
Availability in the Flexible and Adaptable
Distributed File System

Danilo C. M. Segura
Matheus D. C. Oliveira

Thiago K. Okada
Renata S. Lobato
Aleardo Manacero

Computer Science and Statistics
Paulista State University - UNESP

Rio Preto, Brazil
Email: aleardo@ibilce.unesp.br

Lúcio R. Carvalho
Federal Technical Institute

Catanduva, Brazil
Email: luciorodrigocarvalho@gmail.com

Roberta Spolon
Computing Dept

Paulista State University - UNESP
Bauru, Brazil

Email: roberta@fc.unesp.br

Abstract—The goals of a Distributed File Systems (DFS)
may vary broadly. It is impossible to design a DFS
attaining every desirable characteristic, such as, trans-
parency, performance, privacy, reliability, and availability,
for example. In this paper we describe the improvements
achieved with the availability and performance offered by
a DFS named FlexA (Flexible and Adaptable Distributed
File System), which already proposed an architecture that
could provide data security and flexibility. Modifications
included a new approach to provide file replication and
procedures to prevent system overloads. Details about
the modifications introduced to FlexA, as well as results
achieved with them, are provided. These results indicate
that FlexA can be an important option among the known
DFS.

I. INTRODUCTION

Current developments in computer applications led
to an increase in the demand for data storage and file
management. This growth has been accompanied by a
large use of networks and distributed systems, either
in small or large scale. The efficient use of distributed
systems is linked to how files are managed by their
associated distributed file systems.

Distributed File Systems (DFS) have been explored
since the 80s, with the introduction of NFS. Unfortu-
nately, the wide range of goals aimed by these systems,
such as scalability, fault-tolerance and simplicity, imply
that most of them can provide just few of these goals.

Here we present improvements in an user-level DFS,
named FlexA (from Flexible and Adaptable DFS) [1].
FlexA provides scalability, fault-tolerance, and privacy,
even when implemented with low-cost hardware, being

easily configured and maintained. The improvements
presented here are concerned with the system’s availabil-
ity, through server’s recovery and overload avoidance,
and performance, by load balancing.

In the remaining text we present a description of
similar efforts, an overview of FlexA and the description
of the proposed improvements. Results achieved are
also presented and allow us to claim that FlexA is an
interesting alternative as an user-level distributed file
system.

II. RELATED WORK

Several distributed file systems have been proposed
along the years. We will not discuss many of these
proposals due to two main reasons: lack of further
application/usage and lack of strict addressing issues
related to availability. In the next few lines we describe
the most representative DFSs that deal with availability,
briefly identifying how they approach this issue.

a) Google File System: GFS1 operates on an archi-
tecture composed by one server (master), parallel server
clusters (chunk server) and clients. The master serializes
the requests, which are served, without further accesses
to the master, by the chunk servers. In this architecture,
the availability is provided through the replication of
all chunks, although the master may represent a serious
constraint on this [2], [3].

b) Hadoop File System - HDFS: HDFS was in-
troduced to improve the reliability of distributed sys-
tems through file replication [4]. It uses a single node

1Not to be confused with Red Hat’s GFS (Global File System),
which has several drawbacks.



(Namenode) to manage files across a cluster of servers.
Files are replicated in a structure aimed to reduce latency,
although its files are usually large (Gbytes). The major
problem with HDFS is the possibility of Namenode’s
failure, when a whole cluster would become unavailable.
Current versions try to overcome this allowing for a
passive mirror of the cluster’s Namenode.

c) Andrew File System: AFS, which was developed
by IBM and Carnegie Mellon University, works with two
distinct processes: the server, called Vice and the client,
known as Venus. To provide the availability, this system
offers a specific cache in the client, which reserves a
space in disc for the files [5]–[7].

d) Deceit: Similar to NFS, using a client-server
model. This DFS replicates files in another servers
(named secondary servers), aiming to ensure availability
[8].

