
Development of a marked structure for traces of parallel and distributed
systems

Diogo T. da Silva, Aleardo Manacero, Renata S. Lobato, Denison Menezes and Roberta Spolon
Computer Science and Statistics Dept

Paulista State University - UNESP
Rio Preto, Brazil

Email: tavareko@gmail.com, aleardo@ibilce.unesp.br

Abstract
The evaluation of high-performance systems, including
grids, depends strongly of the workload applied during
benchmarks or simulations. This is more evident with
simulations, where the workloads may be created either
by random loads or trace files. Although several models
for generating random workloads have been proposed,
trace files are the only form to assure reproducible simu-
lations. Unfortunately there are very few trace files avail-
able in workload databases, and most of them have not
been well maintained. Other problems include missing
data fields and a structure for the data that is not easy
to read and collect. Here we present a framework that
allows the creation of trace files in which data is marked
through XML tags, making easy their reading, and also
provides front-end converters for some of the trace pat-
terns found in the literature. It also can be used to col-
lect traces from grid simulations performed in iSPD, a
grid simulator based on iconic modeling, allowing for the
reuse of the simulated workload and the filling of miss-
ing data. We present results with an implementation of
this framework for iSPD, where we achieved smaller
trace files and computing costs, even with the addition
of markups. These results indicate that this approach
could create a stronger pattern for workload trace files.

1. INTRODUCTION
High performance computing applications have be-

coming more and more pervasive. In recent years sev-
eral different approaches to achieve high performance
have been deployed and in use. One of such ap-
proaches is through grid computing, which is justified
by the reduction in ownership costs over a large sys-
tem. Unfortunately grid systems have issues with the
granularity of computation, communication costs and
job scheduling. All these problems imply in the need of
performance evaluation techniques in order to verify the
efficiency of the system while executing a given set of
jobs, or workload.

It is an established fact that performance evaluation
depends strongly on the quality of the workload ap-

plied to the system during the measurement process.
It should be noted that this dependency is even greater
when simulation is used to produce performance data.
Usually simulators use two forms of workload gener-
ation: random loads and trace files. Although the use
of random loads have to be done with care, in order
to truly map what the system executes, and the non-
deterministic nature of random generation, there are
solid results indicating which distribution functions are
more adequate to some scenarios, allowing interesting
results from its application.

On the other hand, trace files may produce a more ac-
curate result. They are more indicated in cases where
the execution profile is already known, and where the
analyst is interested in repeating the same scenario un-
der different system configurations. The problem is how
to obtain a verifiable trace and how to have a standard
approach to read traces from different sources.

Although there are few attempts to solve those is-
sues, it still difficult to have easily available traces when
grids are involved. Most of the initiatives in this direction
do not last long enough, being discontinued as soon as
funding stops or their creator moves to another job. Be-
sides the lack of funding may be a strong reason for
discontinuity, other major problems are the lack of stan-
dards and the lack of traces themselves. All these fac-
tors act together against the consolidation of these trace
sources.

In this paper we propose a framework for trace files
through the creation of a standard based in XML tags.
The use of tags lead to easily readable traces, which fol-
low a well structured organization pattern. The inclusion
of format converters and the capability of creating traces
from simulation makes this framework a quite complete
solution for the creation and management of workloads
for grid simulation.

In the remaining text we provide an introduction to
the basic tools used in this work, including the simulator
used to create and evaluate the traces, and some trace
databases used to collect samples. We follow that with
the modeling of our framework, including its implemen-
tation, tests and conclusions.

140



2. RELATED WORK

In recent years there are few attempts to provide a
reasonable standard for trace files containing grid work-
loads. These attempts came from previous proposals
of traces for clusters and other parallel environments,
adding some fields that could be of interest while eval-
uating grids. Unfortunately, these initiatives are not be-
ing fully exploited, being restricted to certain niches in
space and time. We now describe some of them.

Zhao, Shao and Yang [15] presented a study on grid
traces, showing how the data can be collected and ana-
lyzed. They also included few areas where those traces
can be applied, such as anomaly detection, workload
prediction, or simulation. However, their work is not fully
described and the tests are somewhat simplified.

