
iSPD: an iconic-based modeling simulator for distributed grids
Aleardo Manacero, Renata S. Lobato, Paulo H.M.A. Oliveira, Marco A.B.A. Garcia, Aldo I. Guerra, Victor Aoqui

Univ. Estadual Paulista - UNESP
Computer Science and Statistics Dept.

(aleardo,renata)@ibilce.unesp.br

Keywords: iconic modeling, grid simulation, distributed
systems

Abstract
Simulation of large and complex systems, such as computing
grids, is a difficult task. Current simulators, despite provid-
ing accurate results, are significantly hard to use. They usu-
ally demand a strong knowledge of programming, what is
not a standard pattern in today’s users of grids and high per-
formance computing. The need for computer expertise pre-
vents these users from simulating how the environment will
respond to their applications may imply in large loss of ef-
ficiency, wasting precious computational resources. In this
paper we introduce iSPD, iconic Simulator of Parallel and
Distributed Systems, that is a simulator where grid models are
produced through an iconic interface. We describe the simu-
lator and its intermediate model languages. Results presented
here provide an insight in its easy-of-use and accuracy.

1. INTRODUCTION
The use of high performance computing is growing re-

markably in this century. It is not restricted to high-end sci-
entific applications anymore. This growth has been enabled
by the introduction of less expensive systems associated with
the use of resource sharing systems, such as computer grids.
As a result of the improved demand a large amount of HPC
users that are neither computer experts nor have a large com-
puter support team to help with system analysis has appeared.
These new users create a new demand of HPC developers,
which is the creation of easy-to-use tools for system’s eval-
uations, since they need to grasp the best performance of an
environment that they do not fully understand.

Among the tools for system’s evaluations there are a wide
range of simulators. Simulators are considered an important
approach for performance evaluation since they can provide
modeling flexibility with reasonable accuracy. They are also
relatively cheaper than actual benchmarking and can be used
in any stage of a system development. The major drawback
with simulation is that most of simulators demand the knowl-
edge of specific programming languages, either simulation or
conventional languages. In the case of grid simulators this is
totally true, with the most influential tools, namely Simgrid
[4] and Gridsim [3], being strongly dependent of scripting
languages.

In this paper we describe an iconic based simulator, iSPD
(iconic Simulator of Parallel and Distributed Systems, which
allows the creation of grid models through a graphical envi-
ronment. The simulator transforms the graphical model into a
queue system, which is executed to provide performance data
for the user. The whole process can be performed very intu-
itively, starting from the iconic model to the grid that needs
to be simulated, including its resources and tasks that must be
executed.

In the following pages firstly contextualize iSPD among
the other grid simulators available, then describe its speci-
fication and design. Results from its use are also provided,
alongside the conclusions drawn from these tests.

2. RELATED WORK
Grid simulators are in use for several years now. Several

different simulators have been proposed, although only a few
are regularly used. During this section a brief description of
them is provided. A greater attention will be provided to the
mainstream simulators, Simgrid and Gridsim, since they are
well maintained and developed.

Simgrid [5] is the first simulator proposed and still one of
the most used. Its initial goal was the evaluation of centralized
scheduling policies for heterogeneous and distributed com-
putational environments. New versions of Simgrid have been
released continually, although it still lacks an easy-to-use in-
terface to create models. One of its strenghts is the capability
to model background traffic and computation, which is not
present in most simulators. Models are configured by XML
and C files, which is not easy for non-expert users.

GridSim [3] is another largely used simulator, currently in
its 5.0 version. It allows for modeling of different classes of
environments, including schedulers and machines. It is based
in the SimJava simulation engine. It is quite flexible and has
an interface that makes easier to model some types of com-
puting grids. It is more portable than other simulators since is
Java-based. Models are built through a Java program, using
pre-build classes for tasks and other components.

GangSim [6] was developed to evaluate scheduling poli-
cies in grid environments. It allows the analysis of the interac-

tion between local and global schedulers. This feature is very
interesting and it is under development in iSPD. Gangsim, as
the other simulators, does not enable an easy modeling inter-
face, demanding the writing of scripts in an internal language.

