A Computer-Based Learning Tool Using XML
to Enable Learning Styles

Aleardo Manacero Jr., Alisson G. Casagrande, and Odnei C. Lopes

Dept. of Computer Science and Statistics,
Sao Paulo State University - UNESP
aleardo@ibilce.unesp.br

Abstract. The use of learning styles inventories is an interesting ap-
proach to adapt teaching procedures to student capabilities. Each type
of inventory uses different characteristics in order to classify profiles and
each profile needs different teaching approaches. In cases that these ap-
proaches mean differences in content it becomes difficult to maintain a
computer-based learning tool, since the information has to be replicated
for each style. In this paper a computer-based learning tool that uses
Kolb’s inventory is presented. It overcomes problems related to the vol-
ume of data offered to students and also the replication of information
oriented to different styles. The tool uses the XML (eXtended Markup
Language) in order to provide an optimized information structure and
a useful environment for online application. A prototype was built and
used to help learning real-time systems by computer science students.
Keywords: Learning styles, computer-based learning, XML.

1 Introduction

Use of computer-based tools to aid teaching and learning processes is a common
technique, found at many institutions and courses ([1-3]). Computer-based tools
have been used on a wide variety of applications, including virtual laboratories
and online (distance learning) courses, ranging from pre-school up to graduate
levels. The importance of such tools cannot be neglected, giving them a great
relevance for the educational process.

However, most of the work done in this area is strictly conventional, that is,
the contents are direct condensations of material already found in books. Excep-
tions to this approach are concentrated on courses aimed young children, where
the contents are usually presented in a game-oriented structure. At undergrad-
uate level these tools are a collection of pieces of course’s content and tests ([4,
5]), with few attempts on the game-oriented structure [6].

When using conventional computer-based learning tools two problems arise:
the volume of data that is presented and the lack of personal styles on content
presentation. Both problems are avoidable during the design of a tool, but their
solution imposes different constraints that result in other problems.

The volume of data can be reduced at expense of information that is seldom
needed. Since this is often undesirable, most of the tools are built with over-
whelming information, leaving the filter task to students. On the other hand,

CIESC 2008 JUI, pp. 84-93, 2008.

A Computer-Based Learning Tool Using XML to Enable Learning Styles

the adoption of learning styles on conventional models is hard to implement
since all the content has to be produced in as many styles as the inventory de-
fines. Kolb inventory, for example, defines four learning styles, what demands
that the course material has to be presented in four distinct ways. This, of course,
increases the work to be performed by the instructor on its implementation.

In this work we propose an approach based on XML (eXtended Markup
Language) to implement computer-based learning tools that use learning styles
to improve the performance of the students. This approach reduces the volume
of data that is presented (and stored) and enables presenting the contents based
on learning styles.

The next section discusses some of the problems related with computer-based
learning tools, as well related work. It is followed by a review about Kolb’s
learning styles. The methodology of the XML approach is presented on section
4. Results about the application of this approach into a computer-based learning
tool for teaching real-time systems are shown during the last sections.

2 Problems on Computer-Based Learning

A major advantage on using conventional structure in computer-based learning
tools is that the course can be assembled very fast. Most of the material is
already in some electronic form, what makes easy to put it together in the tool’s
database. However, this procedure has some drawbacks:

1. it overloads the students with information (sometimes with useless data);
2. it does not correctly adapt the contents to the computer media;
3. it does not take into account the differences on learning styles.

The first two problems result in boring material, either by its extension or
by its book-like style. The tools usually take full control of the learning process,
dictating what has to be done and how it is done. Since most of the students
like to take control over these actions, some improvements have been attempted
in order to provide that control. However, most of the solutions strongly rely on
hypertext (texts links spread over a conventional text), what could turn things
even worse since the student can be caught inside a knot of links.