Iosup et all [5, 6] structured the format for GWF in
a study identifying characteristics of grid environments
through the analysis of four grid samples. As already
stated, there are very few trace files publicly available
using GWF format and most of the data is missing, in-
cluding data about communication costs, which are es-
sential in grid environments.

Kondo et all [8] presented a study with desktop grids.
They showed the methods to retrieve data from those
grids and to build traces with this data. They also pro-
vided workload characteristics extracted from four desk-
top grids, but do not indicated any format for traces.

A distinct approach is given in [14], where they were
concerned with the inclusion of confidential data in the
traces. They proposed an obfuscation technique to pro-
tect private information logged in traces from Google’s
clusters.

Different trace formats have also been proposed for
distinct applications. One of these trace formats has
been proposed by Alawneh and Hamou-Lhadj, estab-
lishing MTF, which is a format for internal eventos of MPI
programs [1]. Another recent effort was the proposal of
a format for online multiplayer games, the GTF, by Guo
and Iosup [3].

In another direction, some works dealt with the use
of grid traces in grid simulators. Such works include
DGSched [2], Alea [7], GSSIM [9] and GroudSim [12].
DGSched uses traces to evaluate scheduling policies
for desktop grids. The other three simulators use traces
in SWF and GWF formats, except GroudSim, that uses
only GWF files. GSSIM is also capable of reading addi-
tional characteristics from an extra input file. However,
as GWF they also suffer from the lack of data availabil-
ity.

3. BACKGROUND
As previously stated, workload traces for grid com-

puting are not easily available. A reasonably referenced
trace standard is GWF (Grid Workload Format) [6],
which is a follow-up of SWF (Standard Workload For-
mat) [13]. We will describe both formats before describ-
ing iSPD (iconic Simulator of Parallel and Distributed
systems) [11], which is the simulation platform modified
to evaluate our proposal.

3.1. Traces of high performance applica-
tions

Trace files store data that collected by monitoring rou-
tines during the execution of a given workload by a given
system. Different approaches to collect this data result
in different formats for trace files. Besides these differ-
ences, the relevance of trace files for simulations is not
questionable. Zhao [15] reinforces this for the simulation
of computer grids, where a controlled and accurate ap-
proach for simulation is needed in order to evaluate new
methods and algorithms for the management of grid ap-
plications.

Some attempts to provide trace files of grid applica-
tions have been made. Unfortunately, few of them have
characteristics that would be useful for most of the an-
alysts interested in grid evaluation. Common problems
include lack of documentation, lack of samples and lack
of maintenance. Two of such traces, called SWF (Stan-
dard Workload Format) and GWF (Grid Workload For-
mat), are presented here due to their fair use in known
simulators.

Standard Workload Format SWF [13] is maintained
by PWA (Parallel Workloads Archive) and is formatted
as an ASCII file, where each line corresponds to a job in
the workload. Each job is described by 18 fields, where
the main ones include:
– Job number: that can be used as its identifier;
– Submission time: which is the instant of job submis-
sion, measured in seconds from the first job;
– Waiting time: represents how much time, in seconds,
the job waited before its execution actually started;
– Execution time: duration of the job execution in sec-
onds;
– Job status: provides information about the job, in-
cluding failures, partial execution, cancel requisitions
and successful conclusions;
– User ID: an integer identifying the user who submitted
that job.

141



Grid Workload Format GWF [6] is an extension to
SWF, aiming traces created in grid environments. In
GWF a job is represented by a single line with 29 fields,
most of them kept as SWF. The major differences in-
clude:
– Submission time: changed to represent the instant,
in seconds, from a global clock;
– User ID: changed to a string, instead of an integer;
– Used network: measured in kilobytes/s, representing
the amount of communication used by that job.

Unfortunately, there are very few samples of GWF
traces publicly available in the web, even with GWF be-
ing the most referenced source for grid traces. Another
drawback is that the samples do not carry much infor-
mation about network traffic, which should be an impor-
tant information to simulate grids. Besides these incon-
veniences, this standard for traces will be used as start-
ing point for our approach.

