
Using a threaded framework to enable practical
activities in Operating Systems courses

Aleardo Manacero, Renata Spolon Lobato
Department of Computer Science and Statistics

Paulista State University - UNESP
Rio Preto, Brazil

Email: aleardo@sjrp.unesp.br, renata@sjrp.unesp.br

Abstract—Teaching Operating Systems (OS) is a rather hard
task, since being a OS designer is not a desired goal for most
students and the subject demands a large amount of knowledge
over system’s details. To help this many courses are designed
with laboratory practices, differing in how the practices are
designed. Some try to implement next-to-real kernels, others
use simulators, and even others use synthetic kernels. In this
paper an approach based on synthetic kernels is described. It
uses thread programming in order to establish control over the
operating system components. This approach allows the kernel to
grow following the materials presented in the course. It has been
successfully applied in two different courses at our University, the
first one being a basic OS course and the second one an upper
level course. Results of these courses are presented.

Keywords—Kernel implementation, Operating systems design
courses, Operating systems laboratory, thread programming

I. INTRODUCTION

One of the hardest subjects to be taught in computer
science is the design of operating systems. Besides the ex-
istence of several textbooks covering the subject ([1], [2],
[3], among other successful texts), learning these concepts
involve knowledge in data structures, computer architecture
and networking. Although learning this knowledge may be left
to earlier prerequisite courses, it is not desirable to leave the
OS course too late in the curriculum, which demands that part
of that knowledge has to be brought inside the course. The
consequence is that lots of material have to be covered, and
understood by students, in order to have a complete view of
the technologies used to implement an operating system.

To alleviate this situation most of the courses include lab-
oratory practices. Since the subject is quite complex, different
approaches have been suggested to tackle these practices. The
most relevant are:

• Kernel implementation, where students have to im-
plement an actual version of an OS kernel;

• Simulators, where students simply simulate the oper-
ation of kernel’s components;

• Component implementation, where students imple-
ment certain components of a kernel, but do not
connect them.

Each of these approaches have pros and cons, such as
allowing in-depth knowledge of the system but demanding too
much effort for the kernel implementation. One way to reduce

the effort is to use real kernels and organize practices that are
performed over these kernels, modifying or reimplementing
some portions of it. One of such kernels is Minix [3], whose
implementation has more than 27,000 lines. It is easy to
imagine that such large code is hard to understand in a short
period of time, even if only small parts of it are addressed.

Differently from the conventional approaches, the one
proposed here involves the implementation of specific com-
ponents, which are compounded through a kernel emulation
framework based on threads. This allows for an incremental
approach towards a complete synthetic kernel while maintain-
ing a functional system along the way. Since the implemen-
tation can be incremental, the knowledge necessary is also
incremental, enabling the offer of an OS course as early as the
Sophomore year.

In the following pages one finds the description of this
approach, followed by how it is deployed in two different
courses offered to computer science majors. Results from these
courses are presented, followed by a discussion about similar
approaches. Conclusions from this experiment finalize the text.

II. THREADED COMPONENTS OF AN OS

As previously stated, the practices intended to better un-
derstand the OS functionality are based in the implementation
of its components through threads. In this section a full
description about how these threads are implemented and how
they are compounded in order to emulate an operating system
is provided.

A. Compounding threaded components

A synthetic OS is created as a multithreaded system.
This means that each of its components will be a separate
thread, which is started in the occurrence of certain events
in the system. This approach enables the implementation of
most of the services provided by the OS as an independent
component, that can be executed without the implementation
of the remaining system.

Figure 1 shows the main structure for the synthetic kernel.
As one can see, the program has an infinite loop over a function
(control unit) that returns the event that must be managed in
each loop. Its output defines which thread must be started, that
is, which OS component will act in that cycle. Each component
is implemented by a single thread, in order to allow effective
concurrency among them. c

Fig. 1. Framework for an Operating System synthetic kernel

After starting a thread the kernel proceeds updating the
system status, what includes presenting the actions to the user.
This is performed by the update status function. This function
has also to schedule the next process to the CPU, based in
what was the triggered event and the previous status of the
system. It must be noted that the scheduler, although part of
the process management, is not treated as a thread, since it has
to provide a result before any other event can occur.

