
Session T4D

Teaching Real-Time with a scheduler simulator

Aleardo Manacero Jr., Marcelo B. Miola, Viviane A. Nabuco

Abstract— In this paper we describe a scheduler simula-
tor for real-time tasks, RTsim, that can be used as a tool to
teach real-time scheduling algorithms. It simulates a variety
of preprogrammed scheduling policies for single and multi-
processor systems and simple algorithm variants introduced
by its user. Using RTsim students can conduct experiments
that will allow them to understand the effects of each policy
given different load conditions and learn which policy is bet-
ter for different workloads. We show how to use RTsim as a
learning tool and the results achieved with its application on
the Real-Time Systems course taught at the B.Sc. on Com-
puter Science at Paulista State University - Unesp - at Rio
Preto.

Index Terms—hard real-time tasks, real-time scheduling,
simulators

Introduction

Real-time systems comprises a somewhat large body of
knowledge. It can be approached from different views. As
an example, engineers prefer to deal with hardware control
while computer scientists prefer to deal with the system mod-
elling. We adopt the second approach since our students come
from a computer science major.

From this approach, the relevant subjects become how to
model task interactions and how to allocate processor time
for each task. While the first subject can be easily performed
through several techniques, like timed petri nets, and imple-
mented by simple concurrency mechanisms, the second is bur-
densome because there are many different scheduling policies
and the scheduling problem is known as a strongly complex
one (usually falling into the NP-complete category).

As a consequence of this complexity, most students feel
that this part of the subject is only a collection of scheduling
rules that have to be memorized. Therefore, they do not pay
attention to the fact that the most important concept is not
the exact description, or execution, of a rule but what kind of
conditions and problems are better suited for each rule.

This misunderstanding can be solved if the instructor leads
the class in the right direction, assigning jobs that require not
only the resolution of a schedule but the experimentation with
the problem. Although this can be done by hand, it has lim-
itations due to the exponential growth in the resolution time
with the problem size. Our simulator can be used to circum-

Manacero and Miola are with Department of Computer Science
and Statistics - Unesp, S˜ao Jos´e do Rio Preto, Brazil. E-mails:
aleardo,mbmiola@dcce.ibilce.unesp.br.

Nabuco is now with ICEC, S˜ao Jos´e do Rio Preto, Brazil. E-mail: vi-
viane.nabuco@icec.com.br

vent this problem without the need for commercial products.
RTsim is a simulator of real-time scheduling algorithms

developed at Unesp - Rio Preto. Initially it was designed
to be a tool to aid designers of real-time software to decide
which scheduling policy is the most effective for their case.
However, one year after the conclusion of its prototype we
found out that it also was a great tool to teach scheduling poli-
cies from a modelling perspective. The goals were redefined
and now RTsim project is entirely devoted to the built of a
teaching-aid tool.

In the next section we introduce the RTsim project, present-
ing a brief history of its development and status. Along this
historic review we provide some terminology in order to es-
tablish a common pattern to the reader. We follow this with
a thorough description of the Real-Time Systems course and
how we use RTsim inside it. Finally, we conclude pointing
out some of the results observed with its application in the
past three years.

The RTsim project
This project started in 1996, as a work made by an undergrad-
uate student for the Capstone Design course. As we already
stated, its primary goal was to be a tool that could be used
by a systems designer working with real-time problems. That
version only simulated five single-processor algorithms. This
restriction is not a problem since the algorithms were chosen
in order to provide a good range of applications. The choices
made at that time proved to be good enough, since we con-
tinue using the same algorithms for single-processor systems.

The single-processor algorithms are theGeneralized Rate
Monothonic (GRM) algorithm, used for periodic tasks, the
Sporadic Server and theDeferrable Server, that are used
for aperiodic tasks, and thePriority Inheritance and thePri-
ority Ceiling protocols, that are used for tasks with critical
sections [5], [11], [12]. As one can see, these algorithms pro-
vide some flexibility on the problem to be simulated that is
right for a teaching tool, where the goal is to allow sound un-
derstanding about the mainstream scheduling algorithms on
real-time systems.

After the conclusion of that prototype, the project was tem-
porarily abandoned until 1998, when the course on real-time
systems was taught for the first time in our Computer Science
major. By then, the instructor noticed that the simulator could
be an interesting tool when he was teaching the scheduling al-
gorithms. With that experiment, it was possible to detect some
missing functionalities, which led to constant upgrades since
then. Table I lists some of them and their status in the current
version of RTsim.

