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Abstract

We establish sufficient conditions for a matrix to be almost totally positive, thus
extending a result of Craven and Csordas who proved that the corresponding con-
ditions guarantee that a matrix is strictly totally positive. Then we apply our main
result in order to obtain a new criteria for a real algebraic polynomial to be a Hur-
witz one. The properties of the corresponding “extremal” Hurwitz polynomials are
discussed.
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1 Introduction

A real matrix is called totally positive (TP) if all its minors are nonnegative
and strictly totally positive (STP) if they are positive. Many properties and a
variety of applications of these matrices can be found in the book of Karlin [17]
and in the comprehensive survey paper of Ando [1]. An interesting sufficient
condition for strict total positivity was established by Craven and Csordas in
[10]:

THEOREM A [10, Theorem 2.2] Let A = (aij)1<i j<n be a matriz with positive
entries and

Qi1 41 = 0 j41Giq1, 1 <1i,j <n—1, (1)
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where § ~ 4.0795956235 is the unique real root of x* — 5x* +4x —1 = 0. Then
A is strictly totally positive.

Let us observe that (1) is far from being a necessary condition for strict total
positivity. However, it is a rather simple and convenient sufficient condition
because it allows the total positivity to be affirmed only by verifying (1) and
the positivity of the elements of the matrix, and the inequalities (1) them-
selves are a condition for the 2 x 2 minors of A composed by consecutive rows
and columns. We prove this result without the requirement that the entries
of A are positive. Applications to the theory of entire function and to the
Hurwitz stable polynomials are discussed. We formulate the conjecture that
the smallest possible value of the constant § to set in (1) is 4 if one considers
matrices of any order and it is 4 cos®(7/(n+1)) for n X n matrices. Arguments
in support of the conjecture are provided.

A special subclass of totally positive matrices, called almost strictly totally
positive (ASTP), which include those that are strictly totally positive was
introduced by Gasca, Micchelli and Pena [13]. In order to provide the formal
definition of ASTP matrices we need to introduce some notions. For k,n € N,
1 <k <n, by Q, we denote the set of all increasing sequences of k natural
numbers, not exceeding n. By Q%n we shall mean the set of sequences of
k consecutive natural numbers less than or equal to n. For a real matrix
n X n matrix A and a pair of multiindeces o = (e, ..., ), B8 = (B1,-- -, Ok),
a, B € Qrn, we denote by Ala|f] the k x k submatrix of A composed by rows
ai,...,qp and columns (q,..., 0, of A. In particular, when a = (3, we set
Ala] := Alalal. Thus, a nonsingular matrix A of order n is called ASTP if
it is totally positive and satisfies the following property: a minor of A formed
by consecutive rows and consecutive columns is positive if and only if all its
diagonal entries are positive. Equivalently,

det A[o|f] >0 <= aq,p5 >0, v=1,... k. (2)

and it must hold for any a, § € Q},,. It was proved in [13] that, if A is ASTP,
then (2) holds not only for the multiindeces in an but for any «a, 8 € Qk n.
Consequently, for this type of matrices we know exactly the minors which
are positive and the ones which are zero. Characterization of ASTP matrices
by means of the Neville elimination, in terms of their LU-factorizations, as a
product of bidiagonal elementary matrices, as well as in terms of positivity of
certain minors determined through the so-called zero patterns, were provided
in [14].

Important ASTP matrices are the Hurwitz matrices [3] [19] and the B-splines
collocation matrices [4]. Some examples of applications of these matrices in
Approximation Theory can be seen in [6]. Recently Garloff [12] proved that,
when A; and A, are ASTP matrices with A; < A,, where < denotes the



so-called chequerboard partial ordering, so are all A satisfying A; < A < As.

It is known that no nonsingular TP matrix can have zeros as diagonal entries
[1, Corollary 3.8]. Then we can deduce from the shadows’ lemma (see Lemma
A in [5]) that, if A = (a;;) is a nonsingular n x n TP matrix, then

a; >0, for i=1,...,n;
If a;; =0,i>j, then ap, =0 for all h > i and k < j; (3)
If a;; = 0,7 < j, then ap, =0 for all h <7 and k > j.

