
A tool for model conversion between simulators of grid
computing

Gabriel C. Furlanetto
Paulista State University -

UNESP
Computer Science and

Statistics Dept, Rio Preto
gcovfur@gmail.com

Rafael S. Stabile
Paulista State University -

UNESP
Computer Science and

Statistics Dept, Rio Preto

Aleardo Manacero
Paulista State University -

UNESP
Computer Science and

Statistics Dept, Rio Preto
aleardo@sjrp.unesp.br

Renata S. Lobato
Paulista State University -

UNESP
Computer Science and

Statistics Dept, Rio Preto

Denison Menezes
Paulista State University -

UNESP
Computer Science and

Statistics Dept, Rio Preto

Roberta Spolon
Paulista State University -

UNESP
Computing Dept, Bauru

ABSTRACT
High performance computing systems usually have a
high usage cost, even with the use of shared systems,
such as grids and clouds. To reduce such costs it is
necessary to optimize system’s utilization through per-
formance analysis of one’s application. This can be
done through simulators designed specifically for perfor-
mance prediction/analysis, such as GridSim and Sim-
grid, among several grid computing simulators devel-
oped in the past years. Unfortunately, there is no com-
patibility between these simulators, making models de-
veloped for one of them unusable for the others. This is
even more problematic when one notices that the mod-
els for these simulators demand coding of several com-
plex functions, making model reuse hard to achieve.
In this paper we present an extension made to iSPD
(iconic Simulator of Parallel and Distributed Systems),
which is already an easy-to-use grid simulator, in or-
der to enable model conversions. With this extension
an user is able to read models written for GridSim or
Simgrid, converting them into the iconic models used by
iSPD. He/she is also able to convert iSPD models into
models for those simulators. The process of conversion
is discussed, showing the actions necessary to convert
the models. A comparison between the simulation of
models built using each simulator is presented.

Author Keywords
model reuse; model interoperability; iconic modeling;
grid computing simulation

ANSS 2015 April 12-15, 2015, Alexandria, VA
Copyright c○ 2015 Society for Modeling & Simulation International (SCS)

ACM Classification Keywords
I.6.7 SIMULATION AND MODELING: Simulation Sup-
port Systems

INTRODUCTION
High performance computing has been widely used to
solve problems of fields ranging from pure science to
commercial applications. Supercomputers have been
used to provide high performance for a long time [1], but
their high cost made a way to more affordable solutions,
such as sharing computing resources through com-
puter grids. Although more cost-effective, grids have
some constraints, such as communication latencies,
that make it hard to achieve performance with naive
solutions. Besides that, grid computing systems have
been largely used by biologists, physicists, chemists,
and other users that are not programming-literate.

To improve the performance of an application, a de-
veloper/analyst can make use of performance analysis
tools. Among these tools one finds grid simulators, such
as SimGrid [2], GridSim [3], GangSim [4], and iSPD [5].
The use of simulation is preferable because simulations
can be performed offline, avoiding the consumption of
grid resources to collect performance data.

A trouble with most simulators is that they demand
some programming effort from the person that uses it,
while creating a model for a grid/application. In fact, ex-
cept iSPD (iconic Simulator of Parallel and Distributed
systems), which is completely iconic, all simulators just
listed need some programming, either in C, Java, or
script languages, besides partial graphical interfaces.
This fact is a problem to most of the grid computing
users, who do not have a strong, frequently not even
a weak, programming knowledge. The development of
iSPD was driven towards these users.

Another issue with the effort needed in the modeling
process is that modifying a model is not usually simple.



Modifying, or reusing, models is interesting because
reuse typically reduces the amount of time needed to
model development, and to alternative evaluation, for
the system. Besides that, there are no simple mecha-
nisms that allow reuse of models built for the same sim-
ulator. This is even worse if one tries to reuse a model
built for a different simulator.

With iSPD, model reuse is simpler, since the models
are easily built with its iconic interface. We also added
a component that allows conversions from/to the major
grid simulators (GridSim and SimGrid, which have more
than 1,000 citations each (Google Scholar)). The moti-
vation for this is that there is already a large amount of
models built for those simulators, which could be reused
by iSPD users. Reusing a model is interesting because
one can make simulations starting with a model pre-
viously verified, being able to easily adapt it through
iSPD’s iconic interface.

In this paper we present how iSPD enables model reuse
and the results achieved with these conversions. In the
following sections, we first present an overview of Sim-
Grid, GridSim, and iSPD, before presenting the archi-
tecture for model conversions implemented in iSPD. Val-
idation tests for these conversions, and therefore, model
reuse, are also presented.