Today RTsim project involves five people among faculty

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T4D-15

Session T4D

Function Status on current version

Simulation of multi-
processors

Five algorithms are imple-
mented

Simulation of algorithms
that were not prepro-
grammed

Simple algorithms can be
“learned” by RTsim

Automatic comparison
between similar algo-
rithms

Performed for prepro-
grammed algorithms that
are applied for the same
class of problems

Help on-line Help is active for most of
the operations

Schedule provided by
an user being compared
step-by-step with RTsim’s
schedule

Under implementation

TABLE I

MISSING FUNCTIONALITIES ONRTSIM’ S ORIGINAL PROTOTYPE

and grad and undergrad students. The work goes on the direc-
tion of finishing all the functionalities mentioned on Table I,
plus the porting of its interface to the Java language, the in-
clusion of other topics on real-time systems, and the addition
of the ability of adapt itself to different learning styles.

The use of RTsim is performed through a set of click-on
and data input windows. We will not describe its operation in
this paper because our goal is the description of its use as a
teaching tool, what can be done without the knowledge about
what to click in order to get a schedule plot. Some documents
(in portuguese) describe its operation, and a version in English
is under review [3], [7], [8].

Teaching with RTsim

The first application of RTsim as an aid to teach real-time
schedulers was made with a quite simple prototype. After
that experiment two other classes went through the Real-Time
Systems course, both using different versions of the software,
since it is under constant upgrade. Although it is not a fin-
ished piece of software it is possible to verify the effects of its
application on students enrolled in the course.

For the sake of clarity, we have first to describe the Real-
Time Systems course, since different views can be given to
this area of knowledge. Our course aims a better under-
standing of how real-time systems software works and what
is needed to provide such operation. Table II lists the topics
taught during the course and are spread along a four months
period.

Looking at the topics taught in the course one can see that
topics 4 and 5 may use the tool. We will describe now how
this can be done and what are the effects of doing so.

Topic

1 Basics of real-time, clocks, time relation-
ships

2 Modelling real-time applications
2.1 Modelling using temporized petri-nets
2.2 Modelling using formal description lan-

guages
3 Introduction to RTOS
4 Schedulers for RT systems
5 Load sizing, balancing and stability
6 Embedded systems

TABLE II

REAL-TIME SYSTEMS COURSE CONTENTS

Teaching schedulers

This is the most obvious use for RTsim since it is a simulator
of scheduling algorithms. The efficiency of such use is heav-
ily dependant of the algorithms taught by the instructor since
the tool has only a small set of preprogrammed scheduling al-
gorithms. The algorithms that can be promptly simulated are
separated into algorithms for single and multiprocessor sys-
tems.

For single processor systems we use the five algorithms
mentioned earlier. For multiprocessor systems the algorithms
that are already preprogrammed are themiopic, thebidding,
the foccused bidding, the split and themodule-allocation
[2], [6], [9], [10]. We will not describe them here since they
are not in the scope of this paper.

For both systems, single and multiprocessor, the use of RT-
sim is similar. The instructor teaches the algorithms and as-
signs lab works to the students. These works assume several
distinct forms, such as:
� Scheduling specific sets of tasks with random occurrence
instants for the aperiodic tasks;
� Scheduling specific sets of tasks with specific occurrence
instants for the aperiodic tasks;
� Scheduling specific sets of tasks for two similar algorithms.

These assignments provide data for the students to compare
the efficiency of each algorithm for different restrictions, and
verify the influence of overall workload, or of each task’s load,
on the scheduling. The results from RTsim come in graphical
and written forms. In the written form, it generates a series of
files containing the output data from the schedule, which are
rather hard to be read but provide details not observable in the
graphical form.

In the graphical form RTsim generates a gantt chart with
the schedule, as shown on Figure 1 for a comparison between
the sporadic and deferrable server algorithms. On that figure,
one sees when each task instance occupied the cpu. This win-
dow also enables the generation of a postscript file, contain-
ing the chart, and a zoom of part of the schedule, providing
a closer view on a time interval where some interesting event

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T4D-16

Session T4D

Fig. 1. Gantt chart for a simulated schedule comparing two algorithms.

took place.
Following the gantt chart, the simulator generates one

(sometimes two) table(s). The first one, appearing just when
at least one task misses its deadline, is shown in Figure 2. It
provides the user with information about absolute delay, ratio
between delay and the task load and between delay and the
deadline for tasks that missed the deadline. In all three cases
RTsim gives the average and the worst values and the standard
deviation. It also shows the number of tasks that lost their
deadlines and the number of scheduled tasks. Since these val-
ues do not determine which tasks missed their deadlines, the
user may check for specific tasks if necessary.