e) Lustre: This system separates metadata man-
agement from the input and output service. There are
three essential elements in its architecture: clients (called
Object Storage Client), servers that storage objects (Ob-
ject Storage Servers) and servers that storage metadata
(Metadata Services). A copy of the metadata is sent to
other servers to ensure availability, with other servers
continuing to work in case of client failure [9]–[11].

f) Tahoe-LAFS: The architecture of Tahoe-LAFS
uses three types of nodes: clients, storage servers and
a central component called introducer. The availability
of files in Tahoe is ensured through a mechanism of
file division, where each file is split among the storage
servers (usually at least 3 servers capable to recover a
file). One interesting characteristic of this DFS is that
all the treatment of integrity and privacy are restricted
to client nodes [12].

III. THE FLEXA DFS

Our work is based in the FlexA (Flexible and
Adaptable distributed file system) [1], which is an at-
tempt to incorporate in a single system all the important
characteristics of NFS, AFS, GFS and Tahoe-LAFS. It
eliminates the need for a main server (such as the master
in GFS or the introducer in Tahoe) through a peer-to-peer
architecture, depicted in Figure 1, where client nodes
interact directly with the storage servers. File storage
is provided by two group of servers, a reading group,
renamed as replica or secondary servers, where only
data is found, and a writing group, renamed as primary
servers, where data and metadata are stored. Availability
is provided in FlexA through a mechanism similar to

the one presented by Tahoe-LAFS, that is, replicating
chunks of each file through few servers.

Figure 1. FlexA’s architecture.

The operation of FlexA, including how files are dis-
tributed among servers, is based in the Client nodes. To
read a file a client requests it and receives information
about where the file chunks are stored from the pri-
mary servers (writing group). The client can retrieve the
chunks either from primary servers or from secondary
servers (reading group). It must be noted that a client
may become a secondary server to some files.

To save a file, however, a client can only upload file
chunks to the primary servers, not being allowed to do
this directly to secondary servers (that is why they were
called reading group). This operation consists in splitting
the file into three chunks and copying two of them to
each of the primary servers (Figure 2). Therefore, each
file can be reassembled if at least two servers can be
reached.

Figure 2. File distribution scheme in FlexA.



IV. IMPROVING FLEXA’S AVAILABILITY AND

PERFORMANCE

Besides providing availability through the chunks
mechanism, the original proposal of FlexA was depen-
dent of primary servers. Availability was restricted to
pieces of file chunks present in the primary servers, since
the “reading group” was not fully implemented. With
this design a file could be retrieved even if one primary
server was down. In the event that two of the primaries
crashed during the same time interval, the files addressed
by such servers could not be retrieved.

To circumvent this dependance we modified FlexA’s
architectural model, where availability is mainly pro-
vided by a group of replica servers. In this model, the
primary servers become mostly metadata servers, with
each primary storing only one file chunk of each file.
The replica (secondary) servers stored copies of chunks
present in the primaries, allowing a broader reachability
for these chunks. This enables file retrieval even when
two primary servers are down, since a single server
could address chunks in the replica servers through the
metadata stored in it.

The operation of the adapted FlexA is based in
three major modules (Figure 3): Collector (to receive
requests), Synchronizer (to keep file coherence) and
Communicator (to actually transfer data). To improve the
FlexA’s fault tolerance we modified how these modules
interact. This means modifications in several manage-
ment procedures including:

∙ Turning the primary servers mostly metadata
servers;

∙ Turning the reading group into replica servers;
∙ Storing only one copy of each file chunk in the

primary/metadata servers;
∙ Storing at least two copies of each file chunk in

different replica servers;
∙ Creating a primary server replacement mechanism

to temporarily turn a replica server into a primary
(replacing a crashed one);

∙ Electing a replica server as an additional primary
server to avoid overloading primaries;

∙ Using a load balance factor to distribute replicas as
well as elect a replacement (when necessary).

These modifications are described in the following
sections.