OptorSim [2] was initially developed to evaluate dynamic
replication algorithms used to optimize data location over the
grid. Optorsim has been used in this field, which is a ma-
jor difference when compared to the usual application of grid
simulators in scheduling analysis. Compared with iSPD it
does not have a simple interface to model grids while iSPD is
not currently capable to manage data replication.

BeoSim [8, 9] is a discrete event simulator aimed to com-
puter grids assembles as Beowulf clusters, interconnected
through a dedicated network. It enables the evaluation of
smaller grids under different workloads and scheduling poli-
cies.

GSSIM (Grid Scheduling Simulator) [7, 10] was built
over GridSim aiming to solve the problems with workload
generation and scheduling levels present in other simulators.

These simulators have been used mostly to evaluate
scheduling policies. In order to perform such evaluation, it is
necessary to model the grid (hosts and networks), the work-
load, and the scheduling policies themselves. These tasks are
not easy to perform in the simulators just described. iSPD,
however, makes all these tasks easier to be performed while
providing comparable accuracy. Hosts and their connections
are easily modeled by an iconic interface, while the schedul-
ing policies are parameters provided to specific components
and may also be modeled through a simple interface.

3. THE ISPD
The design of iSPD is structured in three basic modules:

the graphical interface, the language interpreter/decoder and
the simulation engine. Besides these modules, some addi-
tional interfaces are present, mostly concerned with import-
ing/exporting models and metrics collection. The interaction
between modules can be seen in Figure 1. In that Figure one
sees that the user inputs the model through an iconic model,
which is translated to a simulatable model, receiving the re-
sults from its simulation. The simulation can make use of a
workload database or a random workload. There is also the
possibility to convert external models to an iconic model or
vice versa1.

Grids can be simulated through some basic components,
such as clusters, communication links, and individual hosts.
A basic model can be depicted in Figure 2, where the model

1Currently it is possible to convert Simgrid models to iSPD models

Figure 1. iSPD Basic Structure

contains three individual nodes (nodes 0, 1 and 2), a clus-
ter (node 3), a pointo-to-point communication link (between
nodes 1 and 3) plus internet connections (internet cloud is
node 8). From this figure it is also possible to identify the
components in the interface. The main component is the
drawing sector, where the user actually draws the model to
be simulated. On its side there is an information display, the
“Settings” window, which shows the parameters of a selected
icon (node 0 in that case). Just below these windows there
are the icons menu and the “Simulate” button. Finally there
is the “Notifications” window, where a log of the session is
registered.

Figure 2. iSPD Basic Structure

Once the model is entered to the system, the interface gen-
erates a text file containing its description, using a block-
based iconic description language. This language describes

a grid through a set of individual description blocks using a
specific grammar for this. Figure 3 shows the file created for
the model drawn in Figure 2. This file is then interpreted by
the model converter, leading to a second text file containing
the grid described as a queue model in a queueing description
language.

HOST icon1 1200.000 30.000 MASTER RoundRobin LMAQ icon3
HOST icon2 2000.000 30.000 SLAVE
HOST icon0 2000.000 20.000 SLAVE
CLUSTER icon3 8 20000.000 10000.000 0.400000 RoundRobin
INET icon111 20.000 1.000000 40.000
LINK lan7 10000.000 0.400000 10.000 CONNECTS icon3 icon1
LINK lan10 10000.000 0.400000 10.000 CONNECTS icon2 icon111
LINK lan5 10000.000 0.400000 10.000 CONNECTS icon1 icon3
LINK icon14 10000.000 0.400000 10.000 CONNECTS icon1 icon111
LINK lan12 10000.000 0.400000 10.000 CONNECTS icon111 icon0
LINK lan11 10000.000 0.400000 10.000 CONNECTS icon111 icon1
LINK lan13 10000.000 0.400000 10.000 CONNECTS icon111 icon2
LINK lan9 10000.000 0.400000 10.000 CONNECTS icon0 icon111
LOAD RANDOM
11 28 55 0.98
11 16 22 1.0
0 2 30

