
Dynamic instrumentation of loop blocks in parallel

programs performance analysis

Aleardo Manacero Jr.
(aleardo@ibilce.unesp.br),

Davidson R. Boccardo,
José Nelson Falavinha Jr.,

Lucas dos Santos Casagrande, and
Henrique Jo Nakashima

1 São Paulo State University - UNESP
Computer Science and Statistics Dept.

2

São Paulo State University - UNESP
Dept of Electrical Engineering

3

São Paulo State University - UNESP
Dept of Electrical Engineering

4

University of São Paulo
Computer Science Dept.

5

PCA Systems

Abstract. The computational solution for many applications demands a large amount of computing
power, which is available through parallel computing. In the development of such systems their perfor-
mance becomes a critical issue, since any loss of speed implies in the rise of costs with maintenance of
IT personnel and machines. Hence, the application of performance measurement and analysis tools for
these systems is quite important. This paper presents an alternative method for loop instrumentation
based on Paradyn’s dynamic instrumentation methodology, improving its granularity. A more focused
measurement, at loop level, enables a greater accuracy on the results provided by Paradyn. A detailed
description of dynamic loop instrumentation is provided, together with a few implementation aspects.
Results achieved with loop instrumentation and some conclusions are also provided.

1 Introduction

In any system, using computers or not, performance is an important issue during its devel-
opment; despite that, most system’s developers do not put serious efforts into performance
analysis and system optimization. For computer systems, a better performance means lower
costs with the support of IT professionals and machines or less time required to achieve
results. Therefore, the search for the best performance is crucial in systems that have either
a heavy use or demand a high level of computing power. Parallel and distributed systems,
usually classified as high performance systems, belong to this class.

The search for optimal performances demands methods and tools to measure and analyze
performance data. Even in sequential systems these tasks impose several constraints such as
what metrics to use, what parameters to measure and how much the tool execution interferes
with the measured data. More constraints are needed when the measured system provides
parallelism among processes, since parallel processes have to interact with each other.



Parallel programs require two other metrics for evaluation: speedup and scalability. The
speedup provides information about how useful is the parallelization, while scalability tells
how large a problem or system can be. Although these metrics are important, Sahni [12]
indicates that the most relevant metric should be, under any condition, the execution time.
This assumption is the main justification for the fact that almost all tools provide execution
time (or other time related measures) as their main result.

One of the time related measures is the profile of the percentage of execution time spent on
every function in a program, which is done by tools such as prof and gprof [11]. This function
profile provides information about what functions should be optimized in order to achieve
the best performance, becoming an important data for analysis. Indeed, the identification of
bottleneck functions provide data and directions for the analyst to work on useful portions
of the code.

A problem with most of the analysis tools is that they need iterative work during the
measurement refinement. Since they work with post-mortem data, they have to go back to
the measurement phase in order to perform a more focused analysis. Paradyn [7] provides
a reasonable solution for this problem through its dynamic instrumentation. With Paradyn
it is possible for the analyst to choose different metrics while the measurement is being
processed, allowing for an easy modification of the code instrumentation if needed.

Since dynamic instrumentation is an interesting approach for performance measurement,
it is useful to improve its accuracy. In its original configuration Paradyn collects data about
the execution time of individual functions. These measurements are gathered in order to de-
termine which functions are bottlenecks during the program’s execution. This work improves
Paradyn’s accuracy through the instrumentation of loops inside bottleneck functions.

The next section describes some of the recent work on program instrumentation, being
followed by a more detailed discussion of Paradyn. Then a general view of the loop instru-
mentation is presented. Results achieved with this instrumentation and conclusions compose
the remaining sections.

2 Related Work

Performance analysis by software tools is a well-known strategy to describe characteristics
of programs. Several tools perform analysis based on different aspects, such as the granu-
larity of measured data, in order to find bottlenecks and derive appropriate optimizations.
The basic mechanism to measure performance is benchmarking, where the program’s code
is instrumented and run in the actual system, in order to collect execution times. Other ap-
proaches, such as simulation or analytical modeling, are also used but provide less accurate
results in general.

Some of more relevant benchmarking tools are SvPablo [2], and Kojak [9]. All of them
allow user to gather a large variety of performance metrics and often provide graphical user
interfaces to present results. However, most of them rely on static source code instrumenta-
tion and/or post-mortem performance analysis.