3.2. iconic Simulator of Parallel and Dis-
tributed systems - iSPD [11]

Grid trace files are useful if they can be simulated.
We will use a grid simulator named iSPD (iconic Sim-
ulator of Parallel and Distributed systems) to evaluate
the usability of our proposed model. iSPD is a simu-
lation platform based on iconic modeling, allowing the
creation of grid models, including meta-schedulers, us-
ing just an iconic interface. Its easiness of use, and code
availability (open-source), allows to perform all tests in
the traces created following our, or anyone’s else, ap-
proach. The necessary modifications are related to the
process of reading and writing trace files. The iSPD’s ar-
chitecture is shown in Figure 1, where it is important to
see the iconic interface (model creation), the scheduler
generator and the simulation engine (queueing system).

Figure 1. iSPD architecture

The modifications introduced in iSPD’s code allowed
the reading of a trace file and the writing the trace of
the simulation as an output file. These modifications are
described in the next section.

4. THE WORKLOAD MODEL FOR SIMU-
LATION - WMS

Current sources for grid workload traces suffer from
several problems, such as lack of samples and not
enough information about the workload. One example
of such omission (in the samples found) is the lack of
data about communication delays in the grid, although
the trace format reserves fields for that. Missing data
becomes worse when one tries to identify which data is
present or not. In SWF and GWF missing data is identi-
fied by a “-1” in the field, but this may become confusing
as it is shown in Figure 2, containing few lines of a typ-
ical GWF file1, where one can see that there are many
fields marked with a -1.

Even if all data were present, it is possible to assume
that a human analyst will have trouble to recognize each
data field. It is very easy to get confused by those fields,
even more if one remembers that these traces are com-
posed by a sequence of thousands of lines with several
unidentified fields.

Figure 2. Part of a GWF trace file

In order to minimize the problems with readability we
propose a new pattern, using XML to create tags iden-
tifying each field. With WMS (Workload Model for Sim-
ulation) we can have a well structured trace, where hu-
mans may easily find which fields are relevant to them.
The use of marking tags make easier to write routines
to read information from the traces, as well as to write
new traces, allowing to maximize the number of avail-
able traces.

The tags can be defined through a DTD (Document
Type Definition) or XSD file, making easier to build
parsers that read the marked trace since there are
several tools and libraries available to perform such
actions. An initial version of the DTD (seen in Figure
3) included information observed in different trace files.
We do not include all possible information because
most of them are not widely available and, even
when present in the trace format, the samples do not
have actual results for them. Therefore, we included
in WMS just information appearing in all relevant for-
mats. The fields in WMS format, including their tags are:

– Job Id: marked by the tag "id", containing an
integer to identify the job number;
Job status: marked by the tag "sts", indicating the

1This image was reduced in order to fit a single line in a single
column text.

142



state (crash (0), successful conclusion (1), preemption
(2), conclusion of preempted job (3), crash of pre-
empted job (4), and cancelation (5)) of a given job;
Computing size: marked by the tag "cpsz", contain-
ing a positive real number that represents the amount
of MFlops needed to conclude the job;
Communication size: marked by the tag "cmsz",
containing a positive real number that represents
the amount of Mbytes that have to be transferred to
conclude the job;
Job owner: marked by the tag "usr", indicating what
user submitted the job through an alphanumerical
string;
Submission time: marked by the tag "arr", contain-
ing a positive integer that represents the instant, in
seconds relative to the first submission, when the job
was submitted.

A file in WMS pattern has two elements: a definition of
its original format, and a list of jobs (the workload). For
the "format" element the attribute "kind" indicates
the original format for that trace, which currently can be
SWF, GWF and Simulator.

Figure 3. DTD for conformity verification in WMS

It is important to notice a characteristic present in
WMS that does not appear in other patterns for trace
files. We include in it a field to state the original format
for the trace, allowing to build WMS files from different
trace formats and from actual simulations. We used this
feature to fill in simulated data to actual traces with miss-
ing fields.