With this framework the instructor and students get a
fully functional system, even if only few components are
implemented. The parts that must be implemented are the
two external functions in the framework (control unit and
update status), the process table structures, and the desired OS
components. The control unit may be implemented through
simple specifications, such as a random generator or as an
input interface. The update status can be implemented as an
interface to show the system’s status and eventual manipula-
tions over the process table. It is possible for the instructor
to either provide both functions in order to guarantee a
customization over the kernel’s inputs and outputs or request
their implementation from students.

All OS components can be specified and implemented
independently. They are synchronized through the access to
the process table, which provides the necessary data structures
to manipulate the running synthetic processes. The interactions
between components are performed by calls to specific threads.

The main advantage of this approach is that the instructor
can pick only the components that he/she thinks that are more
important, reducing the amount of implementation needed. An-
other advantage is that the amount of details in each component
can also be controlled by the instructor. This way students
can get a hands-on practice over important components of
a OS, without the burden of knowing complex details about
hardware or even understanding a huge amount of code written
by someone else.

B. Creating specific threaded components

One should have noticed that the external functions and the
process table are vital parts of this approach. However, their
discussion will be left to the next section, where the application
of this approach in two different courses is described. Here,

we are concerned only with the specification of threaded
components, since they are the core of students work even
if they have to implement the whole framework.

As said before, the instructor can choose which OS com-
ponents will be implemented. Surely, some components are
essential, such as the process management control, but each
functionality can be implemented, and verified, independently.
In order to enable such scheme each thread has to be modeled
as an independent piece, that access the shared process table.
Therefore, each thread has to:

• Access the process table in a mutual-exclusion ap-
proach;

• Perform the necessary process table manipulation,
such as blocking or releasing a process;

• Call, when necessary, the process scheduler or other
OS threads.

These requisites are easily achievable. This happens be-
cause the amount of interactions between threads can be
increased incrementally, starting with very simple components
before proceeding to more complex ones. However, even
operations much more complex such as managing virtual
memory, can be easily implemented with a careful design
of interactions between memory management and disk and
processes management components.

III. APPLICATION OF THE THREADED KERNEL IN
SPECIFIC COURSES

The threaded approach just presented has been applied in
two different courses offered to Computer Science majors.
The first course, in which this approach has been applied
since 2007, is an introductory Computer Systems course titled
Foundations of Computer Systems which covers operating
systems and computers networks in a single course [4]. The
second course, in which the application occurred since 2009, is
an advanced course titled Operating Systems Design, which is
mandatory only for students following the Computer Systems
track inside their major1. The application of this approach,
including examples for each course, will be described in
separated sections.

A. Threads in the Foundations of Computer Systems course

This is a mandatory course for students pursuing the
computer science major. It is intended for students in their 4th
semester in the university with knowledge in data structures
and digital circuits. Since it is also an introductory course,
covering a quite large amount of subjects, there is not much
time available for laboratory practices. The syllabus covers
these major topics:

1) Interaction between OS and networks to establish
distributed and parallel systems;

2) Operating systems management components, includ-
ing an introduction to concurrent programming;

1The Computer Science major is split into four tracks after sophomore year
(Computer Systems, Information Systems, Digital Control and Automation,
and Scientific Computing), and students have to chose one of them to get a
degree [5].

Fig. 2. Output produced during the execution of a student implementation

3) Computer networks protocol (RM-OSI and a brief
overview of TCP-IP);

4) The flow goes back and forth from OS to networks
contents in order to show their relationships;

5) A thorough description of this course, at its origin,
can be found in [4].

The fact that it is mandatory and cover many topics is the
main motivation to use an incremental approach for practices
such as the one presented here. Since there is not much
time available, only few components are actually implemented
here. Our choice usually falls into implementing the process
management, including the dispatcher, and the disk I/O man-
agement.

As a side note, assignments approaching computer net-
works include isolated tasks, such as the implementation
of a sliding-windows protocol emulation, the spanning-tree
algorithm, and the ARP protocol among others.

It is possible to ensure a challenging task each year, even
asking for the same components, if the algorithms for dispatch-
ing and disk scheduling are different every year. Changing
these algorithms implies in modifications on how processes are
managed or interact, avoiding that the practices could become
repetitive. For example, in the most recent offer of this course
students had to implement a priority-based dispatcher, which
demands that information about the processes priority have to
be stored in the process table. Dispatchers implemented in pre-
vious years included round-robin, SRTF (Shortest-Remaining
Time First), and an I/O bounded algorithm.