Several solutions have been provided, during the past few years, aiming the
convenient adaptation of a given course content to the computer media. This in-
cludes computer games, animated illustrations, voice, discussion rooms (chats),
customization of interfaces, and so on. Although they actually represent im-
provements, they still lack of a more oriented communication with the student,
who has preferences on how he/she learns better from distinct forms of material
assembly. This is, in fact, the third drawback.

Differences on learning styles have been neglected by most of computer-based
tools. Some of these tools attempt to deal with this issue, but usually their so-
lutions are restricted in the tools appearance, that is, its colors, luminance, size
of characters, etc. Although these parameters have some impact on how the stu-
dent learns [7], they are only a small part of their preferences. Curry [8] shows

85

86

A. Manacero Jr., A. Casagrandey O. Lopes

that the learning style is built on several levels (environmental, interaction, in-
formation processing and personality preferences). The interface customization,
dealt by the mentioned approaches, attacks only the environmental preferences,
leaving the other levels unattended.

The information processing level in Curry’s model for learning preferences is
quite important since the actual understanding of a given content depends on
how that information can be processed. Every student has personal preferences
about the way they process information. Some prefer to take a more active role,
others prefer to passively receive information. Others prefer concrete experiences
while some students like abstractions. If the content is presented in the form the
students have their best performance on information processing, then the content
will be soundly understood. If not, they will have to spend more time and effort
to achieve similar results. Besides this clear impact, computer-base tools usually
do not implement information processing preferences in their structure.

One inventory that deals with the information processing level is the Kolb
Learning Styles Inventory [9]. It defines four styles (described in the next section)
by the composition among concrete/abstract and active/reflective preferences.

In order to implement a tool that uses the Kolb inventory, or any other
inventory by the way, one has to provide the information on every proposed
style. Although feasible, this approach largely increases the work that has to
be done by a instructor in order to make such course available. Actually, if the
course designer does not take the needed care, the material could increase the
students difficulties by the lack of a clear separation between styles.

The hazards related to the application of more complex learning styles in
computer-based tools are somewhat restricting their impact in the learning pro-
cess. One of the reasons is the level of abstraction involved to distinguish dif-
ferent styles. Kolb’s model for information processing modeling, besides its sub-
tle characterizations on some aspects of learning styles, is highly suited for a
computer-based tool. The model and the reasons that conducted to its use into
this approach are described next.

3 The Kolb Learning Styles Inventory

Kolb’s model of learning styles defines four types of learners: assimilators, con-
vergers, divergers and accommodators. Each of these styles is described by a
defining question and a set of characteristics related to how the person receives
and process the information. The determination of what style fulfills the person’s
profile is done by a set of twelve questions about preferences on how, when and
what study and learn.

The answers for those questions are accounted and define a pair of main
profiles, related to the preferences on abstract or concrete experience, and on
active or reflective posture. The combinations of these main profiles provide the
classification in one of the four styles defined in the inventory. A short description
of these styles is given next.

A Computer-Based Learning Tool Using XML to Enable Learning Styles 87

— Diverger (type 1)
Their defining question is “Why”. Students of this type prefer concrete ex-
periences based on their feelings. They like group interactions, including the
instructors, working well in brainstorming sessions. They are called divergers
because they can see things from different perspectives.

— Assimilator (type 2)
Their typical question is “What”. They succeed when information comes
in a logical and organized fashion (the conventional student). They get in-
formation from abstract conceptualization and process it through reflective
observation and perform well in traditional environments. They are called
assimilators because they use pieces of data that are assembled in order to be
assimilated. They prefer individual work and see the instructor as an expert.

— Converger (type 3)
They have “How” as their defining question, enjoying active experimentation
in environments that enable them to try and fail safely. The information is
collected by abstract conceptualization and, as active persons, they want to
test them. They do not want to remain long periods in one activity (classes,
reading, watching, etc.), preferring to go directly to the point (that is why
they are called convergers). In order to learn better they must go through
examples and practices, avoiding too much theoretical work.