Figure 3. An example of iSPD’s iconic description language

Although the use of two different languages may seem
clumsy, it saves a lot of effort when dealing with imported
models. Using this approach it is possible to restrict the con-
version to/from other simulators to the iconic language, en-
abling the user to easily recover models for those simulators
to the iSPD iconic interface. Using a separate language to de-
scribe the simulation constraints and model also avoids the
need for queue-oriented parameters or objects in the iconic
interface. Figure 4 shows part of the queueing model for the
given example, where some lines were cut for the sake of sim-
plicity.

The process continues with the simulation engine initially
converting the simulatable model to a queueing network.
Once the network is created, iSPD starts the model simula-
tion using scheduling policies provided as grid parameters.
Results from the simulation are then aggregated in order to
provide a series of performance metrics for the user. The file
containing the results is very large and will not be shown here.
It basically contains the whole simulation history, from which
performance parameters are extracted. The performance met-
rics currently provided by iSPD include:

• Average turnaround times, as the average time spent to
complete each task;

• System’s efficiency, as a measure of system demand and
occupation;

• User’s satisfaction, as a measure of fairness in user’s at-
tention; and

MODEL
TASK
RANDOM 11 28 55 0.98
11 16 22 1.0
0 2 30
END_TASK
SERVICE_CENTERS
CS_0 cs_icon1 1 1 QUEUES q_icon1 SERVERS
serv_icon1 0 1200.000 30.000 MASTER RoundRobin LMAQ cs_icon3
CS_2 cs_lan13 1 1 QUEUES q_lan13 SERVERS
serv_lan13 1 10000.000 10.000 0.400000
 .
 .
 .
CS_1 cs_icon3 2 8 RoundRobin QUEUES q_0_icon3 q_1_icon3 SERVERS
serv_icon3 0 20000.000 10000.000 0.400000
CS_2 cs_lan10 1 1 QUEUES q_lan10 SERVERS
serv_lan10 1 10000.000 10.000 0.400000
END_SERVICE_CENTERS
CONNECTIONS
cs_icon111 cs_lan13
 .
 .
 .
cs_icon2 cs_lan10
cs_lan10 cs_icon111
END_CONNECTIONS
END_MODEL

Figure 4. An example of iSPD’s queueing description lan-
guage

• Average waiting times, as a measure of contention for
resources.

In order to correctly model a grid environment through
a queueing network it was necessary to map each resource
type to a network configuration. This resulted in modeling
communication links and single hosts as 1-queue-1-server
networks, computer clusters as 1-queue-N-servers, and the
whole grid as N-queues-N-servers. In fact, a grid can be seen
as a recursive assembly of clusters, single nodes and commu-
nication links.

Although the user may configure the probability distribu-
tion functions used by the service centers in the queueing
network, there are few distributions that must be present as
defaults. Therefore, iSPD offers random generators for the
Poisson, exponential and two-stage uniform functions. The
choice for these functions is based on previous results pro-
vided by Lublin and Feitelson [11], showing that they make
good models for distributed systems.

3.1. Iconic and Queueing languages
The core of iSPD is the use of two languages to represent

the iconic, graphical in nature, model, and the simulatable
model. The grammars for these languages are reasonably sim-
ple, generated using context-free grammars that include all
needed objects to create those models. Here we provide only
the main parts of the grammars that generate the models.

The grammar of the iconic modeling language is context-
free, with a reasonably small amount of symbols. The re-
served words in this language include “HOST”, “CLUS-
TER”, “LINK”, “INET”, “MASTER” “SLAVE” and few
other internally defined terms for input parameters. The start-
ing token for a model specification is <model>. It leads to a
list of the available icons from the user interface. The rules
in Figure 5 describe the model global specification and the
HOST grammar rules. The grammar rules for the remaining
components of a model, which are similar to the rules for
HOST, will be ommited here.