Before we state our extension of Theorem A to the class of ASTP matri-
ces, recall that a matrix is called nonnegative (positive) if all its entries are
nonnegative (positive).

Theorem 1 Let A = (a;;) be a nonnegative n X n matriz satisfying (3). As-
sume that, for any 1 < 1,7 < n — 1, the following condition holds:

if ajai1,541 > 0, then ajai11 541 2 06454103415, (4)

where § is given in Theorem A. Then A is TP. Moreover, if the second in-
equality in (4) is strict, then A is nonsingular ASTP.

One of the consequences of this result is for the theory of entire functions with
real zeros. A real entire function ¢ (x) is said to belong to the Laguerre-Pdlya
class, written ¢ € £ — P, if ¢(z) can be represented in the form

w

P(z) = cxMe B H(l + x/xk)e’x/"”’“, (0 <w < ), (5)
k=1

where ¢, 3,z are real, @ > 0,m is a nonnegative integer, ;> < oo and
where the canonical product reduces to 1 when w = 0. Pélya and Schur [28]
called the real entire function ¢(z) a function of type Iin the Laguerre-Pdélya
class, written ¢ € £ — PI, if p(z) or p(—x) can be represented in the form

o(x ﬁ (1+x/xy), (0 <w < 0), (6)

where c is real, o > 0,m is a nonnegative integer, zy > 0, and > 1/z; < 0.
It is clear that £L — PI C £ — P. The importance of the Laguerre-Pélya class
L—P (L—"PI, respectively) is revealed by the fact that the functions in £—7P
(L —PI), and only these, are the uniform limits, on compact subsets of C, of
polynomials with only real (nonpositive) zeros [21, Chapter VIII]. Pdlya and



Schur [28] observed that, if a function

ola) = Y wr @
k=0 :

is in £—7P and its Maclaurin coefficients v, are nonnegative, then ¢ € L—P1I.
In the same fundamental paper [28] Pdlya and Schur introduced the notion
multiplier sequence calling by this any sequence {7v;}5® of Maclaurin coeffi-
cients of a function in £ — PI. The reader may consult [8], [9], [21, Chapter
VIII], [24, Kapitel II], [27] and the references therein for more information
about the properties of the functions in the Laguerre-Pdlya class. We only
mention that a necessary condition for an entire function ¢(z), defined by (7),
to belong to £ — P1I is that the following Turén inequalities

Vo= Vo1 Ver1 >0, k=1,2,...,

hold. As an immediate consequence of Theorem 1, we immediately obtain the
following sufficient conditions of a function to be in £ — PI.

Corollary 2 If the coefficients i in the formal power series S5 vrz®/k!
are positive and satisfy

k

2
— 0V >0 k=1,2,... 8
Vi k—f—]_ Te—17k+1 = Y, 3 & ’ ()

then it represents an entire function o(x) of genus 0 and ¢ € L —PI. In
particular, if the coefficients vy, of the polynomial p(z) = Y p_owa®/k! are
positive and satisfy (8) for k =1,...,n— 1, then all the zeros of p(z) are real
and negative.

While we were not able to prove Theorem 1 with the best possible value 4
instead of the constant ¢ and we provide a short proof of Corollary 2 only
for the sake of completeness and as an illustrative application of Theorem 1,
results corresponding to Corollary 2, already with the constant 4 instead of
J, are known. In 1923 Hutchinson [16], extending the work of Petrovitch [26]
and Hardy [15], proved the following beautiful result for entire function

f(z) = i apz®,
k=0

whose coefficients a;, are given by ag = 1 and

1

=—F k=1,2,....
blbg"'bk7 3 4y

Qg



THEOREM B [16, Theorem A. on p.327] The relations

bk24bk—17 k:2737"'a (9)

are the necessary and sufficient conditions that the series f(x) may have the
properties:

1. The zeros of f(x) are real, simple and negative;

and

2. The zeros of any polynomial a,,x™+- - -+a,z™ formed by taking any number
of consecutive terms of f(x) are all real, simple, and negative (excepting x =
0).