A. Upload process

In its new architecture FlexA distributes files in a
different fashion. Firstly, a file chunk is now written

Figure 3. Client and Primary/Replica Server modules.

to a single primary server, instead of two, with each
chunk going to a different server. Each primary replicates
its chunk to some replica servers, at the same time it
synchronizes the metadata with the other primaries. This
modification allows for a faster save operation, cutting
by half the number of transfers needed before the file can
be safely considered saved. These operations involve:

1) Encrypting the file using user’s cipher key;
2) Splitting the file in three chunks, if it is larger than

10Mbytes;
3) Retrieving a list of active primary servers;
4) Sending each resulting chunk to three different

primary servers (this demands at least three active
primary servers);

5) Having each primary server to choose at two
replica servers to send the received chunk;

6) Having the primary servers to synchronize them-
selves in order to update their metadata tables.

Operations 1 through 4 are performed by the client
node, reducing the amount of work done in the servers.
As one can see, the major constraint is to have at
least three active primary servers during step 3. It is
assumed here that the whole system will always have
more than 3 hosts, providing enough hosts to the client.
In the event that momentary crashes reduce the number
of active primary servers to less than 3 machines, the
upload process will delay until an election mechanism
designates a new primary.

The whole procedure is exemplified in Figure 4. In
this figure, a file is split in chunks A, B and C; the
primary server 1, after receiving chunk A, sends it to
replica servers 1 and 3. The primary server 2 sends its
chunk to replica servers 2 and 3, while primary server 3
sends to replica servers 2 and 4.

To prevent that a host gets a large amount of files we
used a load balancing scheme to select where the repli-
cated chunks will be stored. In this scheme each primary



Figure 4. New file distribution in FlexA.

server creates a list of candidates by the application of
the equation 1. This equation determines the amount of
unused resources that each host has, considering hard
disk space (capacity to store the file) and communication
channels occupation (capacity to quickly respond for file
requests). Each node with an idleness above a given
threshold is inserted in the candidates list. When the list
is complete, the primary server randomly chooses two
hosts to become replica servers for that chunk file. This
final step avoids that all primary servers choose the same
replica servers.

Idleness = 1−
(︂
𝐻𝐷

3
+

𝐷𝐿

3
+

𝑈𝐿

3

)︂
(1)

Where:
𝐻𝐷 = Disk space used

Disk capacity and
𝐷𝐿 = Volume of outgoing traffic

Channel capacity and
𝑈𝐿 = Volume of incoming traffic

Channel capacity

Currently, the threshold used to select candidates
is set to 0.8 (or 80% of idleness). This threshold is
automatically updated if not enough hosts could offer
such availability. When this occurs, the threshold is
reduced by 0.1 (10%) from the previous value, until
a feasible threshold is achieved. Following this policy
enables FlexA to balance the load among all servers,
always looking for hosts that are more ready to respond.

B. Download process

When a client wants to retrieve a given file, it requests
the file’s metadata from one of the active primaries. This
request implies in the following sequence of events:

1) The primary locates the metadata for that file, in-
cluding the location (IP addresses) of every chunk
stored for that file;

2) The primary verifies the communication channel
load for every host storing a file chunk;

3) It sorts the list of hosts based on the communica-
tion latency (smaller to higher), trying to balance
the network traffic;

4) The primary returns the sorted list to the client;
5) The client can read each file chunk using this list

to improve download time.
In order to effectively use the file, the client has to

reassemble the chunks and to decipher the file contents.
It must be observed here that the ciphering process is
used in FlexA as a way to provide authentication. This
means that all files are visible to all users, but since they
are encrypted only users that possess the file’s encryption
key are able to read it.

C. Managing availability

The main goal in our work was to improve the
system’s availability. This was reached attacking three
issues: file replication, system’s reachability, and server’s
availability. File replication was already described in the
previous sections and is basically performed through
the replica servers. System’s reachability involves ac-
cess to hosts and software components and does not
demand special techniques to be solved, as explained
next. Server’s availability, on the other hand, is achieved
minimizing either server’s downtimes or overloads.

a) Managing reachability: In a distributed system
there are several failures that can affect its reachability.
Among these failures we considered network disconnec-
tions, host crashes and DFS crashes. As expected they
demand different reactions from the system.