<model> ::= <icons>
<icons> ::= {<icon>}+
<icon> ::= <node> | <cluster> | <link> | <inet> | <load>
<node> ::= HOST <server_ID> <computing_power> <load_avg> <nodetype>
<nodetype> ::= MASTER <clusteralg> HOST_LIST <slaves> | SLAVE
<server_ID> ::= <identifier>
<computing_power> ::= <real>
<load_avg> ::= <real>
<clusteralg> ::= RR | WORKQUEUE | FPLTF
<slaves> ::= {<server_ID>}+

Figure 5. Section of iconic description language grammar

The lines 1 to 3 in that figure define the icons that are
present in the modeling interface. Line 4 is the starting point
for the definition of a single host in the model. As it can be
seen, the icon for a host is described by rules defining the
node type (master or slave), processing capacity (computing
power) in MFlops, and load average (percentage). If the node
is a master it also defines the scheduling algorithm and the
list of slaves attached to it.

Using the same approach, the grammar of the queue mod-
eling language is also context-free and reasonably simple.
Figure 6 shows the top levels of the grammar for the queue
modeling language. Line 1 shows the starting symbol for this
grammar (<queue model>), while the remaining lines de-
scribe the starting ramifications for the rules defining service
centers and the connections between them.

<queue_model> ::= MODEL <definitions_list> END_MODEL
<definitions_list> ::= <definitions_list> <definitions> | <definitions>
<definitions> ::= <define_SC> | <connections> | <simulation_definitions>
<connections> ::= CONNECTIONS <connection_list> END_ CONNECTIONS
<connection_list> ::= <SC_ID> <SC_ID> | <connection_list> <SC_ID> <SC_ID>
<define_SC> ::= SERVICE_CENTERS <SC_list> END_SERVICE_CENTERS

Figure 6. Initial section of queue description language
grammar

Figure 7 shows the initial rules for service centers and for
servers. Lines 4 to 7 define rules for specific service cen-
ters, which are responsible to simulate different grid ele-
ments. SC0 is mapped to processing nodes, demanding in-
formation for processing speed and occupation for example.
SC1 is mapped to clusters, demanding information about lo-
cal bandwidth, processing speed, occupation and scheduling

policy. SC2 is mapped to communication links and SC3 to the
internet cloud.

<define_SC> ::= SERVICE_CENTERS <SC_list> END_SERVICE_CENTERS
<SC_list> ::= <SC_list> <SC> | <SC>
<SC> ::= <SC_0> | <SC_1> | <SC_2> | <SC_3>
<SC_0> ::= SC_0 <SC_ID> <prmtrs> QUEUES <queue> SERVERS <server1>
<SC_1> ::= SC_1 <SC_ID> <prmtrs> <policy> QUEUES <queues>
 SERVERS <server2>
<SC_2> ::= SC_2 <SC_ID> <prmtrs> QUEUES <queue> SERVERS <server3>
<SC_3> ::= SC_3 <SC_ID> <prmtrs> QUEUES <queue> SERVERS <server3>
<prmtrs> ::= <num_queues> <num_servers>
<server1> ::= <server_ID> <server_type> <proc_capacity> <occup_rate> <master>
<server2> ::= <server_ID> <server_type> <proc_capacity> <bandwidth> <latency>
<server3> ::= <server_ID> <server_type> <bandwidth> <occup_rate> <latency>

Figure 7. Description of service centers is the queue de-
scription language grammar

3.2. Simulation engine
The simulation engine reads the system’s model, after its

conversion from the iconic to the queueing model and sim-
ulates it through an event-based process. It is composed by
two modules: one that manages the service centers, includ-
ing queues and their respective servers, and other that man-
ages the scheduling policies used by each server. The differ-
ent events managed by the simulation engine are:

• Task arrival: when a specific task is added to a server’s
queue;

• Task service: when a task is served by the server;

• Task delivery: when a task is removed from a service
center and, eventually, creates a new Task arrival in an-
other center.