Some tools perform benchmarking with dynamic code instrumentation through frame-
works like Dyninst [1], an API that dynamically inserts arbitrary code snippets into running
applications. Tools like OMIS [14], DPCL [4], TAU [13], ToolGear [3], and Paradyn use this



mechanism for performance analysis. Other tools, such as DynTG [5], integrate dynamic in-
strumentation with a source browser and provides users with a fully interactive performance
analysis environment.

All of these tools do not provide loop instrumentation in their proposals. Loop instru-
mentation appears on simulators that use the dynamic instrumentation approach such as
IDTrace [16], which simulates systems based on the i486 family, and Metasim [8], which is a
semi-cycle accurate simulator that works by gathering statistics on expected cache hit rates
of routines and loops in an application.

As this brief review indicates, the tools that dynamically instrument loops are based
on simulation. The reason for this is that dynamic instrumentation of loop blocks is hard
to implement and implies several technical hazards, although providing better results. The
following sections provide a description of Paradyn’s operation and how the loop instrumen-
tation could be added to it.

2.1 Paradyn Overview

Paradyn is a tool used for performance analysis of parallel and distributed programs. Paradyn
instruments the binary code dynamically, in order to extract event traces without the need
of user’s modification on the program’s source code or need of a special compiler. The instru-
mentation and performance analysis are made in real time, offering data for user analysis as
they are obtained.

The code instrumentation is made through the creation of trampolines, where function
calls are replaced by unconditional branches pointed to Paradyn instrumentations. Since
these replacements occur without modifications in the remaining code, it is possible to main-
tain the program under execution at the same time that the replacements are made, enabling
the dynamic instrumentation. In its current version, Paradyn instruments parallel programs,
and therefore identifies its execution bottlenecks, at subroutine (functions) level.

The tool is composed of several modules, shown in figure 1:

– Data Manager, which manages the requisitions for data collection, receives and sends
this data and, maintains and distributes information among the other modules;

– Visualization Guide, that performs the management of the visual interfaces and does
the communication with the Data Manager;

– User Interface, which interacts with the user and controls the opened windows;
– Performance Consultant, which searches for bottlenecks and performs the communi-

cation between Data Manager and User Interface;
– Paradyn Daemon, which is the tool’s back-end, being in charge of the initialization

and control of the application processes. It is also in charge of their instrumentation and
measurement.

3 Dynamic loop instrumentation

The dynamic loop instrumentation is a refined method for instrumenting code at execution
time. Its goal is to offer a more accurate analysis of program bottlenecks. This instrumenta-
tion is based on Paradyn, taking advantage of the whole trampoline constructions that are



Fig. 1. Paradyn Standard Structure

already present in that tool. Although Paradyn provides a reasonable framework for loop
instrumentation, there are several implementation problems that have to be solved in order
to enable loop instrumentation. The following paragraphs describe such problems and their
solutions.

Measurement’s granularity
The choice of loops as a measurement grain derives from two aspects: the binary code

organization and the performance issues of structural blocks. The former implies that only
certain blocks can be instrumented. Formally, automatic instrumentation can be performed
only at points where it is possible to determine the exact instructions that are the block’s
entry or exit points, restricting the choice to decision branches and loops. The latter one
excludes decision branches, since they usually represent small amounts of sequential process-
ing. Loops, on the other hand, are typically time consuming blocks and strong candidates
for being bottlenecks. Therefore, the granularity for block instrumentation is restricted to
the loop level.

Loop identification
As defined in the previous paragraph, a major problem in the instrumentation of inner

blocks, such as loops, is the exact determination of entry and exit points. In any assembly
language a loop can be characterized by one branch instruction pointed to some previous
address, when compared to the address of the branch instruction. Therefore, the approach
to find loops inside a function is to analyze the whole function’s code and gather all branch
instructions addressed to lower addresses. It is important to say that few situations, created
by code obfuscation, would cause the identification of false loops. These situations are not
relevant since their measurement will never indicate a bottleneck, representing only a small
waste of instrumentation time.

Although the loop identification may be thought of as a simple process, there are some
subtle differences among loops that can be detected. The loops that can be differentiated
are:

– Single Loops - The loop’s body does not contain other loops and is constrained by the
addresses of the branch instruction and its target.



– Nested Loops - This loop contains inner (nested) loops. It is constrained by the addresses
of the branch instruction and its target but have other pairs of such addresses inside its
body (inner loops limits). Inner loops are defined as sons of the outer loop, while pairs of
inner loops that do not have intersections are called brothers.

– Interleaved Loops - This appears when two loops share some portion of code but their
branch and target addresses are interleaved, not nested. Although these loops may not
be sons of an outer loop, they are also called brothers.

