n + cn−1z

n−1 + cn−2z
n−2 + cn−3z

n−3 + · · ·+ c0

we associate the Hurwitz matrix which is formed as follows. Set c−1 = c−2 =
· · · = 0 and construct the two line block cn−1 cn−3 . . .

cn cn−2 . . .

 ,

where the first line contains cn−2k−1, k = 0, 1, . . . , and the second line is
composed by the coefficients cn−2k, k = 0, 1, . . . , of f(z). Then the Hurwitz
matrix H(f) of f(z) is composed by the above block in its first two lines,
the next two lines of H(f) contain the same block shifted one position to the
right, the fifth and the sixth lines contain this block shifted two positions to
the right, and so forth. Thus

H(f) =



cn−1 cn−3 cn−5 . . . 0

cn cn−2 cn−4 . . . 0

0 cn−1 cn−3 . . . 0

0 cn cn−2 . . . 0

· · · . . . ·


.

The following is the Hurwitz theorem which is sometimes called the Routh-
Hurwitz criterion.

Theorem D The polynomial f(z) with cn > 0 is stable if and only if the first
n principal minors of the corresponding Hurwitz matrix H(f) are positive.

Since the matrix H(f) satisfies the requirements of the shadows’ lemma, then
the fact that f(z) is a Hurwitz polynomial in Theorem 3 does follow imme-
diately from Theorem 1. To complete the proof of Theorem 3, it remains to
observe that the conditions (12) imply (11).

Interesting examples of Hurwitz polynomials are those for which the inequal-
ities (12) reduce to equalities. Let δ be defined as in Theorem A and q̃ =
δ−1/2 ≈ 0.495098. It follows from Theorem 3 that the polynomials

fn(z) =
n∑

k=0

qk2

xk

12



are stable when q ≤ q̃1/2 ≈ 0.703632 and, when q = q̃1/2, (12) reduce to
equalities for the coefficients of fn(z). On the other hand, motivated by the
results in Section 3, we believe that fn(z) are still stable for q ≤ 1/

√
2 ≈

0.70710678 and even for larger values of q. On the other hand, Theorem 4 in
[18] implies that the same polynomials have only real and negative zeros when
q ≤ q∞ ≈ 0.556415, at least for large values of n ∈ N. These consequences of
our results suggest a challenging question about the behaviour of the zeros of
fn(z). Given a positive integer n, which are the largest values of the constants
mn and Mn, such that the zeros of fn(z) are:

• real and negative when q ∈ (0,mn]?
• with negative real parts when q ∈ (0,Mn]?

Obviously mn < Mn, Theorem 4 in [18] and Theorem 3 in the present paper
show that these constants satisfy the inequalities q∞ < mn and q̃1/2 < Mm, and
obviously Mn < 1 for n ≥ 4. The polynomial f2(z) is stable for any positive q
and it has real zeros if and only if q ≤ 1/2 which means that m2 = 1/2. For
n = 3 we have m3 = 1/

√
3 and M3 = 1. Do mn and Mn maintain a monotonic

behavior and do they converge as n goes to infinity? In particular, is it true
that mn → q∞ as n goes to infinity?
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