The parsing procedure for SWF and GWF is simple,
consisting basically in identifying the original source and
reading it line by line. For each fetched line it needs to
identify the content, which can be a comment/blank, a
job description or the EOF (End of File) marker. It dis-
cards comments or blank lines, retrieving the relevant
fields of each job description. The whole process can
be easily replicated to any other trace format.

4.1. Simulating real workloads using
WMS traces

The existence of a trace file can be justified only by its
use in the simulation of similar systems. Therefore, af-
ter creating a WMS file it is necessary to use it in a grid
simulator, as done with iSPD. We choose this simulator
because it is open-source, capable of running traces,
and have a graphical interface to build grid models. Be-
sides that, it must be observed that WMS can be read
using similar parsers for other grid simulators, such as
GridSim or Simgrid.

Reading a WMS file for a simulation is also a simple
process. All necessary fields in a WMS file are conve-
niently marked by XML tags, as shown in figure 4. The
reader has to collect the data for each job (one per line),
inserting that as one event in the events queue.

Figure 4. Part of a WMS trace file, with the relevant
data for iSPD

For iSPD the meaningful elements in each job are:
– Job ID: receives the value of the "id" attribute;
– User: receives the "usr" attribute;
– Communication cost: should receive the amount of
communication demanded by the job from the "cmsz"
attribute. In traces where it is missing, its value is gen-
erated through a two-stage uniform distribution [10];
– Computing size: receives the value of the "cpsz"
attribute (in seconds), converting it to MFlops (as load
is considered in iSPD) considering the average comput-
ing power of the modeled grid;
– Submission time: receives the "arr" attribute.

4.2. Creating simulation workload traces
Since SWF and GWF traces do not contain data

about communication, it would be useful to generate
such data in the trace files. To perform such task it is
necessary to create simulation logs containing tracing
data. These logs, if obtained from runs using traces
from real workloads, would have computation times
from real systems and communication costs coming
from simulated data. Although the data would not be
completely real, they would provide a better workload if
the grid was reasonably modeled.

With iSPD this can be done simply running simula-
tions using WMS files with real trace data. Another ad-

143



vantage on adding this feature to WMS’s framework is
the capability of saving simulation traces to be used as
workload for a different configuration for a grid. With this
feature, the analyst can perform as many modifications
in the system and compare their performance under the
same simulated workload.

5. EVALUATION OF WMS
In order to evaluate the efficiency of the proposed

pattern and its associated framework we conducted
two type of tests: evaluation of computing costs to cre-
ate WMS files and verification of the usability of WMS
traces. They are described in this section.

5.1. Cost to create WMS traces
The proposal of a new pattern for traces implies in

the desire for conversion of traces from different formats
to the new format. This enables the use of previously
collected data, avoiding to start a new traces database
from scratch. The evaluation of this procedure can be
made looking at two aspects: time spent on conversion
(time cost) and size of resulting file (space cost).

We evaluated the conversion of SWF and GWF files
to WMS format using a desktop running Windows 7 and
JVM, with 4 Gbytes of RAM and an Intel i5 processor.
The results achieved are presented now.

Conversion of SWF traces We selected some of the
files available on SWF website. The selection criteria
aimed for variety in volume and stored timespan. The
traces collected were:
NASA.swf: contains data about jobs executed in
NASA’s iPSC/860 hypercube, with 128 nodes. The data
includes runs from October to December of 1993;
LANL.swf: contains data from runs in the LANL’s
CM-5, with 1024 nodes. Data was collected between
October of 1994 and September of 1996;
SDSC.swf: contains data from SDSC’s 144 nodes IBM
SP, in the period between April, 2000 and January,
2003;
RICC.swf: contains data from RICC’s project (Riken
Integrated Cluster of Clusters, in Japan), in runs be-
tween May and September of 2010;
SHARCNET.swf: contains data from SHARCNET’s
grid (with 10 clusters from Canada), taken between
December 2005 and January 2007.