The identification and instrumentation of these loops imposes distinct actions from the
system. A single loop is easier to identify and to manage since it is a monolithic piece of
code. Nested loops are also easy to identify, although they demand the management of
a parenthood list, in order to clearly distinguish all relationships between inner and outer
loops. Interleaved loops, on the other hand, create several problems on their management,
since their entry and exit points are not structured. Interleaved loops are very rare, but when
found they are managed as a single unstructured loop by the instrumentation.

Hardware dependence
To accomplish the loop identification it is necessary to have access to the program instruc-

tions. Paradyn enables this access through a binary image of the code and its symbol table.
Paradyn modules can read these images, decode the assembly instructions (using processor
specific libraries), and perform the given instrumentation.

Fig. 2. Branch instruction format for the Sparc processor family.

The identification of branch instructions is performed through pattern matching for
branch-like instructions, such as those for the Sparc architecture [10,15] given in figure 2.
If the instruction is identified as a branch, the system determines its target address. If the
target is a previous address, inside the function, there is a loop in this point.

Identification of instrumentation points
Every time that a loop is identified, it is inserted into a binary tree structure. The loop’s

start and end addresses, which are the keys for indexing, are stored in one node of that tree.
These addresses, however, may not be the unique entry/exit points in the loop. In the binary
code there could exist distinct branch instructions going outside the loop as well as entering
the loop. All of these branches must be addressed as possible instrumentation points and,
therefore, stored in the associated loop’s node.

A distinct exit/entry point occurs at function calls inside a loop. One has to differentiate
such points since the measured execution time for the loop should not include the time spent
on the execution of the called functions. This approach follows the one used to measure
the function’s time, which also does not include the time spent on functions called from the



function body. Indeed, both approaches have to be the same in order to make the comparison
between loop and function durations something meaningful. Therefore, it is mandatory to
stop the measurement before calling a function and restart it upon its return. These points
are also marked to be instrumented.

Displacement correction
The instrumentation points must be identified before actual instrumentation since all dis-

placements in branch instructions must be recalculated, in order to accommodate the in-
structions inserted by the instrumentation. The new displacements are calculated by the
composition among the number of instrumentation points that have to be inserted between
the branch and its target and the size of each instrumentation point. This procedure is carried
out for every branch inside the function that contains the instrumented loop.

A different problem is raised by some function calls in a few specific processors. If the
call is made through a static address (set from the symbol table), the target remains the
same and no modification has to be made. However, some processors, as the Sparc, provide
the address of the called function by a displacement between the current address and the
function address. In this case, this displacement must be recalculated since the address of
the “call” instruction was moved by the instrumentations.

Instrumentation code
The actual loop instrumentation occurs through the insertion of calls to library functions

that start or stop the time measurement. These functions use shared variables in order to
provide the timing date for the Paradyn modules. The basic code of instrumentation, for
Sparc processors, is shown in figure 3.

Fig. 3. Basic code of an instrumentation point.

All instrumentation must be carried out carefully, specially for function calls inside the
loop and eventual modifications in the order of execution made to improve pipelines perfor-
mance [6]. Each different situation implies distinct approaches to instrumentation codifica-
tion. There are six types of instrumentation:

– STD IN - inserted in the loop entries and after function calls, starting the measurement;
– STD OUT - inserted in the loop exits and before function calls, stopping time measure-

ment;
– FUNC IN - inserted at the entry of a function, being similar to STD IN, but starting the

measurement of that function;



– FUNC OUT - inserted at the end of function, also similar to STD OUT, but finishing
the timing of the function;

– OTHER IN - inserted before branches which are additional loop entries, and adds code
to prevent starting the instrumentation if the branch will not change PC value to the
loop body;

– OTHER OUT - inserted before branch instructions which are considered additional loop
exits, adding code to prevent its execution in case the branch will not move to an address
outside the loop.

Data collection
In order to get statistically valid timings it is necessary to collect several samples of loop

execution times. The criteria used for data collection is to postpone the actual collection
until the system reaches an observation limit and the execution is guaranteed to be outside
the loop. This approach avoids one sample (the current one) becoming meaningless since it
was interrupted before its actual finish.

Communication and integration with Paradyn
The integration with the original modules of Paradyn is performed through RPC calls.

This method of communication is originally used in Paradyn and was slightly modified to
accommodate loop information.