SIMULATORS OF GRID COMPUTING
One can find some simulators of grid computing in
the literature. Among them, the most referenced ones
are GridSim and SimGrid, both developed around year
2000. As already indicated, models built for one of them
cannot be used in the other, which can be seen as a
waste of resources. In the following paragraphs, one
finds the description of architectural aspects of GridSim
and SimGrid, as well as iSPD.

GridSim
GridSim was introduced by Buyya and Murshed [3] and
its current version is the 5.2 [6]. It was developed in
Java and has some interfaces enabling to partially build
models through graphical interfaces. Some of the mod-
eling has to be made by Java programming. Therefore,
a GridSim model is a set of packages in Java, describ-
ing the grid, the tasks and the meta-schedulers.

Among the features provided by this simulator, one finds
functions to manage node failures, time reservations,
and parallel tasks. It also permits modeling heteroge-
neous tasks, either CPU-bound or I/O-bound [7]. Other
extensions of GridSim include the support for data grids
[8], and a new tool, called CloudSim, to model cloud
computing [9].

It has a layered architecture. The first one is a basic
Java interface. Above it, one finds the discrete event
manager, which carries out the simulation. The third
layer contains tools to help the model creation. The
fourth layer contains models for the meta-schedulers

Figure 1. Main modules in iSPD’s architecture.

that will be used in the grid. Finally, the fifth level is con-
cerned with users, data input/output and the modeled
applications.

SimGrid
SimGrid was introduced by Casanova [2], being cur-
rently in the version 3.11.1 [10]. It was developed in C
and has an interface that enables the modeling of spe-
cific applications, such as P2P or MPI. To model grid
environments, the user has to write code in C, or Java
for part of the model.

Its features include the capability to model background
traffic and computation. It is also very interesting that it
can directly simulate MPI programs, which may be seen
as a consequence of having models built directly in C
language.

As GridSim, this simulator has also a layered architec-
ture. In SimGrid’s case, the layers appears as exten-
sions from previous versions, where new functionality is
added. In its current version it has three major layers: a
modeling layer, containing several components, a simu-
lation interface (SURF) and a model library for SURF.

iSPD
iSPD was introduced by Manacero et al [5], being cur-
rently in the version 2.0 [11]. It was developed in Java
and has an interface that allows for easy modeling of
grids, including the meta-schedulers. Its iconic interface
enables modeling hosts, clusters, communication links,
users, schedulers and a variety of BoT (Bag of Tasks)
workloads. Comparing to the other simulators, it offers
a better modeling interface, an equivalent accuracy, and
it is as fast as the faster ones.

It has a modular architecture, shown in Figure 1. Its
main modules include the modeling interface, the simu-
lation engine and the model converter. These and the
remaining modules are described next.

∙ Iconic interface: it provides a graphical interface for
grid modeling, providing an iconic process to create
models, including another module to visually create
meta-schedulers, if necessary.



∙ Simulation engine: it is the module in charge of cre-
ating a queue network, including service centers. It
also provides all the visualizations.

∙ Model interpreter: this module, which is the exten-
sion presented in this paper and it is shaded in Figure
1, does the conversion of models built for GridSim or
SimGrid to iSPD and of models built for iSPD to Grid-
Sim or SimGrid models.

∙ Trace database: it comprises a set of functions to
manage workload traces, including the creation of
traces from simulated environments.

∙ Scheduler generator: it provides an interface
to manage and create meta-schedulers and local
schedulers. Its graphical interface offers some na-
tive schedulers as well as GUIs that allow users to
formulate their own scheduling policies [12].

Particularly, including a module that performs model
conversions allows model reuse. Reusing models built
for a different simulator is interesting because one can
retrieve a model built to GridSim, e.g., and easily mod-
ify and simulate it with iSPD. The other way around is
also possible, although it is actually uninteresting due to
iSPD’s advantages.

As the other grid simulators, the iSPD’s project is con-
tinuously evolving. Currently there are extensions be-
ing developed to allow simulations of data grids, cloud
computing and dependent tasks, modeled by directed
acyclic graphs (DAG).