The results achieved with the sample files are sum-
marized in Table 1. From there it is possible to see that
the sizes of WMS files are about 80% of the space used
by SWF files. This is a direct result of the exclusion of

Table 1. Conversion times and resulting file size with
conversion of SWF to WMS files

Trace Original WMS Number Conversion
name size (MB) size (MB) of jobs time (s)
NASA 1.6 1.3 18239 0.5
LANL 10.8 9.1 122060 2.9
SDSC 21.4 18.3 243314 5.1
RICC 40.4 33.6 447794 9.4

SHARCNET 109.0 91.2 1195242 26.0

fields with missing data or carrying information not sig-
nificant. A curve for the time spent in the conversion by
the amount of jobs in the trace is shown in Figure 5. It is
noticeable that the time spent in this task grows linearly
with the number of jobs. A final remark is that the con-
version took only 26s for the largest trace (109 MB and
1.2 million jobs).

Figure 5. Conversion time as function of number of
jobs in the SWF trace

Conversion of GWF traces The providers of GWF
(Grid Workloads Archive - GWA) offer five trace files in
their site [4]. From this sample we choose three traces
that have significant differences in size. They are:
AUVERGRID.gwf: data from five clusters in a grid in
Auvergne’s region (France);
NORDUGRID.gwf: data from the Nordugrid grid (north-
ern Europe, comprising several organizations);
DAS-I.gwf: data from the DAS-2 grid (Netherlands,
linking five academic institutions).

The results are presented in Table 2, where one can
see that the files in WMS requires less than 50% of the
original files space. This happens because GWF traces
record several fields that usually have invalid data and
were discarded in the WMS model.

The time spent converting GWF files is a little higher
than what was observed with SWF. This confirms our
expectations, since GWF files have more information to
be retrieved and managed during conversion. On the

144



Table 2. Conversion times and resulting file size with
conversion of GWF to WMS files

Trace Original WMS Number Conversion
name size (MB) size (MB) of jobs time (s)

AUVERGRID 47.1 26.0 404176 10.5
NORDUGRID 131.0 58.4 781370 21.7

DAS-I 205.0 78.7 1124772 34.8

other hand, the computation cost is also linear with re-
spect to the number of jobs in the trace, as shown in
Figure 6.

Figure 6. Conversion time as function of number of
jobs in the GWF trace

5.2. Using WMS files for grid simulation
In order to verify the feasibility of WMS files for sim-

ulations, we applied different traces to a grid model.
We also used different schedulers to verify how a given
workload is impacted by the scheduling policy.

The simulated grid, shown in Figure 7, is composed
by one node acting as meta-scheduler (the icon marked
as 0) and nine working nodes. The working nodes
(slaves) were configured as having 50,000 MFlops of
computing power each, except the nodes marked by
icons 7 and 8, which have 150,000 MFlops. The com-
munication links have a bandwidth of 100 Mbps, includ-
ing the public network (icon 24). We simulated its oper-
ation under the following scheduling policies:
– Round-Robin: it is a static policy, not requiring infor-
mation about nodes during the job execution. It sim-
ply allocates and dispatches jobs evenly for all working
nodes, at its submission time.
– Workqueue: it is also a static policy, but it does the
allocation and dispatch of the submitted job to the next
available working node only when the node becomes
idle, being very similar to the bag-of-tasks model.
– Dynamic FPLTF (Fast Processor to Largest Task
First): it is a dynamic policy, requiring frequent updates
about the status of all nodes. As it name indicates, it
allocates the larger jobs to the available processor that

Figure 7. Modeled grid

has the highest computing power.
The simulations were performed using NASA’s

("NASA.wms") and Auvergrid’s ("Auvergrid.wms")
trace files. The choice for them aimed the use of traces
with very different sizes and characteristics.

∙ Results from NASA’s trace

The results achieved with these schedulers for
NASA’s trace are presented in Table 3, including the
metrics for processing and bandwidth ociosity (idle
time). The time spent to execute NASA’s load was basi-
cally the same for all policies. The differences appear in
the amount of resources that are not used for process-
ing, with the dynamic scheduler using almost 10% less
computing power than the static algorithms. The com-
munication channels were left almost unused because
the original trace did not provide any information about
this and we tried to not overly disturb the system.