The second table (Figure 3) appears in every execution,
showing the average values for performance parameters, such
as turnaround and waiting times, and task and system laxities.
The system also provides these informations for specific tasks
if demanded. With such data it is possible to compare the ef-
ficiency of a given algorithm when applied to a given set of
restrictions.

The figures presented here depict the results for a simula-
tion comparing two algorithms. For the simulation of a single
algorithm, only one plot will be shown and only the first col-

umn of each table will appear. For multiprocessor algorithms
the results are separated for each specific node.

If the instructor needs, or one student wants, to test different
algorithms, he/she will be capable to do these simulations for
simple algorithms. That is, RTsim is able to simulate schedul-
ing algorithms that are guided by a small set of combinations
of standard parameters for real-time tasks. In this case the
user will formulate the algorithm through a series of queries
about relevant parameters, such as deadline or laxity, their re-
lationships, and, if necessary, a simple equation that should be
evaluated in order to find the task that has the best value (and
will be dispatched) at every decision point. After the insertion
of all scheduling rules, RTsim will provide the same results
that it would provide for the preprogrammed algorithms.

Teaching load sizing, balancing and stability

Some of the work with load analysis was already described
in the previous section. At this point, the instructor would
assign problems that are more complex than those solved
while learning scheduling algorithms. These new assignments
should include the simulation of small variants of each set of
tasks in order to verify the behavior of a given algorithm un-

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T4D-17

Session T4D

Fig. 2. Output table for deadline statistics.

der different restrictions. The assignments may assume the
following forms:

� Simulation of a set of specific tasks, changing their loads
until the rate of lost deadlines drops below a certain threshold,
which characterizes a sizing limitation simulation;
� Simulation of a set of specific tasks, changing their loads
until the rate of lost deadlines surpasses (or the systems laxity
becomes smaller than) a certain threshold, characterizing a
stability study;
� Simulation of different starting conditions for the multipro-
cessor algorithms that rely on task migration, in order to verify
the efficiency of load balancing.

As one can see, in all of these assignments the user has to
collect the same data he/she collects while simulating simple
runs of a scheduling algorithm. The difference is that, here,
the user has to pay attention to what is changing (or has to
change) in the set of tasks in order to achieve the expected
conclusion.

These experiments provide enough data to discuss the algo-
rithms and the impact of working with mean or worst values
for task loads. It is instructor’s duty to arrange the assign-
ments in such way that the student can clearly understand the
implications of a good (or bad) choice of scheduling policy
for a given situation. This arrangement is easy to achieve
since it is also obvious that to ensure continuity the student
has to learn the policy before he/she learns about the impact
of variations on its application.

Fig. 3. Output table for performance statistics

Achieved results and conclusions

At this time, we firmly believe that the use of RTsim helps the
students to better understand the differences between schedul-
ing policies. Unfortunately, we cannot compare the efficiency
of such use with the learning of this topic without the tool,
since the course was not taught even a single time in such
way, and the classes are too small to provide experimentation
with two groups.

The number of students enrolled in the classes that used this
tool was 16 in 1998, 21 in 1999 and 18 in 2000, which are
reasonable enrolments for a course that is not mandatory for
every student. As we already stated, each class used a differ-
ent version of RTsim. The results, however, are quite similar
every year, except for the range of different experiments that
could be performed.

In its first trial we could only assign experiments with sin-
gle processor policies. That prototype did not provide many
statistics to the user, which led to experiments aiming mostly
the identification of differences between similar algorithms.
From that class we could identify most of the problems and
flaws that are now fixed or under implementation. It was
also from that experience that we decided that RTsim could
be turned to an educational tool.

At that time we also examined, and dismissed, the Hart-
stone Benchmark experiment at Rostock University [1], in
Germany, which uses a commercial benchmarking environ-
ment (the Hartstone) to perform the same kind of simulations
we do. Although this tool provided much more information
than RTsim was capable to do by that time, we preferred its
dismissal due to three conditions: it was not purely oriented to
real-time applications, it did not provide some features that re-
ally characterize a learning environment, and it was not easily
available for modifications.

After the 1998 class, RTsim went through several modifi-

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T4D-18

Session T4D

cations, most of them originated by criticisms from students.
For the 1999 class the simulator already included few im-
provements but could provide mostly the same informations
found for the previous class. From this application we de-
cided that the student should be able to test new algorithms,
besides those that were already implemented and those (the
multiprocessor algorithms) that were under implementation.
This functionality was inserted during the year 2000.

For the 2000 class we had the multiprocessor policies added
and a better set of statistics. The kind of assignments for this
class was not much different from the previous ones, that is,
the instructor could ask just for the schedule of several sets
of tasks, including tasks for multiprocessor systems now. The
instructor was also able to ask for more detailed comparisons
between algorithms and analysis of load influence. Actu-
ally, this was the first time where all the different assignments
listed in the previous section could be performed without an
extra effort from the students.

