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Test Starlike Functions for Approximation by
Subordinate Polynomials
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We construct a function f(z), univalent and starlike in the unit disc, with some in-

teresting geometric and analytic properties. It turns out that its convolutions f ∗ λn with a

specific class of univalent polynomials λn(z) are not subordinate to the function itself. This

provides a counterexample to a result of Greiner and Ruscheweyh.

1 Introduction

Let D = {z : |z| < 1} be the unit disc in the complex plane and A(D) be
the set of analytic functions in D. A function f ∈ A(D) is univalent in D
if f(z1) 6= f(z2) whenever z1, z2 ∈ D, z1 6= z2. Andriecskii and Ruscheweyh
[1] proved the following interesting result about polynomial approximation to
conformal maps of D.

Theorem A There exists a constant c > 0 such that, for each f(z) univalent
in D, there exists a sequence of polynomials pn(z), all univalent in D with
pn(0) = f(0), such that

f(ρnD) ⊂ pn(D) ⊂ f(D), ρn = 1 − c/n,

for every n > 2c.
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If f, g ∈ A(D), the function g is called subordinate to f when there exists
ϕ ∈ A(D), such that |ϕ(z)| ≤ |z| for any z ∈ D and f = g◦ϕ. If g is subordinate
to f we write g ≺ f . When f is univalent, the subordination g ≺ f is equivalent
to the fact that g(0) = f(0) and g(D) ⊂ f(D) hold simultaneously. Thus the
conclusion of Theorem 1 is that fρn

≺ pn ≺ f , where fρ(z) = f(ρz).
The natural questions if the order of convergence is 1/n and about upper

and lower bounds for the constant c in Theorem 1 arose and were already par-
tially answered. Greiner [4] proved that c ≤ 73 and Greiner and Ruscheweyh
[5] provided an example which shows that c ≥ π. Most probably the idea of the
latter authors was that the Koebe function k(z) = z/(1 − z)2 is extremal for a
variety of problems for univalent functions and a sequence of polynomials con-
structed by Suffridge [6] provides a “good” approximation to k(z) in the sense
of Theorem 1.

Suffridge defined and studied the classes of univalent polynomials

Sn(j; z) =
n

∑

k=1

n − k + 1

n

sin kjπ/(n + 1)

sin jπ/(n + 1)
zk, j ∈ N,

establishing various extremal properties. It is interesting that Sn(1; z) is the
desired approximation to k(z). Among the other facts in support of this obser-
vation, they obey an “asymptotic Koebe 1/4-theorem”. More precisely,

inf
z∈∂D

|Sn(1; z)| −→ 1/4 as n → ∞,

and, for each n ∈ N, the above infimum is attained for z = −1.
For each pair of functions

f(z) =

∞
∑

k=0

akz
k, g(z) =

∞
∑

k=0

bkz
k,

their convolution (or Hadamard product) is defined by

(f ∗ g)(z) =
∞

∑

k=0

akbkz
k.

In [5], the polynomials

λn(z) = 1 +
cot(π/(2n + 2))

2n + 2

n
∑

k=1

n + 1 − k

k
sin

kπ

n + 1
zk

were considered. It is easily seen that (k ∗ λn)(z) = zλ′

n(z) and this polynomial
is a constant multiple of Sn(1; z), the constant of normalization being chosen
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in such a way that (k ∗ λn)(−1) = −1/4. Then, it was pointed out in [5], that
ken

≺ k ∗ λn ≺ k for

en =
1 − sin(π/(2n + 2))

1 + sin(π/(2n + 2))
.(1.1)

This fact, together with the observation that kε(D) 6⊂ (k ∗ λn)(D) for ε >
en, implies that c ≥ π at least when one considers subordination of starlike
functions. Recall that f(z) is said to be starlike (with respect to the origin) if f
is univalent in D and, together with any of its points w, the image f(D) contains
the entire segment {tw : 0 ≤ t ≤ 1}. Motivated by their result, Greiner and
Ruscheweyh formulated the following

Conjecture A Let f be a univalent mapping from D onto some domain Ω ⊂ C,
starlike with respect to the origin. Then f ∗λn is a univalent polynomial of degree
n with

fen
≺ f ∗ λn ≺ f,(1.2)

where en is defined by (1.1). If f is a rotation of the Koebe function, then en

cannot be replaced by any greater number.

As a first step towards establishing the truth of the conjecture, they
furnished a proof of the right-hand side subordination (1.2), namely f ∗ λn ≺ f
for any univalent and starlike function (see Theorem 3 in [5]).