Each practice (implementation) is evaluated accordingly
to three rubrics: program correctness, code comments, and
output interface. The first two are quite obvious and do not
demand further description. The output interface is judged
considering the amount of organized data is provided about the
“execution” of processes in the multithreaded operating system
being emulated, that is, the interface has to provide clear data
to follow the program execution and check its correctness.
Therefore, a graphical interface is not required and Figure 2
shows an output of a student program, during emulation.

Although the text in that figure is in Portuguese, some
remarks can be drawn from it. First, it provides a system’s
clock in its top line, followed by a message that tells which

Fig. 3. Output produced during the execution of a second practice imple-
mentation, now including disk access requests

event will be treated (the conclusion of an I/O operation in this
case), and how to react to it (doing nothing in this case since
there was no process waiting for I/O2). Then, it presents a
process table, with information about all processes executing,
where the five columns indicate the process identification
(NP), status (Estado), CPU time already used (TE), number
of I/O operations performed (IO), and the process priority
(Pr). Therefore, it presents enough data to check the system
execution, step-by-step. As a side note, a random generator is
used to generate the events in the system.

Figure 3 presents the interface from a different student,
showing the execution of the same system, but now includ-
ing the management of requests for disk access using the
scan algorithm. In this interface the student presents a list
of processes “running” in the system, in a tabular format
containing the process ID, its priority and status (considering
three possible states for a process, that is, it can be allocated
to the CPU - “Execução”, in the ready queue - “Pronto”, or
blocked - “Bloqueado”). After this it shows the list of disk I/O
requests, showing the memory and disk locations, the process
that requested the operation, operation status and type (input
or output).

Each assignment has to be finished in a period lasting from
15 to 20 days and is executed by pairs of students. The first
assignment usually takes more time since students have to
implement not only the process manager but also several utility
components. They also have to get acquainted with thread
programming with C language.

Since its first application, this approach for lab practices
has improved the understanding of operating system concepts.
Students get better prepared for written evaluations and the
failure rate decreased by a large margin. Statistical data avail-
able shows that the failure rate was reduced threefold (from
around 30% to 10% for classes were this approach was used).

Tables I and II show the results from a survey applied for
the most recent class, which concluded in December 2012.
From a total of 15 pairs of students we received answers from
10 pairs (66.67% of the total), using Google Docs forms.

From table I we can see that students had more trouble
with the assignments related to OS, which confirms the notion
that this is a difficult subject. It must be noted also, that they

2It should be noted that this specific situation occurred because the random
generator does not check which events are feasible at any given time, what is
not a correctness problem.

TABLE I. SURVEY RESULTS ABOUT DIFFICULTY OF DESIGN
PRACTICES IN THE FOUNDATIONS COURSE (% OF RESPONDENTS)

Very hard Hard Median Easy

Overall difficulty 10 30 45 15

First assignment (process
management)

30 70 0 0

Second assignment (I/O man-
agement)

0 80 20 0

Average of the other assign-
ments (computer network pro-
tocols)

0 25 40 35

TABLE II. SURVEY RESULTS ABOUT USEFULNESS OF DESIGN
PRACTICES IN THE FOUNDATIONS COURSE (% OF RESPONDENTS)

Very Useful Somewhat Not
useful useful useful

Overall usefulness 40 30 30 0

First assignment usefulness 40 30 20 10

Second assignment usefulness 40 30 30 0

Other assignments usefulness
(computer network protocols)

35 25 30 10

felt more comfortable with the second assignment, when they
already knew the framework of the emulated kernel.

Although not presented in this table, some other aspects
collected from the survey must be listed here. In the first
assignment students revealed that their major difficulties were
related to thread programming and the understanding about
what had to be implemented. In the second assignment, their
difficulties were related to the I/O mechanisms and the rela-
tionship between the kernel components. Another complaint
was related to the specification of the assignments, which
some students had trouble in identifying the actions that their
systems had to perform.

From table II it is possible to notice that students have the
feeling that they learned better by implementing the compo-
nents that were required in the practices. It is also possible to
identify that they felt that the OS practices were a little more
useful (70% of respondents) than the computer network prac-
tices (60%). It is important to notice also that this feeling could
be verified in the students’ grades, which improved reasonably
from classes where there was no laboratory assignments.