It is worth mentioning a small gap in Hutchinson’s proof. Theorem B is correct
either without the statement for simplicity of the zeros of the polynomials in
part 2 or if we substitute (9) by the corresponding strict inequalities. Indeed, if
we take f(z) = 1+x+2?/4+- -, then the the partial sum fo(z) = 1+x+2%/4
has a double root at —2. Observe that the inequalities (9) are equivalent to
the inequalities a% — 4dap_1ax+1 > 0 for the Maclaurin coefficients of f(z) =
S g arzk, or to 42 — 4%&%_1%“ > 0 if f(z) = X2, wa®/k!. Craven and
Csordas [9] proved extensions of Hutchinson’s result.

Recently Kurtz [20] considered only the polynomial case, and proved that, if
n > 2 and the coefficients a; of the polynomial

P,(x) =ap+ a1z + -+ + aza”
are all positive and satisfy the inequalities

ai —4dap_jap41 >0, k=1,...,n—1, (10)

then all the zeros of P, (z) are negative and distinct. Moreover, Kurtz observed
the sharpness of (10) showing that, for any given € > 0 and n € N, n > 2,
there exists a polynomial of degree n, which has some non-real zeros and whose
coefficients are positive and satisfy a3 —(4—¢)ag_1axy1 > Ofork =1,... n—1.

However, if one considers entire functions with positive coefficients, i.e. when
property 2 in Hutchinson’s theorem is omitted, then the constant « in the
inequalities

ai —aag_qa1 >0, E=1,2,...,

for its Maclaurin coefficients may have somehow smaller value than 4. In a
very recent paper Katkova, Lobova and Vishnyakova [18], studied in details
the extremal value of the constant o as well the properties of the corresponding
extremal entire function, the one for which inequalities reduce to equalities.



Another application of Theorem 1 concerns the so-called Hurwitz (stable)
polynomials, namely, polynomials f(z) = ¢,2" + ¢,_12"" ' + -+ - + ¢o with real
coefficients ¢;, whose zeros have negative real parts. We refer to Gantmacher
[11, Chapter 15] and Marden [23, Chapter 9] for comprehensive information
on the stability theory. We only mention that a necessary condition for a
polynomial f(z) with positive leading coefficient to be Hurwitz one is that all
its coefficients are positive.

Theorem 3 Let 6 be defined as in Theorem A. If the coefficients of
f) =z + et
are positive and satisfy the inequalities

CrCry1 = 0 Cp_1Cpee for k=1,...,n—2, (11)

then f(z) is a Hurwitz polynomial. In particular, the conclusion is true if

i > V6 cp1cppr for k=1,...,n—1. (12)

Observe that inequalities (12) imply that the zeros of f(z) have zeros with
negative real parts while the similar but stronger requirements (10) guarantee
that these zeros are real, negative and distinct. We refer to [29] [30] for some
necessary conditions for a real polynomial to be stable.

2 Proof of the main result

PROOF OF THEOREM 1. Given the matrix A satisfying (4), let us con-
struct an n X n positive matrix B = (b;;) such that, for 1 <i,5 <n —1,

bijhit1,j+1 2 0bij1biva . (13)

For any (i, j) such that a;; # 0, we define b;; := a;;.

and, if 4, = iz, for some k, then ji < j} ., clearly we can choose positive
numbers b1 1, ... ,bi;«l i such that (13) holds for all 1 <i=j <n—1. Let us

i7,J17 \J
now continue to fill in the lower triangular part of A. If {(¢,j)| a;; =0,i —j =
2} = {(i},47),..., (i3, 42 )} with if < i3 < --- < 2, then we can choose

positive numbers b2 ;2. .. ., bng 32, such that (13) holds for all 1 <i,7 <n—1
with ¢ — j = 1. Analogously, we can iterate the previous procedure until we
obtain all elements b;; > 0 (with ¢ > j) satisfying (13) for 1 <4, j <n—1 and



1 > j. In a similar way, we can fill in the upper triangular part of A in order
to obtain a positive matrix B satisfying (13) for 1 <¢,5 <n — 1.

