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Abstract. We prove a surprising relation between univalent polynomials con-

structed by Suffridge in 1969 and positive trigonometric polynomials discove-
red by Fejér in 1915. This helps us to establish a kind of distortion result about

univalent polynomials with real coefficients and to respond, at least partially,

a question of Greiner and Ruscheweyh.

1. Introduction

Let D = {z : |z| < 1} be the unit disc in the complex plane and A(D) be the set
of analytic functions in D. A function f ∈ A(D) is univalent in D if f(z1) 6= f(z2)
whenever z1, z2 ∈ D, z1 6= z2. Andriecskii and Ruscheweyh [2] proved the following
result about polynomial approximation to conformal maps of D.

Theorem A. There exists a constant c > 0 such that, for each f(z) univalent in D,
there exists a sequence of polynomials pn(z), all univalent in D with pn(0) = f(0),
such that

(1.1) f(ρnD) ⊂ pn(D) ⊂ f(D), ρn = 1− c/n,

for every n > 2c.

If f, g ∈ A(D), the function g is called subordinate to f when there exists
ϕ ∈ A(D), such that |ϕ(z)| ≤ |z| for any z ∈ D and f = g ◦ ϕ. If g is subordinate
to f we write g ≺ f . Since, when f is univalent, the subordination g ≺ f is
equivalent to the fact that g(0) = f(0) and g(D) ⊂ f(D) hold simultaneously, then
(1.1) can be rewritten in the form fρn

≺ pn ≺ f , with fρ(z) := f(ρz). It turns
out than 1/n is the correct order of approximation by subordinate polynomials
because Greiner [12] proved that c ≤ 73 and Greiner and Ruscheweyh [13] provided
an example which shows that c ≥ π. In order to do this Greiner and Ruscheweyh
approximated the Koebe function k(z) = z/(1−z)2 by univalent polynomials which
are slight modifications of polynomials constructed by Suffridge [17].

Suffridge studied the classes of univalent polynomials

sn(j; z) =
n∑

k=1

n− k + 1
n

sin kjπ/(n + 1)
sin jπ/(n + 1)

zk, j ∈ N.
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He established various extremal properties which show that sn(z) := sn(1; z) are
“good” approximations of k(z). For example, they obey an “asymptotic Koebe
1/4-theorem”, namely,

inf
z∈∂D

|sn(z)| −→ 1/4 as n →∞,

and, for each n ∈ N, the above infimum is attained for z = −1.
The convolution (or Hadamard product) of

f(z) =
∞∑

k=0

akzk, and g(z) =
∞∑

k=0

bkzk,

is defined by

(f ∗ g)(z) =
∞∑

k=0

akbkzk.

In [13], the polynomials

λn(z) = 1 +
cot(π/(2n + 2))

2n + 2

n∑
k=1

n + 1− k

k
sin

kπ

n + 1
zk

were considered. It is easily seen that (k ∗ λn)(z) = zλ′n(z) and this polynomial
is a constant multiple of sn(z), where the constant of normalization is chosen in
such a way that (k ∗ λn)(−1) = −1/4. Then, it was pointed out in [13], that
ken

≺ k ∗ λn ≺ k for

(1.2) en =
1− sin(π/(2n + 2))
1 + sin(π/(2n + 2))

.

Since kε(D) 6⊂ (k ∗λn)(D) for every ε > en, then c ≥ π at least when one considers
subordination of starlike functions. Recall that f(z) is starlike (with respect to the
origin) if f is univalent in D and, together with any of its points w, the image f(D)
contains the entire segment {tw : 0 ≤ t ≤ 1}. This result motivated Greiner and
Ruscheweyh to formulate the following

Conjecture A. Let f be a univalent mapping from D onto some domain Ω ⊂ C,
starlike with respect to the origin. Then f ∗ λn is a univalent polynomial of degree
n with

(1.3) fen ≺ f ∗ λn ≺ f,

where en is defined by (1.2). If f is a rotation of the Koebe function, then en cannot
be replaced by any greater number.