MODEL CONVERSION IN ISPD
As explained before, the module that performs model
conversions was introduced to allow the reuse of previ-
ously written models by iSPD. This can be considered
as an advantage because any user that has a model
for an older grid system can quickly model a new one
using the former as a starting model. Reusing a model
within GridSim and SimGrid’s architectures involve code
rewriting and insertion, which is difficult for non-expert
users. Doing this through iSPD involves reading the
older model and creating an iconic model in iSPD’s
modeling interface. Then, this iconic model can be
easily modified, improved or grown, through this inter-
face, allowing for the simulation of the new model quite
shortly.

The process of model conversion is equivalent to code
compiling/interpreting. The source code for a given sim-
ulator is the input of the conversion module, which pro-
duces an “executable” code in iSPD’s iconic language.
Therefore, the development of this module was based
in the specification of a set of grammatical rules to
read/write specific languages. These conversions are
described in the following paragraphs.

Importing a model
To convert a model written for GridSim or SimGrid, it
was necessary to develop two conversion grammars,

Figure 2. Importing an external model.

one for each simulator. These grammars were used to
enable the parsing procedure shown in Figure 2. In that
figure one can see that the parser creates a list of el-
ements, which are iSPD’s icons, and then maps these
elements to specific structures by a conversion table,
partially shown in Table 1.

In GridSim’s grammar, which has two rules described
below in the Backus-Naur form (BNF), the focus was
in translating Java to iSPD’s modeling language, called
iconic modeling standard (imsx). The rules for Grid-
Sim are defined, for example, in the form:

< CLASS > ::= ”class” , or

<import declaration> ::= <IMPORT> [<STATIC>]
<name> [<DOT>”*”] <SEMICOLON>

Where, in the first one, the parser identifies that a Java
class will be defined. In the second rule it is defined
how an import of a class has to be declared and which
tokens had to be expected.

The set of rules defined for GridSim conversion is differ-
ent from a typical compiler’s front-end parser since it will
not generate Java bytecodes. Also, the parsing should
not be performed over every line of code in the file stor-
ing the model since only specific lines are actually re-
lated to the model. In the process depicted in Figure
2 the foreign model is read by the parser, who creates
a list of specific tokens (as the ones shown in Table 1).
These tokens are linked with templates of icons in iSPD,
having their values associated with specific parameters
in the icon.

For SimGrid the parsing process is also simple. In this
case it is oriented by the XML tags used in SimGrid’s
models, which come from two files, one containing data
about hosts and links and other with the description of
their roles (master/slave, for example). It must be noted,
however, that the conversion process currently does not
make the parsing of the meta-schedulers coded in C
files for SimGrid. To overcome this, the user convert-
ing SimGrid models has to use iSPD’s scheduler GUI
to generate equivalent meta-schedulers, which can be
done easily. To model the schedulers the analyst may
either use a native scheduler or create a new one. The
creation process is guided by few windows where the
user can specify the rules that the scheduler will follow.



Table 1. Mapping of specific parameters of foreign simulators to
iSPD models

SimGrid GridSim iSPD
”CPU” machine host icon

”network link” SimpleLink communication
icon

– Route communication
icon

function=”slave” machine host icon as
slave host

function=”master” GridResource host icon as
master host

function=”master”
first argument gridlets tasks (workload)

Figure 3. Modeling a trivial scheduler with iSPD’s interface

Figures 3 and 4 show two of these windows, one cre-
ating a simpler, guided model, and the other creating a
scheduler through a mathematical formulation.

For both sources the process of model conversion is
coordinated by mapping the identified elements to iSPD
icons. This procedure involves reading data arguments
in the source’s model and mapping them to the data
arguments appearing in each icon.

Exporting a model
Besides it is not the primary goal for the conversion
module, it is also possible to export models created
with iSPD to models runnable by GridSim or SimGrid.
It should be noted that the developers believe that this
conversion is actually unnecessary since iSPD provides
a better modeling interface, accurate simulation results
and simulation speeds comparable to any other simula-
tor. It has been included in the model converter just to
make the system complete1.

The exporting process was also developed by the defi-
nition of two conversion grammars, one for each foreign
simulator. The steps towards the conversion are shown
in Figure 5, where an important part is the conversion
table, partially shown in Table 2.

As it would be expected, the whole conversion starts
with the matching of the relevant icons in iSPD’s model
1And, of course, to allow a fanatic user of GridSim/SimGrid to
compare the models

Figure 4. Modeling a complex scheduler with iSPD’s interface

Figure 5. Exporting an iSPD model

and their association with templates for a given simula-
tor. If one is converting to SimGrid the process will cre-
ate two files, one with hosts/links description and other
with their relationships and actions. For conversions to
GridSim a single file is created, containing the whole
model.