Since Paradyn analysis stops at function bottlenecks, the loop instrumentation is triggered
only for those loops that are inside bottleneck functions, avoiding processing overheads while
instrumenting lightweight functions.

Function relocation
As stated in the previous paragraphs, the instrumentation consists on inserting additional

code into the function containing the loop under analysis. This task cannot be done inside
the same address space used by the function. To circumvent this problem Paradyn uses
trampolines for relocated functions, which have the effective instrumentation.

Therefore, the whole process of instrumentation occurs in a different address space,
through the creation of an instrumented version of the function. This new function is reached,
during program execution, by a branch targeted to its address. This branch instruction re-
places the first instruction in the function’s original address space, as seen in figure 4.

At the end of the time measurement, the original code of the function is restored and the
relocated space is returned as free memory space. This enables future function relocations
without expending too much memory.

4 Tests and results

The validation of loop instrumentation was performed through tests aimed to check the
correctness of:

– Loop identification;
– Instrumentation point;
– Measurement accuracy.



Fig. 4. Code Relocation

These tests are described in the following sections. For each aspect a small test was
conducted, where the program under analysis could be easily controlled and verified. For
sake the of simplicity, only these tests are presented here.

4.1 Loop identification

This verification consisted in building a sample code, containing several loops, and checking
by hand if they were correctly identified by the program. One of such test codes is shown in
figure 5, where there are several nested loops and a separated single loop. Although they do
not appear in this example, interleaved loops were built with the use of goto’s and were also
successfully tested.

Fig. 5. Algorithm code for loop identification



The conducted tests produced outputs such as shown in figure 6, for the source presented
in figure 5. Each line of this output presents loop’s initial and final addresses. The line
indentation represents the nesting level among each loop.

The addresses of each loop were verified, by hand, with the logical addresses of the actual
loops, as read from the disassembled code. In all tests the loops were accurately identified.

Fig. 6. Output of loop identification

4.2 Instrumentation points

In order to check for the correctness of the instrumentation points, the tests also used small
programs and produced outputs containing the disassembled instructions of each instru-
mented loop. The representation of such outputs is very awkward, since they are quite large,
even for small programs.

Verification was also made through manual inspection of the neighborhoods of call and
branch instructions, as well as the recalculated displacements for their targets. The results
were also very accurate.

4.3 Measurement accuracy

The previous validations (loop identification and instrumentation points) only assured that
Paradyn was doing exactly what it was expected from it. The effectiveness of the loop
measurements was not an issue when performing such tests.

To accomplish accuracy tests several benchmarks were conducted, measuring program
execution times with the loop instrumentation done by the modified Paradyn. These mea-
surements were compared to conventional benchmarking using Unix timing primitives.

A sample case appears in figure 7, that shows an algorithm of a part of the program used
in the benchmarks presented here. In such simple algorithm there are three loops. Two of
them are nested, while the third one appears later in a single structure.

The results achieved during the tests enabled the verification that the loop instrumen-
tation is quite accurate, as shown in table 1. There, columns 2 and 3 show times measured
with loop instrumentation, while column 5 shows times measured with Unix timing primi-
tives. Column 4 shows the percentage of the function time that each loop consumes, which
is the starting point to identify bottlenecks. From this table it is possible to notice that the



Fig. 7. Algorithm code for measurement times

error rate is lower for larger loops (less than 1%) than for smaller loops (up to 20% for very
small loops). This is not a problem since the Paradyn’s goal is the identification of execution
bottlenecks, and small, fast, loops are not real candidates to be a bottleneck.

Table 1. Comparative times (seconds) between instrumented and Unix measurements.

Loop Function duration Loop duration Percentage of function duration Unix clock Error (%)

1st for 9.683207 9.667192 s 99.83 9.720000 s 0.54
Nested 9.744907 9.727158 s 99.82 9.640000 s 0.90
2nd for 9.603596 0.016026 s 0.17 0.020000 s 19.9

The difference between the times measured by Paradyn for the nested loops is due, mostly,
to instrumentation interferences and the distinct results in the measurement of function
duration, which has to be performed again for every loop. These differences are not a problem,
since the goal is the bottleneck identification. From this perspective, the modified Paradyn
could correctly identify the “Nested” loop as the real bottleneck, since it could be accounted
for much more than half of the “1st for” (actually it can be accounted for almost the whole
duration of the “1st for”).

5 Conclusions

The dynamic implemented loop instrumentation expands the functionalities of Paradyn’s
performance analysis. Although its original version achieves a good accuracy, reducing the
granularity of measured blocks to the loop level is essential in the search for the real bot-
tlenecks in the program. This would provide enough information to automatize some code
optimization procedures, which could be later attached to Paradyn.