Let 0 < ¢ < 1 and let B. be the matrix obtained from B by replacing the
elements by ;» by the elements by j:c> . Then it can be checked that the
entries of B satisfy a condition analogous to (13). Since B. is positive and
satisfies (13), we deduce from Theorem A that B. is an STP matrix for each
e. Taking limits as ¢ — 0, we deduce that the matrices B. converge to A.
Since the set of TP matrices is closed, we conclude that A is TP.

Now suppose that the second inequality in (4) is strict and let us prove that
A is nonsingular ASTP. For this purpose, it is sufficient to get a contradiction
after assuming that there exists an h x h submatrix C' = (¢;;) formed by
consecutive rows and columns of A and whose positive diagonal entries are
positive and det C' = 0. Let A > 1 be the least integer satisfying the previous
property. Since A is nonnegative and satisfies (4) with the second inequality
strict, we can find 7 > 0 such that

(011 — T)CQQ > 5012021.

Let C; be the matrix with the entries of C' but with ¢;; — 7 instead of ¢;;.
Since C' is a submatrix of A formed by consecutive rows and columns and
its diagonal entries are positive, we deduce that C', and so C; too, satisfy
the hypotheses of A. Thus, by the first part of the proof, C; is TP, and so
det C; > 0. Taking into account that det C;[2,... h] =detC[2,...,h] > 0 by
our choice of h, we can deduce by the expansion of det C; on its first row that
det C; < det C' = 0: a contradiction which proves the result.

3 The smallest value of the constant ¢

Before we prove the applications of Theorem 1 to entire functions and to
stable polynomials, we shall discuss in this section the smallest possible value
of the constant 0 in Theorems A and 1. First we consider the case when the
dimension of the matrix is fixed.

Theorem 4 Let n € N, n > 2. Then, for any € > 0 there exist an n X n
positive matriz A, . = (a;;) for which

Q541,541 Z 4(]_ — 8) COS2(7T/(n + 1)) Q41,504 541, 1 S l,j S n — ]_, (14)

but A, . is not STP.



PROOF. Consider the n x n Jacobi matrix
V1—er 1/2 @)
1/2
An(e, k) = ,
1/2
O 1/2 V1—¢€k
where ¢ is any real number with 0 < ¢ < 1 and let @,,,(x) be the characteristic

polynomial of A,,(¢, k), m > 1. Then the sequence of polynomials {Q,,(x)}_,
is generated by the three term recurrence relation

Qo(x):=1;
Qi(z) = V1—ckr—uz;
Qmi1(x) = (V1—erk —2)Qun(z) — (1/4)Qm-1(x), m=1,2,....

On the other hand, the Chebyshev polynomials of the second kind U,,(x),
defined by U,,(cosf) = sin((m + 1)0)/sin 6, satisfy the recurrence relation
Uns1(x) = 22U () = Upy1(x), m =1,2,..., with initial conditions Uy(z) =
1 and Uy (z) = 2x. Thus, the characteristic polynomial of A, (¢, ) is the Cheby-
shev polynomial U, (x) with shifted argument,

Qn(z) = (—1/2)"Up(x — V1 — e K).

Then, since the zeros of U, () are cos(kn/(n+1)), k = 1,...,n, those of @, (z)
are (, = /1 — ek + cos(km/(n+1)). Therefore, for k = k,, := cos(m/(n+ 1)),
if € > 0, at least the smallest zero (,, of Q,(z) is negative. Hence, for k = k,,,
the matrix A, (e, k,,) is not positive definite, and then it is not a TP matrix.
On the other hand, the inequalities (14) for i = j, reduce to equalities for this
matrix.

Let p be any positive number with

< (1—e) V2t (15)

Set k := |i—j| and let us define the nxn matrix A, (e, K, 1) whose elements aig
coincide with those of A, (e, x,) when k < 1 and are given by a;; := p*~! /2"
when k > 2. The matrix A, (e, k, i) is positive. As it was pointed out, (14)
holds for £ = 0. The above requirements on p guarantee that it holds for
k = 1. For k > 2 (14) is obviously satisfied even for any real pu.

Observe that lim, g A, (&, kn, 1) = Ay (€, Kn). Since the set of TP matrices is
closed, if the matrices A, (e, k,, 1) were STP for all values of p which satisfy
(15), then A, (e, K,) would be a TP matrix. This contradiction implies that



there exist positive matrices A, (g, kn, ) satisfying (14) which are not STP
matrices and the result follows.