It is important to notice in Table 2 that the code for Sim-
Grid’s meta-scheduler is not generated. This was a de-
sign option, since in SimGrid the schedulers are hand-
coded in a separated file, which is used only at simu-
lation time. To create this file it is necessary to have
a Java to C converter, demanding additional features to
iSPD that were not a major concern. Therefore, for Sim-
Grid users it is necessary to manually write their sched-
ulers.

Modeling comparison
After implementing the model conversion components
in iSPD we can compare what each simulator can model
and which model parts can be converted. Table 3 shows
some characteristics of grid systems that can be mod-
eled by SimGrid, GridSim and iSPD. From this table it
is possible to verify that none of the simulators are able
to model all characteristics. As the conversion process
conversion is concerned we see that iSPD can convert
the most relevant characteristics.

The characteristics that are not directly convertible in-
clude some that can be modeled only by iSPD (Internet,
Cluster and Scheduler Manager). They also include two
(Holiday Load and Operating System) that appears only
in GridSim. These were not included because to distin-
guish loads by the day that they occur can be made
through trace files, instead of controlling the calendar,



Table 2. Mapping of iSPD icons to parameters in foreign simula-
tors

iSPD SimGrid GridSim
host/cluster
icons ”CPU” machine

internet icon ”network link” Router
communication
icon ”network link” SimpleLink

tasks (workload) mapped to spe-
cific functions Process

schedulers manually coded copied from
iSPD library

Table 3. Model components in the analyzed simulators. The last
column indicates which components can be converted to iSPD
models.

Component GridSim SimGrid iSPD Convert
Single
Host yes yes yes yes

Link yes yes yes yes
Internet yes no yes no
Tasks yes yes yes yes
Cluster no no yes no
Grid yes yes yes yes
User yes no yes yes
Holiday
Load yes no no no

Operating
System yes no no no

Scheduler
Manager no no yes no

and that we believe that identifying specific operating
systems is more relevant for cloud systems. Therefore,
no further modifications were necessary in the remain-
ing components of iSPD.

CONVERSION EVALUATION
To evaluate the conversion process for each foreign sim-
ulator it is necessary to compare results from seven dif-
ferent versions of the same model. The versions are
the native model built for iSPD and for the foreign sim-
ulators, and the models obtained from the import and
export operations. These models are named “iSPD”,
“GridSim”, and “SimGrid” for the respective native mod-
els; “ImportedSimGrid”, and “ImportedGridSim” for the
imported models; and “SimGridExported”, and “Grid-
SimExported” for the exported ones. The process of im-
porting/exporting models is started through the iSPD’s
menu, as shown in Figure 6, which presents the tabs to
import a SimGrid’s model.

Although several different grids were modeled, and
tested with similar results, only three grid models are
presented here. These grids were selected because
they represent different conditions for the simulators. A
first grid, name Grid A, is a simple homogeneous sys-
tem, with a single meta-scheduler. The second grid,
Grid B, expands it through a two-level meta-scheduler,

Figure 6. Starting an import operation in iSPD

keeping the system homogeneous. The third one, Grid
C, introduces a larger number of working hosts as well
heterogeneity among them.

For each model we conducted tests with a variable num-
ber of tasks, ranging from 2,000 to 16,000 tasks, which
represent a reasonable amount of grid occupation. In all
three grids the meta-schedulers used a round-robin al-
gorithm to allocate tasks to hosts, as it is found in many
systems. The results presented here are the average of
15 runs by each simulator, giving the necessary statisti-
cal stability from a mean convergence test.

Tests for Grid A
This grid has only three working nodes and a fourth
node running the meta-scheduler, as shown in Figure 7.
In this representation it must be noted that the network
connections were introduced to follow GridSim’s restric-
tions for interconnections. The working nodes have a
processing speed of 50,000 MFlops and all the commu-
nication links have a bandwidth of 1,000 Mb/s.

Figure 7. Model for Grid A

The simulations made with this model resulted in very
similar results for all models and simulators. The plot
presented in Figure 8 shows these results, where one



Table 4. Simulated execution times for grid A for each model
(seconds)

Simulated Number of tasks
Model 4000 16000
iSPD 16711 66730
SimGrid 17407 67575
GridSim 15825 65812
ImportedSimGrid 16710 66778
SimGridExported 17407 67575
ImportedGridSim 16714 66721
GridSimExported 16020 66237

can see that the simulated execution times produced by
models ran on SimGrid were higher than the average for
the other simulators (6% higher for 4,000 tasks and 2%
higher for 16,000 tasks). These results can be better
evaluated in table 4, where the times are measured in
seconds.