Figure 8 shows how the simulator works. It follows the
Event Scheduling/Time Advance [1] model, managing the fu-
ture events (FE) list through correct insertions and removals,
and adjusting the simulated time. When no more events are
present in the list, the engine produces all relevant metrics
that may have interest to evaluate the grid.

Each element from the grid model is mapped to specific
servers (service centers) in the queue model. Specific centers
include:

• Communication service centers

– Direct link centers: following the one queue-one
server model, with a FIFO service policy. These
centers are used to connect two other centers in or-
der to move data around the grid;

– Switching centers: following the multiple queues-
one server model, with a FIFO service policy. They
are used to connect cluster nodes;

Figure 8. Simulation Process

– Internet center: following a one queue-multiple
servers model, where the number of servers is al-
lowed to grow indefinitely. This allows to emulate
a zero length queue that is fed by and feeds other
communication service centers;

• Processing service centers

– Host service centers: follow a one queue-multiple
servers model, with a FIFO policy. This type of
center emulates the jobs processing, containing
one or more servers to represent hosts with single-
or multiprocessors with shared memory;

– Centralized server service centers: follow a one
queue-multiple servers model, with FIFO policy. It
differs from the host centers by being the center
that executes the global job scheduling, directing
the events to the servers that will actually execute
the job.

4. ISPD EVALUATION
Since its goal is to provide an intuitive modeling interface

there are two different lines of test to be presented. Firstly, the
simulator has to be accurate, that is, the predicted behavior
of a set of tasks in a given grid environment must be repro-
duced during simulation. Secondly, it is needed to compare

how easy a model can be configured using iSPD against other
simulators. These results are presented now.

4.1. Accuracy
In order to verify iSPD accuracy several different tests

were performed. A set of tests aimed to verify its correctness
against simple queue models. A second set of tests aimed to
verify its correctness against complete grid models. Results
from the first set will not presented here, since they were per-
formed only to verify if the elementary blocks were imple-
mented correctly and to tune up the random generators used
in the simulation engine. The latter set of tests was composed
by simulations using iSPD and Simgrid.

The tests involved a real program running on a research
cluster, named cluster-GSPD, and comparing its results with
simulations from iSPD and Simgrid. The cluster runs De-
bian linux, version 2.6.26, and is composed by a front-end
plus eight nodes of pentium dual machines, with 2 Gbytes of
RAM. Figure 9 is a schematics of how the cluster is struc-
tured. The processing speed of each node of this cluster was
measured and resulted, in average, 700 billion instructions per
second (700,000 MIPS). This value was used by the simulator
as the average computational speed for the system.

Figure 9. Cluster-GSPD schematics

A round-robin policy was implemented in the cluster by a
MPI program. It is composed by a master process, running
in the front-end, and eight slaves, one in each of the clus-
ter’s nodes. The master process creates tasks and distributes
them following the round-robin policy. Each slave has three
threads with specific functions: receiving data, munching data
and sending results.

Table 1. Simulation results for models using the Round-
Robin scheduler

system # of tasks Time (sec) % of cluster
cluster-GSPD 1.819 –
iSPD 20 1.552 85.32
Simgrid 1.511 83.07
cluster-GSPD 2.831 –
iSPD 40 2.592 91.54
Simgrid 2.513 88.75
cluster-GSPD 4.306 –
iSPD 60 4.050 94.06
Simgrid 4.016 93.27
cluster-GSPD 5.308 –
iSPD 80 5.090 95.90
Simgrid 5.018 94.53
cluster-GSPD 6.797 –
iSPD 100 6.550 96.37
Simgrid 6.521 95.94
cluster-GSPD 7.807 –
iSPD 120 7.590 97.23
Simgrid 7.523 96.37