— Accommodator (type 4)
Their defining question is “What if”. They like to apply the received informa-
tion into new situations, “accommodating” it to their own needs (the reason
behind their denomination). Information is captured through concrete expe-
rience, being processed by active experimentation. They are problem solvers,
taking risks on their own. They like working with people, usually to act as
a leader who will teach the fellows.

Most of these characteristics are easily achievable by a computer tool. For
example, it is quite obvious that a person who prefers abstract experiences, with
conventional lectures, would be satisfied by a book-like online course, where
he/she could read the material and watch some animations about experiences.
More active postures would demand virtual exercises, which are reasonably easy
to provide. Some other functionalities are also easy to maintain, like e-mail,
newsgroups and chats.

Therefore, the use of Kolb’s inventory in a computer-based learning tool
is feasible and desirable. However, in order to use such styles one has to create
conditions for all preferences, demanding a multiplication of information that has
to be inserted by the instructor. Fortunately, several characteristics are present
in more than one style, enabling information reusability. In the next section
it is described a tool, RTtutor (Real-Time tutor), implemented using Kolb’s
inventory where the use of XML enabled the reuse of information.

4 RTtutor’s Design

The RTtutor is a tool aimed to help the learning of real-time systems by com-
puter science students. Its creation followed a previous project named RTsim

88

A. Manacero Jr., A. Casagrandey O. Lopes

(Real-Time simulator)[10], which is a simulator of real-time scheduling algo-
rithms that has been used as a laboratory tool to teach scheduling algorithms
defined for real-time systems. From RT'sim’s use it became evident that a broader
tool should be implemented in order to approach other relevant topics of the un-
dergraduate course. Among the requisites for this tool was the use of learning
styles strategies to expose the course’s contents, which is performed by RTtutor.

RTtutor’s design started from the definition of two important specifications:
the use of Kolb’s inventory and its application on online learning. While the
latter imposed the use of Java as its programming language, the former led to
the adoption of XML as the course specification language. This paper is more
concerned with the learning models and, therefore, will concentrate in the XML
part, following a brief description of the Java client-server model.

4.1 The Java Client-Server Structure

RTtutor is composed by two modules: the server module, where all the manage-
ment occurs, and the client module, where the user interacts with the system.
The interactions between client and server occurs through message-passing calls
executed by threads started on both sides of the communication channel.

On the server side, the main components are:

— TalkWithClient: keeps the communication alive. Messages are requisitions
from clients, answers or warnings/commands issued by the server.

— ServerUserData: performs the manipulation of users data (login name,
password, course history and personal information).

— TutorServer: provides a GUI to server’s control and configuration.

— Cache: reduces the overloading of content translations through the storage
of information that has already been translated during the current session.

— XMLXSLManipulator: translates encoded XML information to HTML
pages using the XSLT library.

— ContentTreeMngr: provides a tree-like structure for each learning style.
It is presented by the client module in order to make the navigation easier.

The server is also responsible for updating all pages currently displayed by
clients in case that the XML content gets modified by author intervention. There-
fore, if the instructor wants to change some information, it gets automatically
loaded to all users contents. This process works through the cleaning of the
Cache and the issue of a command ordering a cache update from the clients.

The client module is composed by the following distinct components:

— KolbsTest: implements the twelve questions in the Kolb model, being pre-
sented to the user in his/her first login. This component classifies the user
into one of the four types defined in the model. The user cannot do anything
before its completion, creating the user’s profile, that will be used by the
server in the following sessions, during the XML—HTML translation.

— Login: provides a GUI for user authentication.

A Computer-Based Learning Tool Using XML to Enable Learning Styles

— UserData: provides all the communication, through a pipe channel, between
client and server.

— ReceiveFromServer: receives warnings and commands issued by the server
and redirects them to the UserData component.

— Tutor: is the main component inside the client, being responsible for the
activation of the remaining components.