B. Threads in the Operating Systems Design course

The same approach has been applied in a more advanced
course, which is taken only by students that are in the Com-
puter Systems track. This means that the classes are smaller
and that more material can be covered in the practices. This
course can be divided in two disjoint parts:

1) A theoretical view of distributed operating systems
and distributed systems, including synchronization
algorithms, fault tolerance and replication;

2) A design view of conventional (single processor,
multiuser, multitask) operating systems, based in the
threaded kernel introduced in the previous course.

Since students enrolled here have already took the Foun-
dations of Computer Systems course, they know in advance
the structure of the threaded kernel used in the practices. This
makes easier to develop each component further. Therefore,

Fig. 4. Snapshot of an OS emulation running memory management
components

the design practices involve more components with a higher
degree of interaction between them. As an example, Figure 4
presents a snapshot of executing processes with management of
page misses and virtual memory, which are functions usually
not implemented in the first course. In this figure we can see
in the last line a message saying that the process with “pid=3”
caused a page fault. In the top part of the figure this process
appears as running (EXECUTANDO), and the fault will move
it to the blocked processes list (Bloqueados), that contained
process 2, just before the fault.

To facilitate experimentation and to allow a better under-
standing of the whole kernel, in this course the control unit()
function is implemented as a reader of synthetic programs.
These programs use a simple syntax to map execution events
in regular programs. The control unit() function creates a “pro-
cess control block - PCB” where each process has a pointer to a
file containing the synthetic program. It emulates its execution
by reading one line and applying the correspondent action until
the end of the file.

Figure 5 shows a short example of a synthetic program.
In its header (first five lines) we find the program’s name, file
identifier, original priority, file size, and a list of semaphores
used by the program. After that comes the synthetic code,
where the instructions “read x” and “write x” are disk access
requests for the track x, “exec y” means CPU processing during
y time units, “V(z)” and “P(z)” are calls to operations over
semaphore z. Other synthetic instructions may include I/O
operations to specific devices, e.g. printers or monitors, and
process creation through fork.

With the synthetic commands we can represent a large
amount of events that occur in a conventional system. The
threads for each OS component can be specified including
more complex functions, such as manipulating virtual memory,
page tables and so on, as indicated in the example in figure
4. Additionally, since synthetic programs comprise what could
be hundreds of bytes in a single command, page manipulation
is made by establishing that each page can accommodate
k synthetic commands, and that the memory has N pages
available to the processes. This allows the implementation of
paging mechanisms, including the treatment of page faults and
address translation.

Fig. 5. Example of a synthetic program ran by the threaded kernel

The use of synthetic programs make it easier to simulate
the OS operations. Students can concentrate in them, instead
of how interruptions and system calls could be generated.
Although this approach could make easier the practices in the
first course, we do not use synthetic programs there in order to
ensure a better understanding of the hardware operation. We
believe that this is important because most of the students will
not take the OS Design course, having only that opportunity to
be in contact with such issues. Therefore, making they work
extra on managing interrupts and syscalls is a valuable effort.

We do not have a quantitative evaluation about the appli-
cation of this approach in the OS Design course. However, we
have qualitative insights from students that took this course in
previous years, and they do not differ from those provided by
the surveys applied in the Foundations of Computer Systems
course. This should not be surprising since students in the
advanced course are a subset of students that took the first
course.

IV. RELATED WORK

As previously stated, the practices in operating system
courses follow three different approaches. Here we will further
discuss only the approaches based in simulation and compo-
nent implementation, while a broader and more detailed review
can be found in [6].

An approach based in component implementation is pre-
sented by Laadan, Nieh and Viennot [7], where they use
the Linux kernel as a testbed for modifications in specific
components, such as system calls or the scheduler. This is
actually a continuing effort on previous works from the same
group. Their approach demands, however, a large knowledge
about Linux implementation.

In other direction we find the work from Robbins [8],
where students can practice disk scheduling algorithms in a
simulator built with this purpose. Although it is very useful
for this topic, it does not address other important aspects of an
OS and also do not demand any implementation from students,
being simply a help for the understanding of the algorithms.

Nachos [9], is a traditional simulator used as a teaching
operating system, replaced by Pintos [10]. Pintos is a full ma-
chine simulator and students are required to implement/modify
small parts of it. Although several components can be targeted
it is hard to understand the whole OS operation from these
parts.