Firstly, a network disconnection implies that some
hosts will become unreachable. The detection and the
treatment of such event is left to the network man-
agement protocol. FlexA will have to deal only with
the treatment of file consistency, which may become
a problem when a host gets temporarily disconnected
and some of the file chunks stored there get outdated.
The treatment of such occurrences is performed at host
initialization, where timestamps for each chunk in that
host are verified against the timestamps of that chunk in
a primary. If the host has an older timestamp, that chunk
is updated from the newest copy.

A DFS crash is understood here as when one of
the FlexA’s components becomes unresponsive. This
is recovered by a daemon mechanism that probes the



system periodically. When a given component is missing,
that daemon restarts it. With this mechanism only local
availability may be affected by the failure of a single
component, and even this can be fixed shortly.

A host crash has different impacts depending on its
type. Clients and replica servers do not demand any
special treatment. If a client crashes, its recovery is left
to the user. Files that were opened in that client are
considered lost and the system keeps their last update
as their current versions. If a replica server crashes, the
system simply ignores it for file requests and updates the
necessary chunks when the host is back to work.

b) Managing downtimes: When a primary server
crashes, implying in a downtime, FlexA enters in a state
where files may become unavailable if a second server
fails. This occurs because primary servers are the hosts
in charge of managing the files metadata, what may turn
a file unavailable. The recovery from a primary server
crash is done in three phases:

1) Crash detection, where a peer-probing mecha-
nism detects a primary server’s crash by period-
ically sending, to its peers, a message containing
results from previous probing rounds. The content
of all messages (sent/received) is compared to find
problems. In the case that a message from one
server is not received, the field corresponding to
its answer is marked as null in the next probing
message. If that field remains null during three
rounds, then the host is marked as crashed.

2) Election, where one of the remaining servers starts
an election mechanism by a request to one of
replica servers. This host starts the election using
the ring algorithm [13] to select a host that has
the largest idleness among all replica servers. The
idleness is calculated by equation 1. The election
mechanism is concluded when the message con-
taining the current best option reaches back the
host that started it, which sends a message to the
primary that requested the election informing the
elected host.

3) Replacement, when the elected host is requested
to become the new primary. The elected host will
create a metadata database and synchronize it with
the metadata tables from the other primary servers.
After doing the synchronization the new primary
will begin to act as primary starting a primary
collector module.

c) Managing overloads: A different scenario ap-
pears when a server becomes overloaded, what reduces
its efficiency to answer to client requests. To solve this

FlexA adds an additional server in the primary pool if
a primary is considered as overloaded. The metric to
calculate the primary server’s load is given by equation
2, and considers disk usage (space and access), main
memory usage, and network traffic.

Load = (𝐷𝑈 +𝐷𝐴+𝑀𝐸𝑀 +𝑁𝑇 ) (2)

where DU, DA, MEM and NT are scores given by the
occupation of the resources described by Table I.

Table I
OCCUPATION SCORES FOR THE RESOURCES USED TO DEFINE A

SERVER’S AVAILABILITY

Resource Score
0-50% 51-75% 76-100%

Disk space used (DU) 0.5 1.0 3.0
Disk access activity (DA) 0.5 1.0 3.0
Memory used (MEM) 0.5 1.0 2.0
Network used (NT) 1.0 1.0 3.0

The whole process involves up to five phases:
1) Data collection, performed periodically, currently

a 10 minutes period, by each server;
2) Determination of server’s load, where each

server uses equation 2 to determine its score and
stores it in a “load index” list. The load is tagged
as normal if the score is lower than 5.0, or it is
tagged as overloaded otherwise;

3) History evaluation, where the load index list is
evaluated and an election process is started if the
past three loads were classified as overloaded, or
returns to the data collection phase otherwise;

4) Election, where a secondary server is requested to
start the same election procedure used for server
crashes, returning the IP of the elected host to the
primary server that requested the election;

5) Server’s addition, where the replica server just
elected receives a message to start its Collector
module and to synchronize its metadata database
to the primary’s database in order to become an
additional primary server.