Figure 8. Experimental results from the simulation of all con-
verted models

Tests for Grid B
The Grid B uses a two-level procedure to schedule
tasks among hosts. A top-level meta-scheduler allo-
cates tasks to two second-level (intermediate) masters.
These intermediate hosts allocate tasks to a set of five
homogeneous slave hosts each. This grid is shown in
Figure 9. The working nodes have a processing speed
of 50,000 MFlops and all the communication links have
a bandwidth of 1,000 Mb/s.

The simulated results from all models are shown in Ta-
ble 5, being better visualized through Figure 10. From
these results it is also possible to see that the results
for GridSim and iSPD are very similar, both a little be-
low SimGrid. The difference between SimGrid and the
other simulators remained around 10%, but it is impor-
tant to see that iSPD’s results, which is our concern,
provided the same results as GridSim.

Tests for Grid C
The final test presented here is an expansion in the pre-
vious grid, where three additional intermediate meta-
schedulers were added, each of them distributing work
to five hosts, but with different processing speeds, as

Figure 9. Model for Grid B

Table 5. Simulated execution times for grid B for each model
(seconds)

Simulated Number of tasks
Model 2000 4000 8000 16000
iSPD 2535 5047 10062 20086
SimGrid 2819 5613 11221 22416
GridSim 2584 5189 10472 21959
ImportedSimGrid 2538 5043 10063 20085
SimGridExported 2815 5613 11221 22416
ImportedGridSim 2540 5045 10063 20099
GridSimExported 2589 5194 10537 22089

Figure 10. Simulated execution times for Grid B

shown in Figure 11. In this grid two clusters have hosts
with processing speeds of 50,000 MFlops, while the re-
maining three clusters have machines of 50,000, 30,000
and 24,000 MFlops. All links are capable to transfer
1,000 Mb/s.



Figure 11. Model for Grid C

Table 6 displays the simulated execution times for each
model, which can also be visualized through Figure
12. Once again the results from iSPD and GridSim
are closer to each other. SimGrid still produces higher
timespans, with the worse results for the smallest set of
tasks (≈ 19%). For larger amounts of simulated tasks
the difference remained under 10%.

Table 6. Simulated execution times for grid C for each model
(seconds)

Simulated Number of tasks
Model 2000 4000 8000 16000
iSPD 2112 4222 8405 16767
SimGrid 2564 4680 9398 17791
GridSim 2135 4295 8626 16402
ImportedSimGrid 2114 4238 8412 16776
SimGridExported 2564 4680 9398 17748
ImportedGridSim 2120 4235 8414 16801
GridSimExported 2228 4226 8745 16649

Figure 12. Simulated execution times for Grid C

Performance of the simulators
Another value measured was the time spent by each
simulator to produce the results. Results for Grid A were
not measured because the simulators, except GridSim,

could present results almost instantaneously, even for
16,000 tasks. Partial results (4,000 and 16,000 tasks)
for the other two grids appear in Table 7. In all cases
it is possible to see that SimGrid and iSPD are much
faster than GridSim, and that the increase in the num-
ber of tasks does not produce an exponential growth in
the time needed to simulate each model, as occurs with
GridSim.

Table 7. Time spent to simulate each grid model, separated by
simulator (seconds)

Number of tasks
Simulated Grid B Grid C
Model 4,000 16,000 4,000 16,000
iSPD 0.011 0.050 0.090 0.115
ImportedSimGrid 0.013 0.049 0.023 0.119
ImportedGridSim 0.012 0.057 0.025 0.098
SimGrid 0.046 0.172 0.067 0.324
SimGridExported 0.046 0.172 0.167 0.334
GridSim 9.933 855.733 12.234 902.340
GridSimExported 10.400 858.667 12.113 934.574

From this table it is possible to verify that iSPD usually
produced results faster than SimGrid. In few cases Sim-
Grid was negligibly, just few milliseconds, faster than
iSPD. In fact, although the difference remained under a
second, it is possible to perceive that it grows for a larger
number of tasks, with iSPD becoming three times faster
than SimGrid for the larger simulations. Another remark
is that iSPD simulate models converted from SimGrid
faster than SimGrid itself (lines “IportedSimGrid” and
“SimGrid”). These results allow to conclude that iSPD
is a good choice for grid simulations and that convert-
ing old models built for other simulators is an interesting
feature in it.