2 Test starlike functions and counterexamples

While trying to better understand the properties of starlike functions, we con-
structed in [2] various examples, looking for functions with specifically distrib-
uted zeros. It turns out that some of the examples constructed there provide
counterexamples to the statement of Greiner and Ruscheweyh mentioned in the
end of the previous section. Formally, we state

Proposition 1 The function

f(z) = z

√
3

sinh
√

3

sin
√

3(z2 − 1)
√

3(z2 − 1)
.(2.3)

is an entire function, it is univalent and starlike in D and f ∗ λ4 6≺ f . More
precisely, f(1) and (f ∗ λ4)(1) are real and 0 < f(1) < (f ∗ λ4)(1).

Before we furnish the simple proof, note that our statement is illustrated
in the figures below. The first one shows the images of the unit circumference
∂D through f(z) in continuous line and through (f ∗λ4)(z) in dashed line. The
second figure shows the portions of these images for z close to 1.
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P r o o f. Let C =
√

3/ sinh
√

3. By Hadamard’s factorization of the sine
function we obtain

f(z) = Cz

∞
∏

k=1

(

1 − z2 − 1

k2π2/3

)

.(2.4)

Hence f is an entire function.

It is well known (see [3]) that a function f ∈ A(D) is starlike in D if and
only if

ℜ
(

z
f ′(z)

f(z)

)

> 0 for every z ∈ D.(2.5)

We shall prove that the function f(z), defined by (2.3), or equivalently by (2.4),
obeys this property. It follows immediately from the representation (2.4) that

z
f ′(z)

f(z)
= 1 +

∞
∑

k=1

6z2

3z2 − (k2π2 + 3)
.(2.6)

It is easy to see that

ℜ 6z2

3z2 − (k2π2 + 3)
≥ − 6

k2π2
for every z ∈ D,(2.7)
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where D denotes the closed unit disc. Moreover, equality in (2.7) is attained if
and only if z = ±1. Therefore, by (2.6) and (2.7) we obtain

ℜ
(

z
f ′(z)

f(z)

)

≥ 1 − 6

π2

∞
∑

k=1

1

k2
= 0 for every z ∈ D,

with equality only at z = ±1. Thus f(z) does satisfy (2.5) and it is starlike.
Straightforward calculations show that the Maclaurin expansion of f(z)

is

f(z) = z +
1 −

√
3 coth

√
3

2
z3 +

3(2 −
√

3 coth
√

3)

8
z5 + · · · .

Then (f ∗ λ4) reduces to a cubic polynomial,

(f ∗ λ4)(z) =
2

5 −
√

5
z +

(5 +
√

5)(1 −
√

3 coth
√

3)

60(
√

5 − 1)
z3.

Hence f(1) =
√

3/ sinh
√

3 ≈ 0.632677 and

(f ∗ λ4)(1) =
25
√

5 + 5 −
√

3(5 +
√

5) coth
√

3

60(
√

5 − 1)
≈ 0.641261.

Thus f(1) < (f ∗ λ4)(1). This inequality can be proved formally, without using
the numerical approximation of the two sides. We omit the technical details.

It is worth mentioning that the even Maclaurin coefficients of f(z) are
equal to zero. Also, the quantity (2.5) vanishes on the boundary of D for f(z).
These might be the reasons that make it a good test starlike function when one
investigates approximation by subordinate polynomials. Functions with similar
properties are

fm(z) = z

√

6/m

sinh
√

6/m

sin
√

6(zm − 1)/m
√

6(zm − 1)/m
, m ∈ N.

Observe that f2(z) is exactly the function which appears in Proposition 1. The
only nonzero Maclaurin coefficients of fm(z) are those of zmk+1, k = 0, 1, . . .,
so that fm(z) = zgm(zm) for some entire function gm(z). The fact that the
sequences of the Maclaurin coefficients of fm(z) possesses gaps, allow us to
construct many examples similar to the one given in Proposition 1. Exhaustive
experiments show that fm∗λkm+ν 6≺ fm for various values of the integers m,k, ν,
m ≥ 2, 2 ≤ k ≤ m.

In the author’s opinion, the reason for these counterexamples is most
probably the fact that the function defined in Lemma 6 in [5] is not close-to-
convex. However, we believe that it is still possible to fix the above conjecture
choosing the normalization constant in λn(z) a bit smaller than cot(π/(2n +
2))/(2n + 2).



6 D. K. Dimitrov

Acknowledgments

I thank Professor Ruscheweyh who read carefully this short note and then pro-
posed a simpler counterexample. He kindly informed me that, for the function
z/(1 − z2), which is starlike in D, and omits the rays it and −it, for t ≥ 1/2,
the corresponding polynomial

λ3 ∗
z

1 − z2
=

cot(π/8)

24
√

2

(

9z + z3
)

is convex univalent in D and takes the approximate value 0.569036i at z = i.
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