Being an extremal problem, with exact constants, for univalent functions, the
entire statement of the conjecture seems rather hard to prove. The modest task
of this paper is to establish another extremal property of sn(z). Our result may
be interpreted as a partial affirmative answer to the last statement about the sub-
ordination of the Koebe function. Let S and Sn(R) be the classes of normalized
univalent functions and polynomials with real coefficients of degree n,

S = {f(z) = z +
∞∑

k=2

αkzk : αk ∈ C, f is univalent in D},

Sn(R) = {pn(z) = z +
n∑

k=2

γkzk : pn ∈ S, γk ∈ R}.
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Theorem 1. For every pn ∈ Sn(R)

(1.4) −
(

cot
π

2n + 2

)2

pn(1) ≤ pn(−1) ≤ −
(

tan
π

2n + 2

)2

pn(1).

Moreover, equality in the right-hand side inequality (1.4) is attained if and only if
pn(z) = sn(z) and the left-hand side inequality (1.4) reduces to equality if and only
if pn(z) = −sn(−z).

It might be worth mentioning that sn(−z) = −sn(n, z). Theorem 1 implies the
following:

Corrollary 1. For every polynomial of the form

pn(z) = γ1z + γ2z
2 + · · ·+ γnzn, with γk ∈ R for k = 1, . . . , n, and γ1 > 0,

that is univalent in D and normalized by pn(−1) = −1/4,

(1.5)
(

tan
π

2n + 2

)2

≤ pn(1) ≤
(

cot
π

2n + 2

)2

.

Moreover, equality in the right-hand side inequality (1.5) is attained if and only if
pn(z) = −sn(z)/(4sn(−1)) and the left-hand side inequality (1.5) reduces to equality
if and only if pn(z) = −sn(−z)/(4sn(1)).

As another interesting consequence we conclude that the last statement of Con-
jecture A is true at least when one considers subordination of k(z) by polynomials
with real coefficients.

Corrollary 2. If pn is a polynomial with real coefficients that is univalent in D
and satisfies pn(0) = 0 and

kρn
≺ pn ≺ k,

then ρn ≤ en. Moreover, ρn = en is attained if pn = k ∗ λn.

2. Univalent polynomials and positive trigonometric sums

The main tool in the proof is a new relation between Sn(R) and the nonnegative
trigonometric polynomials with real coefficients of certain order n ∈ N,

T +
n = {τn(θ) = a0 +

n∑
k=1

(ak cos kθ + bk sin kθ) : ak, bk ∈ R, τn(θ) ≥ 0, θ ∈ R}.

Before we state it, we afford a short review about results of this nature. The inter-
est in univalent functions and polynomials and in the positive trigonometric sums
grew in the beginning of the twentieth century. It did not take a long time before
the natural and deep interplay between them was discovered. The main motiva-
tion for the study of the positive trigonometric sums was Fejér’s 1900 proof [7] of
the uniform convergence of Cesaro means of the Fourier series and his interest in
the Gibbs’ phenomenon. Fejér himself observed that the sequence of convolutions
Kn ∗ f(x) = (1/(2π))

∫ π

−π
f(x − θ)Kn(θ)dθ of a 2π-periodic continuous function f

with nonnegative cosine polynomials Kn(θ) of order n converges uniformly to f
provided the coefficient a0 of Kn(θ) is equal to one and they converge uniformly to
zero in the compact subsets of [−π, π] that do not contain the origin. The sequences
of cosine polynomials with these properties are called positive summability kernels.
A vast number of such kernels were constructed already in the first three decades
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of twentieth century. To the best of our knowledge Alexander was the first to in-
vestigate subclasses of univalent functions studying their geometric properties. In
1915 he wrote the fundamental paper [1] illustrating his ideas by examples involv-
ing univalent polynomials. In the beginning of the thirties Dieudonné [5] provided
a necessary and sufficient condition for an algebraic polynomial to be univalent.
It appears as Theorem B below and, as is seen, already reveals the intimate con-
nection of univalent polynomials with the trigonometric sums. Approximately at
the same time Fejér [9, 10] initiated the study of the so-called “vertically convex”
functions and his ideas took its final shape in a joint paper of Fejér and Szegő [11]
in 1951. The main result in [11] is another interesting connection between nonnega-
tive trigonometric polynomials and univalent algebraic polynomials. In 1958 Pólya
and Schoenberg [16] studied the geometric properties of convolutions of univalent
functions with the celebrated de la Vallée Poussin positive summability kernel. We
stop with the review and refer to the papers [3, 6, 14, 15] for further information.

