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Abstract—The increased accessibility to high-performance
computing resources creates a demand for user support tools,
such as performance evaluation tools. In this direction one finds
iSPD (iconic Simulator for Parallel and Distributed systems), a
simulator based on iconic modeling for distributed environments
such as computer grids. It has been developed to make easier
for general users to create their grid models, including how
tasks are allocated and scheduled over the available hosts. This
paper describes how schedulers are managed by iSPD and how
users can easily adopt the scheduling policy that better models
the system being simulated. A thorough description of iSPD
is given, detailing its scheduler manager. Some comparisons
between iSPD and Simgrid simulations, and with runs of the
simulated environment in a real cluster, are also presented.
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I. INTRODUCTION

The demand for high-performance computing is rising
sharply during the last decade. This trend is driven by the need
to solve larger problems with large amount of data or accuracy.
While parallel computing is the recognized approach to pro-
vide performance, its associated costs motivated developments
toward clusters, grids and, more recently, computing clouds.
Computer grids, in special, provided a very useful ground for
several applications in fields where users are not experts in
parallel computing or performance analysis. The main reason
behind this is that the low cost to deploy a grid environment,
which is basically based on sharing existing resources, with a
large computing power [1], [2], [3], made grids available to
almost anyone wishing to share their resources.

In distributed systems, such as computer grids, scheduling
policies have a great impact on the system’s performance. Un-
fortunately, electing the correct policy for a given environment
is not an easy task, usually demanding a big effort to evaluate
the available policies in order to choose the right one. This
evaluation may be performed through simulation, avoiding the
use of the real system for measurements [4]. Simulation is also
more flexible and less expensive than pure benchmarking.

There are several grid simulators available, such as Simgrid
[5], and Gridsim [6], among others. However, none of them
provide an easy-to-use interface to model the system, demand-
ing knowledge about scripting and/or programming. In order to
circumvent these problems, iSPD (iconic Simulator of Parallel
and Distributed systems) [7] uses an iconic-based approach to

create system’s models, including the task scheduler manager
that is presented here.

In the following sections one finds a general description of
iSPD, followed by a thorough description of its simulation en-
gine, including the management of scheduling policies. After
that, results from iSPD simulations are compared with results
from Simgrid. Additional results comparing the execution of
actual programs in a cluster and their simulation with iSPD
are also provided. To conclude, a brief review of similar works
is presented, followed by general conclusions about iSPD.

II. iCONIC SIMULATOR OF PARALLEL AND DISTRIBUTED
SYSTEMS — ISPD

iSPD is a simulation framework developed and made avail-
able from the Parallel and Distributed Systems Laboratory at
Paulista State University [8]. It provides an easy interface to
create grid models that could be used by people that are not
expert in programming scripts or other simulation languages.
It is based in iconic modeling, creating models that can be
translated to queue models before simulation [7]. The general
architecture of iSPD is shown in Figure 1, where can be seen
that the user inserts a model in the interface, which generates
a model in an iconic language. This model is converted to a
model in a queueing language before going to the simulation
engine and producing performance metrics for the user.

The reason to use two different languages during the
simulation process is the separation between the simulator
and the modeling interface. With this separation it is very
easy to create converters of models for different simulators
to iSPD models, and vice versa. This enables the reuse of
models already created for other simulators into iSPD, even
allowing the user to modify the original model through the
iSPD interface.

At this time there are some restrictions on the systems that
can be simulated. They are:

o Tasks have to follow the bag-of-tasks model, and have
attributes for load, time of occurrence, and owner;

e Parallelism is modeled through the master-slave
paradigm;

o Standard scheduling policies are round-robin, FIFO,
Workqueue, WQR (workqueue with replication) and
Dyn-FPLTF (dynamic fastest processor to largest task
first);
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Fig. 1. ISPD’s general architecture

e Standard performance metrics are turnaround-time,
waiting-time, user satisfaction, and efficiency.

iSPD is implemented in Java and contains three major
components, as seen in Figure 1. The iconic interface and the
simulation engine interact with the model interpreter, which is
responsible to convert iconic models to queue models. Each
component is briefly described now.

A. Iconic interface

A GUI provides some basic functionality to model computer
grids. The available icons represent hosts, clusters, one-way
communication channels, and network cloud (internet). In this
interface the user can graphically model a system and provide
all needed parameters (loads, processing and communication
speeds, scheduling policies, etc.). It is an intuitive interface
and allows for a wide range of distributed systems models.

B. Model interpreter

The model interpreter is the link between the iconic inter-
face and the simulation engine. Basically it is a multilingual
interpreter whose target languages are either the queueing
language, used in simulation, or the iconic language, used by
the iconic interface. While the former target comes when in-
terpreting iconic models, the latter is originated from external
models. Currently, iSPD is capable to translate scripted models
written for Simgrid into iconic models. Other conversions are
under work. It should be observed that this functionality was
very useful to validate iSPD models against Simgrid models.