Table 3. Output metrics for simulated schedulers using
NASA.wms trace

Scheduling Simulated Processor’s Communication
policy time (s) Idle time (%) Channel Avail.(%)

Round-Robin 7.9538e+06 76.3427 98.9820
Workqueue 7.9539e+06 78.4083 99.0194
DynFPLTF 7.9492e+06 85.3618 97.9667

Figure 8. Distribution of NASA’s workload allocation
among nodes for Round-Robin policy

145



The differences between these scheduling policies
can be better seen when we analyze which nodes pro-
cessed the workload. We present here only results for
the Round-Robin (Figure 8) and Dyn-FPLTF (Figure 9)
since they have the largest difference. It is clear from
Figure 8 that Round-Robin tried to allocate jobs evenly
to the nodes. With Dyn-FPLTF (Figure 9) the allocation
strongly goes to nodes Slave 7 and Slave 8 because
they are three times faster than the remaining nodes in
the grid.

Figure 9. Distribution of NASA’s workload allocation
among nodes for Dynamic FPLTF policy

∙ Results from Auvergrid’s trace

For Auvergrid’s trace the results were quite differ-
ent, showing a smaller difference among Workqueue
and Dyn-FPLTF, as shown in Table 4. This happened
because the modeled grid was much less powerful
than Auvergrid’s hosts, implying that the modeled grid
had to compute much longer, with very few idle times.
On the other hand, Round-Robin policy lasted almost
50% longer than the other schedulers due to its pre-
allocation procedure, which never balances the load.

Table 4. Output metrics for simulated schedulers using
Auvergrid.

Scheduling Simulated Processor’s Communication
policy time (s) Idle time (%) Channel Avail.(%)

Round-Robin 12.4870e+08 15.8515 99.8797
Workqueue 8.5894e+08 0.4979 99.8362
DynFPLTF 8.5425e+08 0.0702 63.2229

The distribution of the load among nodes was also
less remarkable due to the system’s overload. Figures
10 and 11 show pie-charts describing how much load
each node processed for Round-Robin and Dyn-FPLTF
respectively. It is clear from these figures that Round-
Robin still allocated jobs evenly to the nodes, while Dyn-
FPLTF tried to use nodes slave 7 and slave 8 more in-
tensely, although the difference is smaller now.

Although not presented here, we executed several
other simulations. Such simulations included running

Figure 10. Distribution of Auvergrid’s workload alloca-
tion among nodes for Round-Robin policy

Figure 11. Distribution of workload Auvergrid’s alloca-
tion among nodes for Dynamic FPLTF policy

Auvergrid’s trace using a more powerfull grid, or run-
ning a larger trace (DAS). The results for these runs pre-
sented the same behavior shown by NASA’s trace. This
confirms the hypothesis that schedulers can have a bet-
ter performance if they can really act over the workload,
that is, if the workload is not excessive.

6. CONCLUSIONS
Some conclusions and remarks can be drawn from

our work. Initially, the concept of a marked trace file can
provide better utilization of traces from grid or similar
environments. Such files are more readable than con-
ventional traces, where information contained in long
data lines cannot be easily retrieved by a human an-
alyst. Also, they can be easily produced, by the addition
of the necessary tags before the data to be stored. Use
of XML tags also offers a pattern that is already present
in several other fields of computing, enabling the built of
simple parsers for the data in traces.

One additional conclusion about WMS format is that
the tag definition, associated with the possibility of sim-
ulating WMS traces, provide an interesting approach to
add information in traces with missing information. This
is relevant since the lack of information about some jobs
in the workload is more frequent than desired. Simulat-
ing such workload in a given modeled grid can provide
metrics for the missing data, which can the be applied
as workload in different grid models.

146



Last but not least, it is important to notice that sim-
ulations using iSPD could be performed quite easily,
with simple changes in the grid model. Other simulators
have similar capabilities, but its code availability pro-
vided more room to modify the process for reading and
writing trace files.

Concluding, we firmly believe that the use of marked
trace files provide an excellent approach to the creation
of broader workload databases. This can be assumed
because traces that can be read, and reviewed, by hu-
man eyes can be more trustable than traces containing
raw data.