Models for such environment were created both in iSPD
and Simgrid. For each test there were variations on the num-
ber of tasks submitted to the cluster. The plot in Figure 10
presents the average execution times achieved with Simgrid,
iSPD and cluster-GSPD. For this test each task has a com-
puting cost of 384,45 Mflops and a communication cost of 1
kbits. Tests were performed with the number of tasks ranging
from 20 to 120, in 20 tasks steps. As one can see, the results
provided by iSPD are very close to those provided by Sim-
grid, with their difference averaging 1.6%. When compared
to the actual measurements from the cluster-GSPD, iSPD
performed reasonably well too. The average error was 6.6%
(8.0% for Simgrid), and the error linearly decreased when the
number of tasks increased (2.8% for 120 tasks). These re-
sults, also summarized in Table 1, are a strong indicator that
the iSPD generated models are quite accurate and can easily
map real environments.

4.2. Easiness of use
Since the major claim made about iSPD is that it makes

the modeling process easier than other grid simulators it is
necessary to provide proof for that. Fortunately, this can be
made simply by comparing the processes for creating the
same model in iSPD and in one of the available simulators.
Since this task has already been performed to evaluate iSPD’s
accuracy, that process will be reported here.

To create the model using iSPD it was necessary only to in-
sert the cluster icon and insert its parameters. Since the round-

Figure 10. Measured and simulated times for different num-
ber of executed tasks (Round-Robin)

robin scheduler is already available, no other activity had to
be performed by the user. The information that had to be pro-
vided consisted only of the number of nodes, scheduling pol-
icy, processing speed, communication speed and system load,
in the grid side, and computational demand in the task side.
All of these data is necessary for any simulation model, which
is not different in iSPD’s case.

On the other hand, to create the Simgrid model it was
necessary to write a program for the round-robin scheduler
(around 200 lines of C code) and two XML definitions file.
Although the XML files, describing the environment and the
application, are straightforward, they can be quite long in or-
der to represent individual links, nodes and so on. For the
model in review, the application file has 23 lines and the en-
vironment file has more than 120 lines. Figure 11 shows part
of the environment file for this model. In that figure it is pos-
sible to identify three sections. One to define the processing
nodes, one to define the communication links, and other one
to define the routing adopted for these links.

Despite not shown here, it is obvious that a C program with
200 lines is not as simple as simply applying a pre-defined
scheduling policy, as is the case for iSPD. Therefore, it is
possible to assure that it is easier to model grid systems using
iSPD than using Simgrid. Since all other grid simulators in
use have modeling characteristics similar to Simgrid, it is also
possible to assume that it is easier to model grid systems using
iSPD.

5. CONCLUSIONS
The work presented in this paper is concerned with a new

approach for grid simulation. Its goal was to provide an easy-
to-use modeling interface, which enabled non-expert users to

<?xml version='1.0'?>
<!DOCTYPE platform_description SYSTEM "surfxml.dtd">
<platform_description version="1">
 <!-- computing power - Mflop/s bandwidth - Mb/s latency s -->
 <cpu name="gspd-fe" power="768.9"/>
 <cpu name="gspd-node1" power="768.9"/>
 ...
 <cpu name="gspd-node7" power="768.9"/>
 <cpu name="gspd-node8" power="768.9"/>

 <!-- connections between front-end and internal nodes -->
 <network_link name="lan" bandwidth="100" latency="0.001"/>
 <network_link name="lan1" bandwidth="100" latency="0.001"/>
 <network_link name="lan2" bandwidth="100" latency="0.001"/>
 ...
 <network_link name="lan35" bandwidth="100" latency="0.001"/>
 <network_link name="lan36" bandwidth="100" latency="0.001"/>

 <!-- routing -->
 <route src="gspd-fe" dst="gspd-node1"><route_element name="lan1"/></route>
 <route src="gspd-node1" dst="gspd-fe"><route_element name="lan1"/></route>
 <route src="gspd-fe" dst="gspd-node2"><route_element name="lan2"/></route>
 ...
 <route src="gspd-node7" dst="gspd-node8"><route_element name="lan36"/></route>
 <route src="gspd-node8" dst="gspd-node7"><route_element name="lan36"/></route>
</platform_description>

Figure 11. Partial view of XML file describing the environ-
ment for Simgrid

model grid systems without the need to write complex pro-
grams or scripts. This easier modeling should come without
prejudice in the simulator’s accuracy.