The translation process, in any direction, is defined by the
respective grammars for the iconic models, queueing models
and external models. These grammars are described in [7].
Since the description of such languages is outside the scope
of this paper, it is enough to say that they are context-
free grammars, and their analyzers were produced using this
characteristic to enable easy and fast interpretations.

The existence of an interpreter for external models suggests
the possibility of an opposite conversion, that is, a conversion
from iconic models to language scripts for external grid
simulators. This is one of the new features under development.

C. Simulation engine

This is the component that effectively conducts the simula-
tion process. It reads the system’s model, after its conversion
from the iconic to the queueing model. It is an event-based
simulator with two basic modules. One that manages the
service centers, including queues and their respective servers,
and other that manages the scheduling policies used by each
server. The possible events managed by the simulation engine
are:

o Task arrival: when a specific task is added to a server’s

queue;

o Task service: when a task is served by the server;

o Task delivery: when a task is removed from a service
center and, eventually, creates a new Task arrival in
another center.

Figure 2 shows how the simulator works. It follows the
Event Scheduling/Time Advance model [9], managing the
future events (FE) list through correct insertions and removals,
and adjusting the simulated time. This means “executing” the
most immediate event in FE list until all events have been
served. When no more events are present in the list, the engine
produces all relevant metrics that are going to be used to
evaluate the grid (or any distributed system by the way).

Start simulation

i "
Checks integrity of
the model
L r
Add Events to
arrival of task
L o
{ Execute event
: )
-
Sherasise yes Update simulation
events to \ clock y
attend? "
r~ ™y
Remove the next
event of the list
>

End simulation

Fig. 2. Simulation Process

In the simulation engine the computational infrastructure
for a grid is mapped to a queueing network linking service



centers. Each service center represents specific operations
(or icons from the modeling interface) for the system, such
as communication centers and processing centers. Specific
centers include:

o« Communication service centers

— Direct link centers: follow the one queue-one server
model, with a FIFO service policy. These centers are
used to connect two other centers in order to move
data around the grid;

— Switching centers: follow the multiple queues-one
server model, with a FIFO service policy. They are
used to connect cluster nodes;

— Internet center: follows a one queue-multiple
servers model, where the number of servers is al-
lowed to grow indefinitely. This allows to emulate
a zero length queue that is fed by, and feeds, other
communication service centers;

o Processing service centers

— Host service centers: follow a one queue-multiple
servers model, with a FIFO policy. This type of cen-
ter emulates the jobs processing, containing one or
more servers to represent single- or multiprocessors
hosts with shared memory;

— Centralized server service centers: follow a one
queue-multiple servers model, with FIFO policy. It
differs from the host centers by being the center that
executes the global job scheduling policy, directing
the events to the servers that will actually execute
the job.

D. Task scheduler

The task scheduler is a central component in any simulator
of computing systems. Its relevance is even higher in grid sim-
ulation, since grids have their performance severely affected
by the scheduling policy that is applied. For this reason it
would be very useful to have the capability of evaluating a
grid environment under different scheduling policies, without
having to create a new model, or program the policy, for each
new configuration.

This capability is offered in iSPD through two distinct
options: a library of previously programmed policies, and an
interface to generate new policies. The latter option uses an
interface to insert the characteristics of a given scheduling
policy, including sorting rules and resource allocation policies.
A code in an intermediate language is generated from this
data. This code is later translated into a Java class, which
is compiled and added to the schedulers available in the
simulator.

In iSPD the task scheduler is one of the two modules
in the simulation engine (the other one being the service
center manager). Figure 3 presents the UML classes diagram
for these modules, where the interface “Master” controls the
service centers (queue network) while “CSMaster” controls
the scheduler (Workqueue algorithm, in the figure). This
implementation allows for the change of the scheduling policy
simply by choosing a distinct policy during modeling.

=<Interface==>
Master

CSMaster

+ sendTask({task - Task) . void L1
+ processTask(task : Task) ;void

+ executeScheduling() : void
+ update(siave : Maquina) : void q
+ createCopy(task - Task)  void

Scheduler

- slave : ArrayList=Resource=
-task : ArrayList=Task=

1

+ start() ; void Workqueue

+ taskSchedulie() : Task

+ fesourceSchedule() | Resource

+ fouteSchedule(destination : Resource) - ArrayList=Resource=
+ schedule() ; void

+ gdaTask(task : Task) : void

Fig. 3. Scheduling in the simulation engine

This concludes the description of the main components of
iSPD, including the component presented in this paper, which
is the Task Scheduler. The following section describes the
tests performed with different schedulers in order to evaluate
how iSPD accomodates this into its simulations, that is, how
accurate is the simulations performed by iSPD.