Finally, we have PennOS [11], where a user-level OS
is simulated through the use of the user context library in
order to enable low-level implementation of OS mechanisms
without the need of special access to hardware instructions.
This demands a strong knowledge about this library and low-
level programming, as indicated by students reviews.

V. CONCLUSIONS

In this paper we described a multithreaded approach for
laboratory practices in Operating Systems courses. This ap-
proach has been applied into two different courses taken by
computer science major students, using different levels of
components.

From the reports given by students, including answers to
the survey applied in the intermediate level course, we can
conclude that the use of threaded components allowed for:

• A better understanding of the concepts involved with
the implementation and operation of an operating
system;

• An improvement in the average grades in both courses
in about 10%, with the rate of students failing to pass
the first course dropping from an average of 30% from
1998 to 2006 to an average of 18% since then;

• A reduction in the number of students avoiding the
Computer Systems track, associated with an increase
in the number of students doing their graduation
papers in topics related to distributed computing, from
4-6 students per year to 8-10 students nowadays.

Besides the success achieved, there still some aspects that
can be improved, such as:

• Establishment of different command architectures for
the language used in synthetic programs, which would
allow for their use even for a very small set of OS
components;

• Creation of a common framework between the sim-
ulated components and user interface, reducing the
number of components that have to be implemented
by students;

• Improvement in the specification of all assignments,
especially the first assignment in the Foundations
course, since it is in that moment that the whole
framework is defined.

Therefore, our final remark is that this approach for OS
practices can be very useful, since it provide a deeper under-
standing about key components of an OS at the same time it
does not requires a large knowledge about the kernel or even
programming details.

ACKNOWLEDGMENT

The authors want to acknowledge their gratitude with the
many students that took the courses presented here. Without
their readiness to take part in the practices and to learn
the effective use of multithreaded programming, it would be
impossible to achieve the results presented here.

REFERENCES

[1] A. Silberschatz, P. Galvin, and G. Gagnon, Operating Systems Concepts,
8th ed. John Wiley, 2011.

[2] W. Stallings, Operating Systems: Internals and Design Principles,
7th ed. Prentice Hall, 2011.

[3] A. Tanenbaum and A. Woodhull, Operating Systems Design and Im-
plementation, 3rd ed. Prentice Hall, 2006.

[4] A. Manacero Jr., “Merging operating systems and computer networks:
why and how,” in Proc. of the International Conference on Engineering
Education, ICEE98, 1998.

[5] A. Manacero, R. dos Santos, N. Marranghello, A. Pereira, A. Cansian,
and J. Ralha, “A flexible curriculum for computer science undergraduate
major,” in Frontiers in Education Conference, 2001. 31st Annual, vol. 2,
2001, pp. F3D–20–5 vol.2.

[6] C. L. Anderson and M. Nguyen, “A survey of contemporary instruc-
tional operating systems for use in undergraduate courses,” J. Comput.
Sci. Coll., vol. 21, no. 1, pp. 183–190, Oct. 2005.

[7] O. Laadan, J. Nieh, and N. Viennot, “Structured linux kernel projects for
teaching operating systems concepts,” in SIGCSE, 2011, pp. 287–292.

[8] S. Robbins, “A disk head scheduling simulator,” in Proceedings of the
35th SIGCSE technical symposium on Computer science education, ser.
SIGCSE ’04. New York, NY, USA: ACM, 2004, pp. 325–329.

[9] W. A. Christopher, S. J. Procter, and T. E. Anderson, “The nachos
instructional operating system,” in Proceedings of the USENIX Winter
1993 Conference Proceedings on USENIX Winter 1993 Conference Pro-
ceedings, ser. USENIX’93. Berkeley, CA, USA: USENIX Association,
1993, pp. 4–4.

[10] B. Pfaff, A. Romano, and G. Back, “The pintos instructional operating
system kernel,” in Proceedings of the 40th ACM technical symposium
on Computer science education, ser. SIGCSE ’09. New York, NY,
USA: ACM, 2009, pp. 453–457.

[11] A. J. Aviv, V. Mannino, T. Owlarn, S. Shannin, K. Xu, and B. T. Loo,
“Experiences in teaching an educational user-level operating systems
implementation project,” SIGOPS Oper. Syst. Rev., vol. 46, no. 2, pp.
80–86, Jul. 2012.

