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Dedicated with much admiration to Academician Borislav Bojanov on the occasion
of his 60th birthday

We construct explicitly an extended cubature of Turan type (0,2) for
the unit ball in R™. It is a formula for approximation of the integral over
the ball by a linear combination of surface integrals over m concentric
spheres, centered at the origin, of the integrand itself and its Laplacian.
This extended cubature integrates exactly all 2m + 1-harmonic functions
and hence all polynomials in n variables of degree 4m + 1.

1. Introduction

Let R™ be the real n-dimensional Euclidean space. The points in R™ are
denoted by x = (x1,x2,...,2,) and |x| is the Euclidean norm of x. Given
r >0, let B(r) = {x : |x| <r}and S(r) = {x : |x| =7} be the ball and
the hypersphere with center 0 and radius r in R", respectively. If r = 1, we
omit the r in the notation and simply write B and S. We denote by dx the
Lebesgue measure in R™ and by do the (n — 1)-dimensional surface measure on
S(r). Recall that the area of the unit sphere S in R™ is

nﬂ.n/Q
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2 Extended Turén (0,2) Cubature

If D is a simply connected domain in R”, the function u, defined on D,
is called a polyharmonic function of order p (or p-harmonic function) if u €
C?P~1(D) N C?!(D) and it satisfies the equation

62

N —1
8717?7 AP = AAPT,

APy(x) =0, x€D, where A:= Z
i=1

In the case of p = 1 (p = 2), w is called harmonic (biharmonic). The set of
all p-harmonic functions on D is denoted by HP(D). We refer the reader to
[1, 10] for detailed information about polyharmonic functions. In what follows,
Tm (R™) denotes the linear space of all real algebraic polynomials of n variables
whose total degree does not exceed m. In particular, 7, is the set of the
univariate algebraic polynomials of degree at most m. It is clear that

mop—1(R™) C HP(B). (1.1)
It can be easily seen that the Gaussian mean value property

71.n/2

/B u(x) dx = m~u(0),

the corollary of the first Green formula

/B u(x) dx = %/S u(zx) do,

(both valid for harmonic functions), and the Pizzetti’s mean value formula

m—1 n/2

/B u(x) dx = Z ST /2 17 1 1) - Au(0),

Jj=0

(which holds for all m-harmonic functions ), are natural extensions of the
rectangular quadrature

1
/_1 f(z) dz ~ 2- f(0),
the trapezoid quadrature rule
1
| 1@~ s+,

(both precise for univariate polynomials of first degree), and the Taylor quadra-
ture formula

—

m—

2 2j
Z m‘f( (0),

Jj=0

/_11 flz) de ~
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(exact for all algebraic polynomials of degree 2m — 1), respectively. The idea
of extending other univariate quadrature formulae for the interval (— 1 1)
cubature for approximating the integral over the unit ball, I(u) = [, u B

by linear combinations of surface integrals of the integrand and its dlfferentlal
operators, was proposed in [7], where each hypersphere in R” was considered as
an extension of a pair of symmetric nodes in R. Such cubature rules are called
extended cubature formulae and are denoted by Q(u). Recently, a substantial
progress in constructing extended cubature formulae has been achieved. We
refer the reader to Bojanov’s nice survey [4] for an overview of the latest results
in this area. An extended formula is said to have polyharmonic order of pre-
cision m, PHOP(Q) = m, if I(u) = Q(u) for all u € H™(B) and there exists
a function u € H™™(B), for which I(u) # Q(u). Note that, by (1.1), Q(u) is
precise for mo,_1(R™) if its PHOP is at least p.

An interesting question concerning quadrature formulae of high algebraic
degree of precision was considered by Paul Turdn in [13, Problem XXXIII],
where he posed the problem of finding a (0,2) quadrature formula, namely a
quadrature of the form

m

1
[ H@e Y (o) + ot @),

k=1

whose algebraic degree of precision is at least 2m. Recall that there is no
quadrature of the form

1 m
[ rade Y @t + s @),

k=1

that is exact for all the univariate polynomials of degree 2m. Turdn’s problem
was solved in [6], where it was proved that the formula

N f() (-2 ()
IRCEE 2 a1 9 (Pi+1<mi> T Dim+ 2>Pm+1<xz>>  (12)

has algebraic degree of precision 2m + 1. Here P,,(x) are the Legendre polyno-
mials, normalized by P,,(1) = 1, and the nodes z;, i = 1,...,m, coincide with
the zeros of P, ().

A natural question is then whether one can extend this result and construct
an extended cubature formula of Turdn type (0,2) for the ball, i.e. a cubature
of the form

m

u(x) dx = Aj u(§) do C; Au(§) do ,
/B ) Z( /Sm) ©do(e) +C; [ At <s>>

J=1

that is exact for all polyharmonic functions of order 2m + 1. In this pa-
per, we provide an affirmative answer to this question and derive the ana-
log of quadrature (1.2). Before going further, let us introduce some notation:
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let P&l’"/Z_l)(x) be the Jacobi polynomials that are orthogonal on (—1,1)
with respect to the weight function (1 — z)(1 + 2)™/?~! and normalized by

P,(nl’"/zfl)(l) = m + 1. In what follows the zeros of Py(nl’n/%l)(gc) will be
denoted by x1,...,Zm. Our main result is the following theorem.