Finally, the use of marking, including trace’s version,
allows the inclusion of other fields to WMS. Such fields
may include data concerning cloud computing, for ex-
ample. We are currently working in such expansions,
which could be done without much concerns to make
new parsers backward compatibles.

ACKNOWLEDGMENT
The authors would like to thank FAPESP for the

grants that partially allowed this work and to CNPq for
the undergraduate research scholarship.

REFERENCES
[1] Luay Alawneh and Abdelwahab Hamou-Lhadj. Mtf:

A scalable exchange format for traces of high per-
formance computing systems. In ICPC, pages
181–184. IEEE Computer Society, 2011.

[2] P. Domingues, P. Marques, and L. Silva. Dgsched-
sim: a trace-driven simulator to evaluate schedul-
ing algorithms for desktop grid environments. In
14th Euromicro Intl Conf on Parallel, Distributed,
and Network-Based Processing, PDP 2006, page
8 pages, 2006.

[3] Yong Guo and Alexandru Iosup. The game trace
archive. In NetGames, pages 1–6. IEEE, 2012.

[4] Grid Workloads Archive GWA. The grid
workloads archive home page. Available at
http://gwa.ewi.tudelft.nl/pmwiki, June 2012.

[5] A. Iosup, Catalin Dumitrescu, D. Epema, Hui Li,
and L. Wolters. How are real grids used? the anal-
ysis of four grid traces and its implications. In
Grid Computing, 7th IEEE/ACM Intl Conf on, pages
262–269, 2006.

[6] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu,
L. Wolters, and D.H.J. Epema. The grid workloads
archive. Future Generation Computer Systems,
24(7):672 – 686, 2008.

[7] Dalibor Klusáček and Hana Rudová. Alea 2 – job
scheduling simulator. In Proceedings of the 3rd In-
ternational ICST Conference on Simulation Tools
and Techniques (SIMUTools 2010). ICST, 2010.

[8] D. Kondo, G. Fedak, F. Cappello, A. Chien, and
H. Casanova. Availability traces of enterprise desk-
top grids. In Grid Computing, 7th IEEE/ACM Inter-
national Conference on, pages 301–302, 2006.

[9] K. Kurowski, J. Nabrzyski, A. Oleksiak, and
J. Weglarz. Grid scheduling simulations with
gssim. In Proc. of the 13th Intl Conf on Paral-
lel and Distributed Systems - Volume 02, ICPADS
’07, pages 1–8, Washington, DC, USA, 2007. IEEE
Computer Society.

[10] U. Lublin and D.G. Feitelson. The workload on par-
allel supercomputers: Modeling the characteristics
of rigid jobs. J. of Parallel and Distributed Comput-
ing, 63:2003, 2001.

[11] A. Manacero, R.S. Lobato, P.H.M.A. Oliveira,
M.A.B.A. Garcia, A.I. Guerra, V. Aoqui,
D. Menezes, and D.T. Da Silva. ispd: an iconic-
based modeling simulator for distributed grids. In
Proc. of the 45th Annual Simulation Symposium,
ANSS ’12, pages 5:1–5:8, San Diego, CA, USA,
2012. SCS.

[12] S. Ostermann, K. Plankensteiner, R. Prodan, and
T. Fahringer. Groudsim: An event-based simulation
framework for computational grids and clouds. In
Mario R. Guarracino et all, editor, Euro-Par 2010
Parallel Processing Workshops, volume 6586 of
LNCS, pages 305–313. Springer, 2010.

[13] Parallel Workloads Archive PWA. The
standard workload format. Available at
www.cs.huji.ac.il/labs/parallel/workload/swf.html/,
June 2012.

[14] C. Reiss, J. Wilkes, and J.L. Hellerstein. Obfus-
catory obscanturism: Making workload traces of
commercially-sensitive systems safe to release. In
Network Operations and Management Symposium
(NOMS), 2012 IEEE, pages 1279–1286, 2012.

[15] Ying Zhao, Gang Shao, and Guangwen Yang.
A survey of methods and applications for trace
analysis in grid systems. In Proceedings of the
The Third ChinaGrid Annual Conference (chinagrid
2008), CHINAGRID ’08, pages 264–271, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

147