Our initial interest in the described interplay was to construct new summability
kernels through certain extremal univalent polynomials. Such an attempt was made
by Bertoni [4], where the Suffridge polynomials sn(z) were taken as a natural source.
It was proved in [4] that

(2.1) Kn(θ) =
2n (sinπ/(n + 1))2

n + 1
=[sn(eiθ)]

sin θ
,

is a positive summability kernel. Moreover, it turned out that the order of ap-
proximation of the corresponding convolutions for any 2π-periodic function f is
ω(f, 1/n), where ω(f, δ) is the modulus of continuity of f . Thus another proof of
the classical theorem of Jackson in Approximation Theory was furnished.

It is clear that, if a pn ∈ Sn(R), then the trigonometric polynomial formed by
the imaginary part of pn(exp(iθ)) is nonnegative when θ ∈ [0, π]. A formal proof
may be given by the following characterization of the univalent polynomials due to
Dieudonné [5].

Theorem B. The polynomial
∑n

k=1 γkzk is univalent in D if and only if

n∑
k=1

γkzk−1 sin kθ

sin θ
6= 0 for every |z| < 1, and 0 ≤ θ ≤ π.

Lemma 1. If

(2.2) pn(z) = z +
n∑

k=2

γkzk ∈ Sn(R),

then the cosine polynomial

cn−1(θ) = a0 + 2
n−1∑
k=1

ak cos(kθ),

where

(2.3) γk = ak−1 − ak+1, k = 1, . . . , n,

with γ1 := 1, an := 0 and an+1 := 0, is nonnegative for every θ ∈ R.
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Proof. Suppose that pn ∈ Sn(R) is of the form (2.2) and let θ ∈ (0, π) be fixed.
Then, by Theorem B,

p(θ, z) = 1 + γ2
sin(2θ)
sin θ

z + · · ·+ γn
sin(nθ)
sin θ

zn−1

does not vanish when |z| < 1, and in particular for real values of z ∈ [0, 1). Thus
p(θ, z) does not change sign for z ∈ [0, 1). Since p(θ, 0) = 1, then p(θ, 1) ≥ 0. On
the other hand p(θ, 1) is a cosine polynomial of order n− 1,

cn−1(θ) = p(θ, 1) = a0 + 2
n−1∑
k=1

ak cos(kθ).

The relation between the coefficients γk and ak in the two expansions of p(θ, 1) is
easily obtained. It is exactly as given in (2.3). �

3. Proof of the main results

In order to prove Theorem 1, we need some additional results. The first one is a
technical Lemma which is due to Suffridge [17] who proved that the representation

sn(j; z) =
n + 1

2n(cos θ − cos(jπ/(n + 1)))
+ i

sin θ(1− (−1)jei(n+1)θ)
2n(cos θ − cos(jπ/(n + 1)))2

holds for every n, j ∈ N, 1 ≤ j ≤ n and for each cos θ 6= cos(jπ/(n + 1)). Then we
obtain:

Lemma 2. The representation

(3.1) =
(
sn(eiθ)

)
=

sin θ(1 + cos((n + 1)θ)
2n(cos θ − cos π/(n + 1))2

holds for every n ∈ N.

The second fact we shall need is classical. After establishing the general represen-
tation of nonnegative trigonometric polynomials as squares of modulae of complex
polynomials, with arguments varying on the unit circumference, jointly with Riesz,
Fejér was interested in finding such trigonometric sum with certain extremal prop-
erties, especially those whose coefficients attain extremal values. One of the first
problems of this nature, solved by Fejér is the one we need. He proved in [8] that
the inequalities

(3.2) − cos
π

n + 1
≤ a1

a0
≤ cos

π

n + 1

for the coefficients a0 and a1 of any nonnegative cosine polynomial of order n− 1,

a0 + 2
n−1∑
k=1

ak cos(kθ),

holds and equality in the right-hand side inequality (3.2) is attained only for the
positive constant multiples of the cosine polynomial
(3.3)

F+
n−1(θ) = 1 +

2
n + 1

n−1∑
k=1

(
(n− k) cos

kπ

n + 1
+

sin((k + 1)π/(n + 1))
sin(π/(n + 1))

)
cos kθ.
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Similarly, equality in the left-hand side inequality (3.2) is attained only for positive
constant multiples of

F−
n−1(θ) = 1 +

2
n + 1

n−1∑
k=1

(−1)k

(
(n− k) cos

kπ

n + 1
+

sin((k + 1)π/(n + 1))
sin(π/(n + 1))

)
cos kθ.