Theorem 1.1. For every m € N the extended cubature formula

m 2("_3)/2(4m+n—|—4)2 (1+xk)(3—n)/2
u(x)dx = D) 2)3 /21 X
5 o mEmAn 427 P ()2
(1.3)
[ @ do©)+ o Au(€) do(€)
u o u o ,
S(te) d(m+1)(2m +n) Jsu,
where the radii t1, ...ty are given by tp = /(1 + x)/2, is precise for every
u € H*™(B).
2. Lobatto extended cubature for the ball in R”
In this section, we investigate extended formulae of the form
Juax~ [ w©ao©+Y A [ u@do©), ()
B S(1) k=1 S(tk)

that have maximal possible polyharmonic order of precision. We call such a
formula a Lobatto extended cubature formula.

Theorem 2.1. There is a unique cubature of the form (2.1) with polyhar-
monic order of precision 2m + 1. Its nodes are ti, = /(1 + xk)/2 and its
coefficients are given by

~ 1

A = (m+1)(2m+n)’ (22)

_ 292 0+ 4)° (1)
A, = 2 5(1,n/2—1) : (23)
(m + 1)(2m +n)(2m +n +2)* [pn/270 ()2

Moreover, there is no such a cubature with PHOP = 2m + 2.

The main tool in the proof of the theorem is the following relation between
quadrature and extended cubature rules (see [5, Lemma 3]):

Lemma 2.1. Assume that u(t) is a fized weight function on [0,1]. Let
0<t; < - <ty <1. The extended cubature formula

N
1
/B D S /S MRGLLS

k=1 ’YTL
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is exact for every polyharmonic function u € H™(B) if and only if the quadra-
ture formula

1
’yn/ ()" P(2) dt ~ ZakP t2)
0

is exact for every algebraic polynomial P € Ty, 1.

We shall need also the following technical result concerning a specific Radau
quadrature formula.

Lemma 2.2. The quadrature formula

1
[ e i@ e ~ s +Zukf ), (2.4)
—1
where
2n/2+1
re= (m+1)(2m +n)’ (25)
= 27/2(4m 4 n + 4)? _ 1—|—_xk o 26)

(m+1)2m+n)(2m +n + 2)2 [Pr(nljrnl/2 1)(xk)]2

1s the only quadrature formula of this form that has algebraic degree of precision
2m.

The existence and uniqueness of the quadrature rule of the above form with
highest algebraic degree of precision is a classical result. It is called a Radau
quadrature formula. The weights p and uj have been calculated in the general
case of Jacobi weight. We refer the reader to a recent paper of Gautschi [9] for
the details. However, we obtained formulae (2.5) and (2.6) independently. It
turns out that our method is different from Gautschi’s one and, in some sense,
more straightforward, so we are tempted to present it briefly. Let us recall first
that the generalized hypergeometric series is defined by

o (a1)j - (ap); 27
Fylai,...,a,;b1,...,bg;2) = e
p (1( 1 pr V1 q ) ;) (bl)j"'(bq)j 4!

J
where (a); is the Pochhammer symbol, defined by (a)o = 1 and (a); = a(a +
1)---(a+j—1)=T(a+3)/T(a) for j = 1,2,.... The Gaussian hypergeometric
function oF} will be succinctly denoted by F

In order to derive the coefficient p, we apply (2.4) to the hypergeometric
polynomial

Q(z) =F(—-m,m+n/2+1;2;(1—x i

Jj=

m+n/2+1) (1—x)
o), i
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Since the Jacobi polynomials are hypergeometric polynomials,

(a4 1)y

P (@) =

F(—-m,m+a+f+1a+1;(1-1)/2),
then Q(x) is a constant multiple of Py(nl’n/Q_l)(x). Since obviously Q(1) = 1,
then the application of (2.4) to Q(z) immediately yields

1
p=[ 1+ Qw)
-1
Performing the change of variables x + 1 = 2t in this integral and using the
explicit representation of the Beta function in terms of Gamma functions, we
obtain

1
no= 2"/2/ 2R (—mym 4 /241521 — t) dt
0
™ (—m); 2+1); [* »
_ 2n/2Z( m);(’é;‘ﬁ/ + )]/ tn/2—1(1_t)J dt
=0 37 0
_ 2n/2§:(_m)j(m+n/2+l)j I'(n/2)
Z 2); Tn/2+j+1)
o2 I (—m)(m 4 n/2+ 1);
noo= (2)(n/2+1);
2n/2+1

= sFy(—m,m+n/2+1,1;2,n/24 1;1).
n
Applying Saalschiitz’s formula (see [8, p. 66, Eq. (30)] or [2, p. 9, Eq. (1)])

(c—a)m(c—b)m
(C)m (C —a— b)m

with a = m+n/2+1,b =1 and ¢ = 2, we finally obtain the explicit formula
(2.5) for p.