III. TESTS

In order to evaluate iSPD’s accuracy several conformation
tests were applied. In this paper we will not address tests
related to the language translation processes, saving space
for tests concerning only the simulation engine. The tests
involved the simulation of cluster models and comparing those
with results measured in a real cluster, and with simulations
executed with Simgrid. This section is organized with a
description of the test environment, followed by a discussion
about the actual results.

A. Environment

The tests involved a real program running on a research
cluster, named cluster-GSPD, and comparing its results with
simulations from iSPD and Simgrid. The cluster runs Debian
linux, version 2.6.26, and the tested program was written in C
with MPI library (openmpi). The hardware is composed by a
front-end plus eight nodes of pentium dual machines, with 2
Gbytes of RAM. Figure 4 is a schematics of how the cluster is
structured. The processing speed of each node of this cluster
was measured and the average speed was, in average, around
700 billion instructions per second (700,000 MIPS). This value
was used by the simulator as the average computational speed
for the system.

Besides comparing iSPD and the real cluster, the same
problem was modeled and simulated using Simgrid [5], which
was developed by Henri Casanova, in 1999, and was initially
aimed to study the impact of centralized scheduling policies in
distributed and heterogeneous environments. In these tests it
was used Simgrid’s current version (3.6), which is available for
Windows, Linux and MacOS systems [10]. Although the tests
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Fig. 4. Cluster-GSPD schematics

presented here involve only two distinct scheduling policies,
Round-Robin and Workqueue, tests with other policies present
in iSPD showed the same pattern of accuracy.

B. Tests with the Round-Robin scheduler

In the round-robin policy the hosts are organized in a
circular list and the tasks are allocated, in their arrival order,
to the next available resource. After each allocation the list
is updated and the process continues until all the tasks have
been allocated. This policy was implemented in the cluster
by a MPI program, whose behavior is described in figure
5. It is composed by a master process, running in the front-
end, and eight slaves, one in each of the cluster’s nodes. The
master process creates tasks, distributing them following the
round-robin policy. Each slave has three threads with specific
functions: receiving data, munching data and sending results
back.

Models for the environment just described were created both
in iSPD and Simgrid. For each test there were variations in the
number of tasks and their computing and communication costs.
The plot in figure 6 presents the results achieved with Simgrid,
iSPD and cluster-GSPD when the number of tasks changed.
For this test each task has a computing cost of 384,45 Mflops
and a communication cost of 1 kbits. Tests were performed
with the number of tasks ranging from 20 to 120, in 20 tasks
steps.

As one can see, the results achieved with iSPD are very
close to those provided by Simgrid. In fact, the difference
between them was 1.6% in average. The margin of error, when
compared to the actual measurements from the cluster-GSPD,
was a little higher, with an average error of 6.6%. This is
indeed an excellent result since Simgrid had an error of 8.0%.
Another aspect that confirms the accuracy of iSPD is that the
error linearly decreased when the number of tasks increased,
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Fig. 5. Testbed program running in the cluster
TABLE I
SIMULATION RESULTS FOR MODELS USING THE ROUND-ROBIN
SCHEDULER
system # of tasks | Time (seconds) | % of cluster
cluster-GSPD 1.819 -
iSPD 20 1.552 85.32
Simgrid 1.511 83.07
cluster-GSPD 2.831 -
iSPD 40 2.592 91.54
Simgrid 2.513 88.75
cluster-GSPD 4.306 -
iSPD 60 4.050 94.06
Simgrid 4.016 93.27
cluster-GSPD 5.308 -
iSPD 80 5.090 95.90
Simgrid 5.018 94.53
cluster-GSPD 6.797 -
iSPD 100 6.550 96.37
Simgrid 6.521 95.94
cluster-GSPD 7.807 -
iSPD 120 7.590 97.23
Simgrid 7.523 96.37

reaching 2.8% for 120 tasks. These results, also summarized in
Table I, are a strong indicator that models generated by iSPD
are quite accurate and can easily map real environments.

The results presented by the plot in figure 7 are from tests
changing the computing cost for the tasks. For these tests a
set of 50 tasks was created, with communication costs varying
from 1 kbits up to 40 kbits. The task sets were classified
accordingly to their computing costs:

o Small: 384,45 - 1922,25 Mflops

e Medium: 1922,25 - 11533,5 Mflops

e Large: 11533,5 - 38445 Mflops

As in the previous test, the results achieved by iSPD are
well correlated to the times measured in the cluster. The
overall behavior follows the same accuracy pattern identified
in the previous test, that is, accuracy increases for larger set
sizes. In this case, however, the set size is represented by the
size of the tasks being simulated, not the number of tasks,
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which was fixed in 50. Even with this small number of tasks
the error remained under 8% for the smaller tasks, which is
very acceptable for simulations. This is, indeed, an interesting
result, showing that iSPD’s accuracy does not strongly depend
on the type of the tasks being evaluated, but instead depending,
mostly, on the amount of processing that is simulated.