Letting n to tend to infinity, we see that the bound § of Theorem A cannot
be reduced to less than 4 when we consider matrices of any order n.

Corollary 5 For any € > 0 there exist n € N, n > 2, and an n X n positive
matriz A = (a;;) such that

ijit11 = A1 = €) i 3044,
and which is not STP.

We strongly believe that the matrices constructed in the proof of Theorem 4
are in some sense the extremal ones and we venture to suggest the following
conjecture.

Conjecture 6 Let A = (a;j) be a nonnegative n x n matriz satisfying (3).
Assume that, for any 1 <i,5 <n —1, the following condition holds:

if Qi Qi 1,541 > 0, then Qi Qi 1,541 > 40082(7T/(n + 1))al-7j+1ai+17j. (16)

Then A is nonsingular ASTP.

In particular, if A= (a;;) is a positive n x n matriz whose entries satisfy
Qijaiy1 i1 > 4eos*(m/(n+1))a; 101, 1<4,5<n-—1,

then A is strictly totally positive.

Needless to say, when we consider matrices of any order, the above conditions
reduce to

QijQiy1j41 2 40110t

and, as seen from Corollary 5, the constant 4 can not be reduced.

4 Entire functions in the Laguerre-Pdélya class and Hurwitz poly-
nomials

We begin this section with some additional information about entire functions
in the Laguerre-Polya class. Recall that an infinite sequence {ax}72, is said



to be totally positive (or Pélya frequency sequence) if 352 apa® is an entire
function and the infinite upper triangular matrix

Qo a1 Q2
apg ap (05} . .
ag Qg - i (17)

Qo

is totally positive. Corollary 2 is an immediate consequence of Theorem 1 and
the following characterization of functions in the Laguerre-Pélya class with
nonnegative Maclaurin coefficients in terms of totally positive sequences, due
to Aisen, Edrei, Schoenberg and Whitney [2]:

THEOREM C The real entire function o(x) = Y32, apx® with nonnegative
coefficients ay, is in the Laguerre-Pdlya class if and only if the sequence {ay}32,
15 totally positive.

Indeed, the Maclaurin coefficients of

00 00 I‘k
o(z) = Z apxt = Z%gv (18)
k=0 k=0
satisfy inequalities
ai > 0ap_1aps1 k=1,2,.... (19)

which are equivalent to (8) and so, by Theorem 1, the sequence {ax}32, is
totally positive provided o(z) is an entire function. Thus, in order to prove
Corollary 2 we only need to prove that ¢(x) is an entire function of order zero.
We shall prove that, if a positive sequence {ax}32, satisfies inequalities (19),
then

a’f s k=12 ¢

— or k> 2. (20)

Qg < k—
Qo

If we set by = ag41/ax, then the inequalities (19) are equivalent to the inequal-
ities b, < 07 1b,_;. These immediately yield

b < (al/ao)(S_k. (21)

Now we are in a position to prove (20) by induction with respect to k. Inequal-
ity (20) for k = 2 is exactly (19) for k = 1. Suppose that (20) holds for some

10



natural number k. Then the induction passage follows from the following sim-
ple chain of inequalities where we use (19), (21) and the induction hypothesis
(20):

A1 < 0P = 57 _jay, < T =Rl L gk(R=1)/2 §k(k+1)/2.
k-1 o ag af
N 0

It is well know that the function ¢(x) of the form (18) is entire if its coefficients
satisfy lim, o |a,|"/" = 0 and in this case the order p of p(z) is given by (see

22, Lecture 1])
nlogn

p=limsup, ,.. ——1—-
log(1/]an])
Observe that the inequalities (20) are equivalent to

ag = agfag < Cry—kk=1)/2
where C' = a;/ag. Then

nlogn < logn
log(1/|an]) = (n—1)logd'/2 —log C"

Since the order of an entire function does not depend on multiplication by a
constant, then () is an entire function of order zero.