— ContentMngr: provides a GUI, where two windows are displayed to the
user. The left window displays the content tree, as provided by the server’s
ContentTreeMngr. The right window displays the actual content currently
selected by the user, assuming different forms for each learning style.

4.2 The XML Structure

Since the four learning styles defined in Kolb’s inventory have differences and
similarities between them, the adoption of XML, where the contents must have
a strong structure is very attractive. All the topics of a course can be assem-
bled into a chapters-sections organization that are mapped by the DTD (Docu-
ment Type Definition) definitions file. Links between topics are also maintained
by derivations of the directives found in the DTD. This structure reduces the
amount of information that has to be stored into the system, leaving the work
of combining redundant data for the moment when translation of XML contents
to HTML pages actually occurs.

The complexity of this task is the DTD definition, where the XML organiza-
tion will be created. Here the DTD must define all profiles that an information
can get based in the learning styles defined by the Kolb’s model. This is done in
two steps: one with a general organization structure, which is easily defined, and
another with a personal profile organization structure, which needs a detailed
description of the similarities and differences among all styles.

General structure - The general structure is concerned with the sections
and chapters organization. As one can realize, this is a very simple structure,
consisting of the syntax tree for chapters, sections and subsections. A small
part of the DTD is shown below. There it is possible to see that a chapter is
composed by three elements: its title (Chap Title), its description (ChapDescr),
and the sections in it (Section).

<!ELEMENT Chapter (ChapTitle, ChapDescr, Section+)>
<!'ATTLIST Chapter
id ID #REQUIRED
owner (generic | assimilator | diverger | accommodator | converger |
accommodator_diverger | diverger_assimilator |
assimilator_converger | converger_accommodator) #REQUIRED>
<!ELEMENT ChapTitle (#PCDATA|%htmltext;)x*>
<!ELEMENT ChapDescr (p)>

89

90

A. Manacero Jr., A. Casagrandey O. Lopes

A section has also a simple definition, being composed by five components:
its title (SectTitle), its description (SectDescr), its contents (ContSect) or its
subsections (SubSect), and the section tests (Tests), as shown below.

<IELEMENT Section (SectTitle,SectDescr, (SectCont | SubSection)+,Testsx*)>
<!'ATTLIST Section
id ID #REQUIRED
owner (generic | assimilator | diverger | accommodator | converger |
accommodator_diverger | diverger_assimilator |
assimilator_converger | converger_accommodator) #REQUIRED>
<!ELEMENT SectTitle (#PCDATA|%htmltext;)*>
<!ELEMENT SectDescr (p)>

On both definitions a major detail is that a mandatory definition is the owner
of a chapter or section. This owner is one of the types defined by Kolb plus a set
of combinations of these types. These combinations, as later explained, enable
the reduction in the amount of data that has to be stored by the system.

Profile structure - This part of the DTD is in charge of the definition about
what style must be used at each moment. It does, actually, the definition of what
parts of the XML material must be translated to HTML and sent to the client
machine. It relies on the definition of nine types of material owner, which are the
four types from Kolb, four combinations of these four basic types, and a generic
owner, which will cover all other styles. The profile structure is built by the use
of the owner attribute, with the following values and coverages:

— generic — covers all types, therefore a content owned by a generic attributed
will be shown to all users;

— assimilator — covers the assimilator type, therefore students of assimilator
profile are the only ones that see materials tagged this way;

— converger — does the same for the converger type;

— diverger — does the same for the diverger type;

— accommodator — does the same for the accommodator type;

— accommodator_diverger — covers the accommodator and diverger types,
presenting material tagged this way to students of both types;

— diverger_assimilator — does the same for the diverger and assimilator
types;

— assimilator_converger — does the same for the converger and assimilator
types;

— converger_accommodator — does the same for the converger and accom-
modator types.

The correct translations are commanded by the XSL file, as dictated by
the XMLXSLManipulator component of the server module. All translations are
directed by the owner and id parameters set by the server, when the user logs
in the system, using the personal profile stored for this user.