C. Tests with the Workqueue scheduler

The Workqueue scheduler is the second algorithm already
implemented in iSPD. In the Workqueue algorithm tasks are
submitted to individual hosts in a bag-of-tasks approach, that
is, a host receives a tasks as soon as it becomes available.
It differs from Round-Robin by the moment that a task is
allocated to a host, since here the allocation occurs only when
the host is available, while in Round-Robin the allocation
to the next host occurs when a task arrives in the system.
The same tests applied to Round-Robin were applied to the
Workqueue scheduler.

The results achieved confirm the analysis just presented.

Figure 8 shows the results when the number of tasks ranges
from 20 to 120. In this plot it is possible to see that both
simulators are reasonably accurate and that iSPD performed
better than Simgrid (average error of 3.0% against an average
error of 8.2% for Simgrid). As expected, both simulators have
higher accuracy when more tasks are simulated.
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Simulation with the Workqueue algorithm was also eval-
vated with tasks of different computing costs. The results
achieved, shown in Figure 9, were also similar to the Round-
Robin algorithm, with iSPD being slightly more accurate than
Simgrid. The error is also larger for smaller tasks.
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IV. RELATED WORK

Several grid simulators have been proposed during the
past decade. The most representative are Simgrid [5], and
Gridsim [6]. We now briefly describe some of these proposals,
comparing them with iSPD.



a) Simgrid: is the first simulator proposed and still one
of the most used. Its initial goal was the evaluation of cen-
tralized scheduling policies for heterogeneous and distributed
computational environments. New versions of Simgrid have
been released continually, although it still lacks an easy-to-
use interface to create models.

b) GridSim: is another largely used simulator, currently
in its 5.0 version. It allows for modeling of different classes of
environments, including schedulers and machines. It is based
in the SimJava simulation engine. It is quite flexible and
has an interface that makes easier to model several types of
computing grids.

c) GangSim [11]: was developed to evaluate scheduling
policies in grid environments. It allows the analysis of the
interaction between local and global schedulers. This feature is
very interesting and is under development in iSPD. Gangsim,
as the other simulators, does not enable an easy modeling
interface, demanding the writing of scripts in an internal
language.

d) OptorSim [12]: was initially developed to evaluate
dynamic replication algorithms used to optimize data location
over the grid. This project has been used mostly in evaluations
of data replication techniques, what is a different application
field when compared to Simgrid, GridSim or other simulators.
The major differences to iSPD are that our simulator currently
does not address data location and that OptorSim does not have
a simple interface to model grids.

e) BeoSim [13], [14]: is a discrete event simulator aimed
to computer grids assembles as Beowulf clusters, intercon-
nected through a dedicated network. It enables the evaluation
of smaller grids under different workloads and scheduling
policies. It offers a GUI to do part of the simulation process
but is the only simulator that is not open source.

f) GSSIM (Grid Scheduling Simulator) [15], [16]:
was built over GridSim aiming to solve the problems with
workload generation and scheduling levels present in other
simulators. Like the other simulators presented here it suffers
from the need to model the grid using script schemes.

These simulators have been used mostly to evaluate schedul-
ing policies. In order to perform such evaluation it is necessary
to model the grid (hosts and networks), the workload, and the
scheduling policies themselves. The tool presented here, iSPD,
makes all these tasks easier to be performed, when compared
to other simulators, while providing comparable accuracy.

V. CONCLUSIONS

Simulation is a very powerful aid for research on scheduling
policies and for performance evaluation. It can be even more
powerful if its application can be simplified for users that
do not know programming in a great extent, as it happens
to typical computing grid users. This use simplification is
achieved through iSPD, which offers an intuitive iconic in-
terface to model grid environments. The verified accuracy of
iSPD, presented in section III, shows that this approach can
provide interesting results without prejudice of precision.

Since in distributed systems, such as computer grids, the
impact of scheduling policies is rather important to achieve
optimal performance, their easy modeling should be one of

the goals in their simulators. This task, which is the focus
of this paper, can be done easily through iSPD’s modeling
interface.

Future improvements in iSPD include the implementation of
a built-in workload database, which can be used as testbeds
for specific grid environment configurations, and the addition
of a more versatile interface for results presentation, including
options to choose specific metrics. Current efforts also involve
the implementation of interpreters for models written to other
grid simulators (Simgrid, already functional, and GridSim).
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