The following relation between the Suffridge univalent polynomials and the above
Fejér’s kernel is very much surprising and simultaneously it is clue observation
which led us to the main result of this paper.

Lemma 3. For every n ∈ N

=sn(eiθ)
sin θ

=
n + 1

2n(sin(π/(n + 1)))2
F+

n−1(θ)

and
=sn(n; eiθ)

sin θ
=

n + 1
2n(sin(π/(n + 1)))2

F−
n−1(θ).

The proof follows either by Lemma 2 and the well-known representation

F+
n−1(θ) =

(sin(π/(n + 1)))2

n + 1
(1 + cos((n + 1)θ)

(cos θ − cos π/(n + 1))2

of the Fejér kernel or by checking the relations (2.3) for the coefficients of sn(z) and
F+

n−1 and for those of sn(n; z) and F−
n−1. We omit these technical details because

the calculations are straightforward.
Proof of Theorem 1. Let pn ∈ Sn(R). On using Lemma 1 we express the values

of pn at ±1 in terms of the coefficients ak of the corresponding nonnegative cosine
polynomial cn−1(θ):

pn(1) = 1 + γ2 + γ3 + · · ·+ γn = a0 + a2,

pn(−1) = −1 + γ2 − γ3 + · · ·+ (−1)nγn = a2 − a0.

Then
pn(−1)
pn(1)

=
a2 − a0

a2 + a0
=

a2/a0 − 1
a2/a0 + 1

.

On the other hand, Fejér’s inequalities (3.2) yield

−
(

cot
π

2n + 2

)2

=
−1− cos π

n+1

1− cos π
n+1

≤ a2/a0 − 1
a2/a0 + 1

≤
cos π

n+1 − 1
1 + cos π

n+1

= −
(

tan
π

2n + 2

)2

and equalities in the left and right-hand inequalities are attained only for F−
n−1 and

F+
n−1, respectively. Then Lemma 3 shows that the largest value −(tan(π/(2n +

2)))2 of pn(−1)/pn(1) is attained only for pn(z) = sn(z) and the smallest value
−(cot(π/(2n + 2)))2 only for pn(z) = sn(n; z). This completes the proof of the
theorem.

It is worth mentioning that the converse statement of Lemma 1 is not true. De-
spite that (2.3) is a one-to-one relation between the coefficients {γk}n

1 and {ak}n−1
0 ,

there are nonnegative cosine polynomials cn−1(θ) for which the corresponding poly-
nomials pn(z) are not univalent in D. That is why the one-to-one relations between
the Suffridge polynomials and the Fejér kernel, given in Lemma 3, is fundamental.

The statement of Corollary 1 is obtained by straightforward renormalization.
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Proof of Corollary 2. Necessary conditions that an univalent polynomial pn(z)
with real coefficients, normalized only by pn(0) = 0, satisfies

kρn
≺ pn ≺ k with 0 < ρn < 1,

are
pn(−1) ≥ −1/4 and pn(1) ≥ k(ρn) = ρn/(1− ρn)2.

These inequalities, together with the the right-hand side inequality (1.4), imply

ρ2
n − 2(1 + 2(tan(π/(2n + 2)))2)ρn + 1 ≥ 0.

Since the roots of this binomial are ρn = en and ρn = 1/en, and ρn < 1, then we
must have ρn ≤ en. Moreover, by Corollary 1, the equality ρn = en is possible only
when pn(z) = −sn(z)/(4sn(−1)) = (k ∗ λn)(z). The fact that ken

≺ k ∗ λn was
established in [13].
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