A Computer-Based Learning Tool Using XML to Enable Learning Styles

5 Results

All definitions and conversions found in the DTD and XSL files were used during
the implementation of RTtutor. The contents of a Real-Time Systems course,
in Portuguese, were partially stored using the XML directives and attributes.
That enabled a set of benchmarking tests and its validation as a learning tool.
Tests verified RTtutor’s effectiveness with respect of portability, performance
and content presentation.

Several combinations of platforms were used to execute clients the server in
order to verify their portability. RTtutor executed fine in all system configura-
tions, including MS Windows, linux, and Solaris, combined in every possible way.
The only restriction was that the server must be executed with special run-time
parameters in order to achieve efficient performance even when the system had
a larger processing load.

The system’s performance is very adequate, in all possible configurations.
The time spent to load pages is lower than a second in most cases, even when
the server was overloaded (more than 20 clients) and no caching was available.
Among all configurations attempted, those where the server was running on linux
or Solaris achieved the best results, specially when the server was overloaded.

The performance study also evaluated the influence of the Cache component
inside the server. The general remark here is that the use of caching significantly
improves the system’s performance. The lowest improvement came for the Win-
dows server, which had an improvement rate of only three times. The best case
was when both server and clients were running on linux systems, where the time
for downloading was reduced by 100 times. Some of the measured times appear
in Table 1.

Table 1. Loading times (in milliseconds) for a given page

Server |Client [Additional Clients|Without cache|With cache
Windows|Solaris 0 749.2 261.0
Solaris |Linux 0 751.5 98.8
Linux Linux 0 1039.1 16.6
Windows|Solaris 20 1024.4 298.3
Solaris |Liunux 20 909.9 97.8
Linux Linux 20 1220.5 49.5

A quantitative evaluation of its effectiveness as a learning tool was not per-
formed since its preliminary application as an educational tool comprised only
few tests over a small class (15 students) enrolled in a Real-Time Systems course
taught to computer science undergraduate major. Besides this issue, and the ab-
sence of certain parts of the course content, the students answered very well to
the formats that each one got during their exposal to RTtutor. A simple ex-
ample of course content (in portuguese) is shown in Fig. 1. In that figure the

91

92 A. Manacero Jr., A. Casagrandey O. Lopes

region marked by the red box contains the selection tree for course content. The
actual course content is displayed in the right region of the screen. In particular,
this screen describes the Rate-Monotonic Scheduling Algorithm for a student
belonging to the assimilator type.

[Sisternas de Tempo-Real =i
§ s irodugdo Escalonadores para Sistemas de Tempo-Real Monoprocessados

o[Conceitos Basicos

o [Modelagem de Sistemas de Tempo-t|

¢ [Escalonamanto de Tarefas de Tempa §| Algord Taxa Monotoni -
D Finalidade dos escalonadores

[Esvalbnadares para Sistamas de| O algoritmo Taxa Monoténica (RIS), € um algoritmo de escalonamento em sistemas de tempo-real para tarefas
[Escalonadores para sistemas de| independentes com prioridades fixas e executadas num dnico processador.
o] Sistemas embarcados
L Bibliografia Complamantar O modelo RM3 garante que:

.

i desde que a uhilizacio da CPU por parte de todas as tarefas se encontre abaixo de cerfo limite & que algoritmos de
despacho apropriados sejam wtilizados, entfo todas as tarefas reepeitarfo seus "deadlines”;
Seﬂe@tﬁ@n ﬂ:][‘ee i, em situagtes de sobrecarga, wm subconjunto fixo de tarefas criticas continuard respeitando seus "deadlines”

Um conjunto de tarefas ¢ dito escalonavel, pelo RMS, se todos os seus "deadlines” s&o atendidos

Unn conjunto de n tarefas periddicas independentes, escalonadas pelo algoritmo Taxa Monotdnica cumpririo sens "deadlines”
em gualquer instante se:

i+_ +C45n.211" —1l=Hin

7

x
Onde

@ Ci=carpa datarefa i
& Ti=periodo da tarefai parai=1..n
U = ytilizacdo do processador