The extremal entire function for which the inequalities in Hutchinson’s theo-
rem reduce to equalities turns out to be an interesting one. If we fix ag = 1
and a; = 1/2, then obviously we have equalities in (9) (or, equivalently,
a; = 4aj_iap,1) provided a, = 277" Then the requirements of Theorem
B will be satisfied if a,, = ¢"*, n = 0,1..., and ¢ < 1/2. Thus we conclude
that

Z q”Qx" (22)
n=0

is an entire function of order zero which belongs to £ — PI whenever 0 < ¢ <
1/2. Katkova, Lobova and Vishnyakova [18, Theorem 4] proved the existence
of a constant ¢, ~ 0.556415, such that the function (22) has only real zeros
if and only if ¢ < g It is worth mentioning that it was proved recently in [7]
that

oo .n?
> e

T
= n!
is in £ — P if |g| < 1. In fact, the equivalent fact that the sequence {q”z} is
a multiplier (or zero-increasing) sequence for |g| < 1 was pointed out in [7],
while the result in [18] shows {nl¢"’} is a multiplier sequence if and only if
0<¢< g

11



The proof of Theorem 3 is an immediate consequence of Theorem 1 and a result
of Hurwitz. Here we only provide the necessary definitions and formulate the
Hurwitz theorem. With the polynomial

-1 9 _3
f(z)=cpz" + 12" 22 32"+t

we associate the Hurwitz matrix which is formed as follows. Set c_1 = c_5 =
-+ =0 and construct the two line block

Cn—1 Cp—3 ...

Ch Cp—2 ...
where the first line contains ¢, 9r_1, kK = 0,1,..., and the second line is
composed by the coefficients ¢, o, kK = 0,1,..., of f(z). Then the Hurwitz
matrix H(f) of f(z) is composed by the above block in its first two lines,
the next two lines of H(f) contain the same block shifted one position to the

right, the fifth and the sixth lines contain this block shifted two positions to
the right, and so forth. Thus

Cn—1 Cn—3 Cp—5 - ..

Chp Cp—2 Cp—g ...
H(f>: 0 Cn—1 Cp—3 ...

0 ¢, Cha ...

o o o O

The following is the Hurwitz theorem which is sometimes called the Routh-
Hurwitz criterion.

THEOREM D The polynomial f(z) with ¢, > 0 is stable if and only if the first
n principal minors of the corresponding Hurwitz matriz H(f) are positive.

Since the matrix H(f) satisfies the requirements of the shadows’ lemma, then
the fact that f(z) is a Hurwitz polynomial in Theorem 3 does follow imme-
diately from Theorem 1. To complete the proof of Theorem 3, it remains to
observe that the conditions (12) imply (11).

Interesting examples of Hurwitz polynomials are those for which the inequal-
ities (12) reduce to equalities. Let ¢ be defined as in Theorem A and § =
612 =~ 0.495098. It follows from Theorem 3 that the polynomials



are stable when ¢ < ¢'/? ~ 0.703632 and, when ¢ = ¢/2, (12) reduce to
equalities for the coefficients of f,(z). On the other hand, motivated by the
results in Section 3, we believe that f,(z) are still stable for ¢ < 1/y/2 ~
0.70710678 and even for larger values of ¢g. On the other hand, Theorem 4 in
[18] implies that the same polynomials have only real and negative zeros when
q < s =~ 0.556415, at least for large values of n € N. These consequences of
our results suggest a challenging question about the behaviour of the zeros of
fn(2). Given a positive integer n, which are the largest values of the constants
m,, and M, such that the zeros of f,(z) are:

e real and negative when ¢ € (0, m,]?
e with negative real parts when ¢ € (0, M,,]?

Obviously m,, < M, Theorem 4 in [18] and Theorem 3 in the present paper
show that these constants satisfy the inequalities ¢o < m,, and §'/? < M,,,, and
obviously M,, < 1 for n > 4. The polynomial fs(z) is stable for any positive ¢
and it has real zeros if and only if ¢ < 1/2 which means that my = 1/2. For
n = 3 we have ms = 1/\/3 and M3 = 1. Do m,, and M,, maintain a monotonic
behavior and do they converge as n goes to infinity? In particular, is it true
that m,, — ¢ as n goes to infinity?
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