CONCLUSIONS
The results just presented show that the model con-
versions between these grid simulators is possible.
The simulations performed over the converted models
reached equivalent results, independent of being di-
rectly built or obtained by conversions. This implies
that models formerly built for SimGrid or GridSim can
be easily reused by iSPD, while other simulators do not
have such feature.

Some important remarks must be made from these re-
sults and the operation of these simulators:

1. All models produced equivalent results

2. Models could be built with iSPD more easily and
faster than with the other two simulators

3. iSPD produced results faster than the other two

4. Models imported by iSPD produced the same results
produced by their original simulators

These observations enable to conclude that the possi-
bility of model reuse, introduced by this new component,
is very interesting. It is also interesting to note that an



user can easily modify an older model built for SimGrid
or GridSim and simulate new alternatives with iSPD.

A final remark is related to the conversions of SimGrid
models. As stated before, these conversions demand
a manual codification for the adopted scheduler. For-
tunately, this is an actual problem only when exporting
models from iSPD, since the schedulers that it gener-
ates automatically have to be implemented in C. For
imported models, this can be easily solved by iSPD’s
component for scheduler generation, through its graph-
ical interface to create Java code for the scheduling al-
gorithm.

Next steps in this work would involve the inclusion of
conversion procedures for cloud models, specially those
from CloudSim, and a converter for the schedulers de-
fined in SimGrid. While the latter is a problem only to ex-
port models, the former is a needed feature considering
that iSPD’s future version will include cloud simulation
(PaaS and IaaS) as a new feature.

ACKNOWLEDGMENTS
Authors want to acknowledge the support from FAPESP
by the grant 2012/15127-3 (funding the iSPD project)
and to CNPq (scholarships provided to Mr. Furlanetto
and Mr. Stabile).

REFERENCES
1. Franck Cappello, Henri Casanova, and Yves

Robert. Preventive migration vs. preventive
checkpointing for extreme scale supercomputers.
Parallel Processing Letters, 21(02):111–132, 2011.

2. Henri Casanova. Simgrid: a toolkit for the
simulation of application scheduling. In
Proceedings of the First IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGrid 2001, pages 430–437, 2001.

3. R. Buyya and M. Murshed. Gridsim: a toolkit for
the modeling and simulation of distributed resource
management and scheduling for grid computing.
Concurrency and Computation: Pract. and Exper.,
14(13-15):1175–1220, 2002.

4. C. L. Dumitrescu and I. Foster. Gangsim: a
simulator for grid scheduling studies. In
Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid’05) - Volume 2 - Volume 02, CCGRID ’05,
pages 1151–1158, Washington, DC, USA, 2005.
IEEE Computer Society.

5. A. Manacero, R.S. Lobato, P.H.M.A. Oliveira,
M.A.B.A. Garcia, A.I. Guerra, V. Aoqui,
D. Menezes, and D.T. Da Silva. ispd: an
iconic-based modeling simulator for distributed
grids. In Proc. of the 45th Annual Simulation
Symposium, ANSS ’12, pages 5:1–5:8, San Diego,
CA, USA, 2012. SCS.

6. GridSim. Gridsim’s project website. Available at
<http://www.cloudbus.org/gridsim/>, October
2014.

7. Kalim Qureshi, Attiqa Rehman, and Paul Manuel.
Enhanced gridsim architecture with load balancing.
The Journal of Supercomputing, 57(3):265–275,
2011.

8. Anthony Sulistio, Gokul Poduval, Rajkumar Buyya,
and Chen-Khong Tham. On incorporating
differentiated levels of network service into gridsim.
Future Generation Computer Systems,
23(4):606–615, 2007.

9. Rodrigo N Calheiros, Rajiv Ranjan, Anton
Beloglazov, César AF De Rose, and Rajkumar
Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and
evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41(1):23–50,
2011.

10. SimGrid. Simgrid’s project website. Available at
<http://SimGrid.gforge.inria.fr/>, October 2014.

11. GSPD. Gspd’s homepage. Available at
<http://www.dcce.ibilce.unesp.br/spd/>, October
2014.

12. D. Menezes, A. Manacero, R.S. Lobato, D.T.
da Silva, and R. Spolon. Scheduler simulation
using ispd, an iconic-based computer grid
simulator. In Computers and Communications
(ISCC), 2012 IEEE Symposium on, pages 000637
–000642, july 2012.