Se para um conjunto de n tarefas periddicas independentes ocorrer que
[C
v+ 2 UM

4

ettio pode-se saber se as tarefas curnpririo ou ndo seus "deadlines” pela realizacio de um teste de escalonabilidade exato
‘bageado no seguinte postulado: "Para um conjunto de tarefas periddicas independentes, se cada tarefa cumpre seu primeiro
"deadline” quando todas as tarefas sda iniciadas no mesmo instante, entio todos os "deadlines” serfio cumpridos para qualquer

n
5
g
ks
5
&
B
g
%
=
B
E
5
4

<] I T 4T I] T

Fig. 1. lllustrative example of how the content is displayed at the client interface (text
is in Portuguese)

Finally, the effectiveness of RTtutor in the content presentation was evaluated
through the generation of several parts of the material for all styles. The HTML
files generated were always different, with the same information being displayed
in different forms. As an example, one given section generated a 22Kb file for a
diverger person, while an accommodator person had the same section in a 16Kb
file.

6 Conclusions

The tests performed over RTtutor shows that its implementation is efficient in
terms of portability and processing speed. Its performance, even in presence of
a larger number of clients is more than adequate for internet-based learning
purposes.

A Computer-Based Learning Tool Using XML to Enable Learning Styles

The use of Kolb learning styles to arrange the course contents is an interesting
approach, based on the preliminary application of RTtutor. It becomes even more
interesting since the use of XML to organize the content structure reduces the
amount of data inserted in the course’s database. The differences and similarities
found among the four learning types could be easily managed from the DTD
structure.

A future improvement in RTtutor is the implementation of an authoring tool,
which would enable authors to insert course materials without the knowledge of
the XML patterns. Another trend in this work should consider some improve-
ments in the capabilities of the server module, such as a stronger bookkeeping
over the students activities in the system.

References

1. Kurtz, B.L., Parks, D. and Nicholson, E.: Effective internet education: strate-
gies and tools, in 32nd Frontiers In Education Conference, pp F2E-14:19, Boston,
(2002).

2. Spalter, A.M., Simpson, R.M., Legrand, M., and Taichi, S.: Considering a full
range of teaching techniques for use in interactive educational software: a practical
guide and brainstorming session, in 30th Frontiers In Education Conference, pp
S1D-19:24, Kansas City, (2000).

3. Sward, K., Terpenny, J.P., and Sullivan, W.G.: Design, layout, and tools for effec-
tive web-based instruction, in 32nd Frontiers In Education Conference, pp S1E-1:6,
Boston, (2002).

4. Ahern, T.C., and Van Cleave, N.: The Mentor project: from content to instruction,
in 32nd Frontiers In Education Conference, pp F2E-8:13, Boston, (2002).

5. Daku, B.L.F., Jeffrey, K.: An interactive computer-based tutorial for MATLAB,
in 30th Frontiers In Education Conference, pp F2D-2:7, Kansas City, (2000).

6. Richkus, R., Agogino, A.M., Yu, D., and Tang, D.: Virtual disk drive design game
with links to math, physics and dissection activities, in 29th Frontiers In Education
Conference, pp 12C3-18:23, San Juan, (1999).

7. Dunn, R., Dunn, K., and Perrin, J.: Learning Style Inventory Manual, Price Sys-
tems, (1979).

8. Curry, L.: Integrating concepts of cognitive or learning styles: a review with at-
tention of psychometric standards, Canadian College of Health Service Executives,
(1987).

9. Kolb, D.A.: Learning Style Inventory, McBeer, (1976).

10. Manacero, A. Jr., Miola, M.B., and Nabuco, V.A.: Teaching real-time with a sched-
uler simulator, in 81st Frontiers In Education Conference, pp T4D-15:20, Reno,
(2001).

93