It was also with this group of students that we noticed that
the ability of comparing a schedule made by the software
against another made by a student could be an excellent func-
tionality to be added. We are now working on such function-
ality, which should be ready for the 2002 class.

Some other functionalities are also under implementation
or study. They are:
� Built of Java interfaces to replace the X11-based interfaces
that are in use;
� Built of a Java version that enables its use on a heteroge-
neous network, mainly into virtual labs and in the world wide
web;
� Inclusion of the ability to mold itself to different learning
styles. At this point we are working on the Kolb model [4];
� Inclusion of other topics of the real-time systems course,
such as the simulation of timed petri net models.

From all experiments made, and students returns, we can
conclude that the use of RTsim has greatly improved the learn-
ing of scheduling policies for real-time systems. The students
have not only learned how the schedules are performed but
also why they are performed that way, and what are the impli-
cations of such schedule. Therefore, they have a better under-
standing that every policy is not just a different rule to arrange
the cpu occupation but also that each one have distinct effects
on what tasks could be delayed and what will not.

This kind of understanding is exactly what we expected
from the students. This understanding matches the course
goals, that are the modelling of real-time tasks and their in-
teractions. Therefore, we may assure that the introduction of
such software in this course is already a success and could be
even more successful with the addition of all functionalities
under development.

Acknowledgements

We want to acknowledge the National Research Council -
CNPq - and the Research Support Foundation of State of S˜ao

Paulo - FAPESP - which have conceded grants for this project.
We also want to give a special thanks to Luciana Pavani and
Rodrigo Kehdy, who worked in previous versions of RTsim.
We also want to acknowledge the strong contributions given
by all students enrolled in the three classes where RTsim was
used. Their part on this work is essential since they provided
all results and directions for its continuity.

References
[1] Golatowsky, F., Timmermann, D., “Using Hartstone uniprocessor

benchmark in a real-time systems course”, inProc. of 3rd IEEE Real-
Time Systems Education Workshop, p 77-84, Poland, 1998.

[2] Hou, C., Shin, K.G., “Allocation of periodic task modules with prece-
dence and deadline constraints in distributed real-time systems”,IEEE
Trans. on Computers, v. 46, n. 12, p 1338-1355, 1997.

[3] Kehdy, R.B., “Simulation of hard real-time scheduling algorithms”,
DCCE Internal Report Inf-01/99, (in portuguese), S˜ao Jos´e do Rio
Preto, 1999.

[4] Kolb, D.A., “The learning style inventory: Technical manual”, McBer,
Boston, MA, 1976.

[5] Liu, C.L., Layland, J.W., “Scheduling algorithms for multiprogram-
ming in a hard real-time environment”,Journal of ACM, v. 20, n. 1,
p 46-61, 1973.

[6] Manimaram, G., Murthy, C.S.R., “An Efficient dynamic scheduling al-
gorithm for multiprocessor real-time systems”,IEEE Trans. on Parallel
and Distributed Systems, v. 9, n. 3, p 312-319, 1998.

[7] Nabuco, V.A., “Knowledge acquisition of scheduling rules for a sched-
uler simulator”,DCCE Internal Report Inf-03/00, (in portuguese), S˜ao
José do Rio Preto, 2000.

[8] Paula Bueno, L.P., “A simulator for performance analysis of real-time
scheduling algorithms”,Graduation Design Work, (in portuguese), S˜ao
José do Rio Preto, 1996.

[9] Ramamritham, K., Stankovic, J.A., Zhao, W., “Distributed scheduling
of tasks with deadlines and resource requirements”,IEEE Trans. on
Computers, v. 38, n. 8, p 1110-1123, 1989.

[10] Ramamritham, K., Stankovic, J.A., Shian, P., “Efficient scheduling al-
gorithms for real-time multiprocessor systems”,IEEE Trans. on Paral-
lel and Distributed Systems, v. 1, n. 2, p 184-194, 1990.

[11] Sha, L., Rajkumar, R., Lehoczky, J.P., “Priority inheritance protocols:
an approach to real-time synchronization”,IEEE Trans. on Computers,
v. 39, n. 9, p 1175-1185, 1990.

[12] Sprunt, B., Sha, L., Lehoczky, J.P., “Aperiodic task scheduling for hard
real-time systems”,Journal of Real-Time Systems, v. 1, n. 1, p 27-60,
1989.

0-7803-6669-7/01/$10.00 c�2001 IEEE October 10–13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T4D-19