Such improvements in performance analysis tools are highly desirable since the amount of
processing power and storage demanded by modern applications is rapidly rising. These new,
high performance applications, are written by programmers that are not completely aware of
the rules for efficient parallelization and probably are not experts on performance analysis.
This makes it necessary that the analysis tools, such as Paradyn, become as automatic as
they can be, including the choice for metrics or instrumentation levels.

Finally, the results achieved with loop instrumentation clearly show its efficiency. As
previously stated the optimizations made over the identified bottlenecks should imply on
sharper improvements of the program’s performance.

Besides the interesting results already achieved, some new improvements may be added
to Paradyn, such as:

– Implementation of techniques that enable automatic optimizations of the bottlenecks
identified during the program analysis;

– Automation of the determination of the time spent inside the instrumentation, in order
to have a more accurate value for code intrusion in each loop;

– Optimizations of the measurement and data collection functions;
– Modifications in the Paradyn’s interface in order to accommodate the growth in the

number of visual nodes by the loop instrumentation.

Acknowledgments

The authors must acknowledge FAPESP, that supported this research through grants (04/01340-
0) and individual scholarships. They also have to thanks several people at Paradyn’s group,
specially Philip C. Roth, Eli Collins, and Matthew Legendre, who were always ready to
answer configuration and implementation questions.

References

1. B. Buck and J. Hollingsworth. An api for runtime code patching. In The International Journal of High Perfor-
mance Computing Applications, pages 14(4):317–329, 2000.

2. L. DeRose and D. Reed. Svpablo: A multi-language architecture-independent performance analysis system. In
In Proceedings of the International Conference on Parallel Processing (ICPP), Sept. 1999.

3. J. Gyllenhaal and J. May. Toolgear web page, http://www.llnl.gov/casc/tool gear/. In Lawrence Livermore
National Laboratory, Last accessed May, 2006.

4. T. Hoover L. DeRose and J. Hollingsworth. The dynamic probe class library | an infrastructure for developing
instrumentation for performance tools. In In Proceedings of the 15th International Parallel and Distributed
Processing Symposium, Apr. 2001.

5. J. Gyllenhaal M. Schulz, J. May. Dyntg: A tool for interactive, dynamic instrumentation. In Lecture Notes in
Computer Science, Volume 3515, pages 140 – 148, Jan 2005.

6. M. M. Mano. Computer System Architecture. Englewood Cliffs, NJ: Prentice Hall,p. 310-319, 3nd ed edition,
1993.

7. B.P. Miller. The Paradyn parallel performance measurement tool. IEEE Computer, vol.28, n.11, p. 37-46, 1995.
8. PMaC Performance Modeling and Characterization. Metasim web page,

http://www.sdsc.edu/pmac/metasim/metasim.html. In San Diego Supercomputer Center, Last accessed
May, 2006.

9. B. Mohr and F. Wolf. Kojak - a tool set for automatic performance analysis of parallel programs. In In Proceedings
of the International Conference on Parallel and Distributed Computing (Euro-Par 2003), pages 1301–1304, Aug.
2003.

10. R. P. Paul. Sparc Architecture, Assembly Language Programming, & C. Prentice Hall, 1994.



11. J.F. Reiser and J.P Skudlarek. Program profiling problems and a solution via machine language rewriting. In
ACM Sigplan Notices, vol. 29, n.1, pages 37–45, 1994.

12. S. Sahni and V. Thanvantri. Performance metrics: keeping the focus on runtime. IEEE Parallel and Distributed
Technology vol. 4, n.1, p. 43-56., 1996.

13. S. Shende and A. D. Malony. The tau parallel performance system. In Submitted to International Journal of
High Performance Computing Applications, ACTS Collection Special Issue, 2005.

14. V. Sunderam T. Ludwig, R. Wismuller and A. Bode. Omis | on-line monitoring interface specification (version
2.0). In volume 9 of LRR-TUM Research Report Series. Shaker Verlag, Aachen, Germany, 1997.

15. D. L. Weaver and Germond T. The Sparc Architecture Manual. Englewood Cliffs, NJ: Prentice Hall, version 9
edition, 1994.

16. J. Yan, S. Sarukkai, and P. Mehra. Performance measurement, visualization and modeling of parallel and dis-
tributed programs using the aims toolkit. Softw. Pract. Exper., 25(4):429–461, 1995.