Now, we continue with the calculation of the coefficients uj. Observe that
since (2.4) has algebraic degree of precision 2m, then whatever the polynomial
f € mam—1 is, it integrates exactly the polynomial (1 — z) f(x), that is

sFy(—mya,b;c,1+a+b—c—m;l) =

[ a0 s e~ Y i1 - o) s,
k=1

-1

Therefore this is the unique Gaussian quadrature on (—1,1) with weight func-
tion (1 —)(1+z)"/2~'. The nodes of this Gaussian quadrature are the zeroes
of P27 and the coefficients A, are given by (see [12, p. 352, Eq.(15.3.1)])
-2

M= 20202 B (1 gyt {pln/a Y ()}
m n
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Since A\ = pi(1 — 1), we obtain

nj242 m+1 -2

_1\/
g () {1 o) P2 (@) |

pu =
It remains to employ the second formula (4.5.7) from Szegd’s book [12],

2(m+1)(2m+n+ 2) plin/2— 1)

1 — 2)ptin/2-1) __

to derive (2.6).
Proof of Theorem 2.1: If |x| = ¢; is the equation of the sphere S(t;),
then it is clear that (2.1) is not exact for

w(x) = (x> = 1) [ (x> = £))* € mum2(R™) C H*™2(B),
j=1

and therefore
PHOP(2.1) <2m+ 1.

In order to prove the existence and the uniqueness, we employ Lemma 2.1
which implies that an extended cubature (2.1) with PHOP = 2m + 1 exists
and it is unique if and only if there exists a unique quadrature of the form

1
/ " P(t?) dt ~ BP(1 +ZBkP £2), (2.7)
0 k=1

which is precise for every P € ma,, and whose coefficients are related to those
of (2.1) by B = A and By = A;/t}~"'. Simple change of variables 1 + x = 2¢2
shows that the latter fact is equivalent to the existence and uniqueness of the
Radau quadrature (2.4) where the nodes and the coefficients of (2.7) and (2.4)
are related by 1 + x; = Zt%, p=2"21B and p, = 2"/?*1B;,. Summarizing
the relations between the formulae (2.1), (2.7) and (2.4), and having in mind
Lemma 2.2, we conclude that there exists a unique extended Lobatto cubature
formula (2.1) with PHOP = 2m+ 1. Moreover the radii ¢;, and the coefficients
A and /le are given by

te = (A +xr)/2, with P27 D(0) =0, k=1,...,m,

i- ! ,
(m4+1)2m+mn)

- 2—3/2

A = W“k?

and the latter yields the explicit representation (2.3) of gk This completes the
proof of Theorem 2.1.



8 Extended Turén (0,2) Cubature

It is clear from Almansi’s expansion (see [1] and [3, 11] for recent extensions),
that if u € H?*™(B), then (1 — |x|?)u € H*™T!(B) and application of (2.1) to
the latter function gives

m

/B (1 xPulx) dx = 3 A1 - 2) / W) do©),  (28)

k=1 S(tr)

which holds for every u € H?™(B).

3. Extended cubature of Turan type (0,2) for the ball
in R”

In this section, we follow the approach from [6] and derive in explicit form the
extended cubature of Turdn type (0, 2).
Proof of Theorem 1.1: The first Green formula [1, p. 10] yields

1 1
[utdx = [ u©dote) - 5- [ (1 xHAuG) ax
B n Js() 2n Jp
which holds for every u € C%(B) (" C(B). In particular, if u € H*™*1(B), then
Au € H?™(B) and application of the Gaussian extended cubature formula (2.8)
to Au gives

m

1 T 2
Jueaem L[ w@a© - 53 A [ su@dste) @)

n:3 S(tx)

that is exact for every u € H*™T1(B). Now, we multiply (2.1) by v and (3.1)
by &, where

(m+1)(2m +n) n

T m@2m4+n+2) 0 m@m+n+2)

and add the results to obtain (1.3). Since both (2.1) and (3.1) integrate exactly
the functions in H?™*1(B), the extended Turan type (0,2) cubature (1.3) is
exact for all functions in H?™+1(B).

Remark 1. In the case m = 1, the Turdn type cubature (1.3) is precise
for the 3-harmonic functions and reduces to

1 4T 1
/u(x)dx%<n+ ) / uda+—/ Audo |,
B n\ n S(p) (n+2)(n+4) Js()

(3.2)

where
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This formula was obtained for the first time in [4], using other technique.

Remark 2. Forn =1 the Turdn (0,2) extended cubature (1.3) reduces to
the quadrature (1.2), where the number of nodes is 2m. The same is true for
the Lobatto cubature (2.1) and for the Gaussian extended cubature (2.8). This
occurs because the univariate natural analog of a surface integral is a pair of
symmetric nodes. It is interesting to observe also that, if we set n =1 in (3.2),
we obtain ezactly the Turdn (0,2) quadrature (1.2) with two nodes.
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