The tool built under these specifications, iSPD, showed
both accuracy and simplicity. As the results presented in the
previous section showed, iSPD is quite accurate, providing
simulation results very close to results from real executions.
It is also simple to use, since its graphical interface allows for
an easy modeling process, based on icons and specific param-
eters asked by the interface.

New developments in iSPD are already under way. They
include the addition of more interpreters for models from/to
other simulators, where current works are in interpreters from
iSPD to Simgrid and to/from Gridsim models. In another
front, it is been developed an interface to automaticaly build
grid schedulers. With such interface it will be possible to de-
fine and evaluate new scheduling policies with simplicity. In
this interface an user will provide parameterized rules for the
policy and an intermediate Java class will be generated to em-
ulate such policy, which could be added to the scheduler li-
brary offered by iSPD. Other additions under consideration
include the simulation of virtualized environments, and com-
puting clouds.

To finish this section we can conclude that iSPD is an in-
teresting option to model grids. It is accurate and easy to use.
It has an intuitive interface based on iconic modeling, which
distinguished it from other grid simulators in use.

ACKNOWLEDGMENTS
The authors must acknowledge to FAPESP, that supported

this research through grants 08/09312-7 and individual schol-
arships.

REFERENCES
[1] J. Banks, J. S. Carson, D. M. Nicol, and B. L. Nelson.

Discrete-Event System Simulation. Prentice-Hall, 3nd
edition, 2001.

[2] W.H. Bell, D.G. Cameron, L. Capozza, A.P. Millar,
K. Stockingger, and F. Zini. Simulation of dynamic
grid replication strategies in optorsim. In Proc. of the
ACM/IEEE Workshop on Grid Computing. Springer-
Verlag, 2002.

[3] R. Buyya and M. Murshed. Gridsim: a toolkit for the
modeling and simulation of distributed resource man-
agement and scheduling for grid computing. Concur-
rency and Computation: Pract. and Exper., 14:1175–
1220, 2002.

[4] H. Casanova, L. Legrand, and A. Marchal. Scheduling
distributed applications: The simgrid simulation frame-
work. In Proc. of the 3rd IEEE Intl Symp. on Clus-
ter Computing and the Grid - CCGrid’03. IEEE Press,
2003.

[5] Henri Casanova. Simgrid: a toolkit for the simulation
of application scheduling. In Proceedings of the First
IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid 2001, pages 430–437,
2001.

[6] C. Dumitrescu and I. Foster. Gangsim: a simulator for
grid scheduling studies. In Proc. of the 5th IEEE Intl
Symp. on Cluster Computing and the Grid - CCGrid’05,
pages 1151–1158. IEEE Press, 2005.

[7] GSSIM. Grid scheduling simulator website. Web page
available at http://www.gssim.org, last accessed in Jan-
uary 2012, 2012.

[8] W. M. Jones, L. W. Pang, D. Stanzione, and W. B. Ligon
III. Characterization of bandwidth-aware metasched-
ulers for co-allocating jobs across multiple clusters.
Journal of Supercomputing, 34:135–163, 2005.

[9] William M. Jones, John T. Daly, , and Nathan De-
Bardeleben. Impact of sub-optimal checkpoint inter-
vals on application efficiency in computational clusters.
In Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing,
pages 276–279. ACM, 2010.

[10] K. Kurowski, J. Nabrzyski, A. Oleksiak, and J. Weglarz.
Grid scheduling simulations with gssim. In Proceed-
ings of the 13th International Conference on Parallel
and Distributed Systems - Volume 02, pages 1–8, 2007.

[11] Uri Lublin and Dror G. Feitelson. The workload on
parallel supercomputers: modeling the characteristics of
rigid jobs. J. Parallel Distrib. Comput., pages 1105–
1122, 2003.