V. PERFORMANCE EVALUATION

To evaluate the performance of FlexA, considering
both file access time and server recovery, we conducted
several tests using a cluster of 16 hosts split in two
groups and linked through a 1Gb/s network. The first
group (called cluster A) contained hosts running Intel
Pentium Dual E2160 processors, with 2 Gbytes of RAM
and 40 GBytes of disk capacity. The second group



(called cluster B) contained hosts running Intel Core
i7-3770 processors, with 16 Gbytes of RAM and 500
Gbytes of hard disk. All machines, including the virtual
machines (VM), run Debian Linux 7.1.0.

A. Measuring access time

Access time was measured considering operations of
reading and writing (download/upload) files with sizes of
1MB, 5MB, 10MB, 25MB, 50MB, 100MB and 200MB.
The choice for such sizes was based on typical con-
tent stored in a file system, which includes text files,
music, photos, videos and applications. To evaluate its
performance we compared FlexA results with Tahoe-
LAFS (it was the basis for FlexA) and NFS (simple
and widely available). Comparisons against GFS, among
other systems were not performed due to its restrictive
availability.

The results presented here are for a scenario with
16 clients, distributed over hosts in cluster A (by the
virtualization2 of up to four clients in each host). The
servers were distributed over cluster B. Each run was
repeated 20 times in order to accommodate statistical
variations.

The servers implemented in cluster B presented the
following configuration:
– Original FlexA - 3 primary servers
– Adapted FlexA - 3 primary and 5 replica servers
– Tahoe-LAFS version 4 - 1 introducer and 7 storage
servers acting as helpers
– NFS version 1.9.2-1 - 1 server

The plot in Figure 5 shows the average time spent
reading files in these DFS, partially summarized in table
II, while attending 16 clients. As one can see, NFS has
a higher throughput for smaller files, what is expected
due to its simple client-server model. FlexA has a better
throughput for files larger than 25 Mbytes, which is
a typical size for multimedia data. It is interesting to
observe that for files larger than 10 Mbytes, which
are split in three chunks, the FlexA’s throughput has a
noticeable improvement.

The performance of these systems for writing oper-
ations is shown in Figure 6, while table III partially
summarizes the average time spent to write these files.
In this case NFS also performed better for smaller files,
although FlexA now has a better throughput even for
the 25 Mbytes files. Although FlexA’s throughput also

2Each VM was configured with one processor, 1Gb of RAM, and
10Gb of disk.

Table II
AVERAGE TIME, IN SECONDS, SPENT TO READ A FILE FOR 16

SIMULTANEOUS CLIENTS.

1 MB 10 MB 25 MB 100 MB 200 MB
Original FlexA 1,22 1,21 1,45 5,59 23,26
Adapted FlexA 1,12 1,21 1,38 4,57 22,14
NFS 0,14 0,28 0,65 9,35 242,37
Tahoe-LAFS 0,91 25,48 55,27 107,57 1073,42

Table III
AVERAGE TIME, IN SECONDS, SPENT TO WRITE A FILE FOR 16

SIMULTANEOUS CLIENTS.

1 MB 10 MB 25 MB 100 MB 200 MB
Original FlexA 0,48 1,21 2,50 17,35 50,57
Adapted FlexA 0,17 0,55 1,29 5,99 16,42
NFS 0,12 0,54 1,81 30,39 93,33
Tahoe-LAFS 0,61 1,67 4,79 74,68 556,99

Figure 5. Measured delivery times for reading (download) opera-
tions, with 16 clients.

Figure 6. Measured delivery times for writing (upload) operations,
with 16 clients.

decreases for larger files, the rate of reduction is smaller
than the other DFS evaluated.

B. Measuring FlexA’s reaction to overloads

A different set of tests involved measuring how FlexA
can detect an overloaded primary server and react to



this status. The test presented here involved 3 primaries
and up to 36 additional hosts, where 4 of them were
acting only as replica servers. The primary servers have,
respectively, disks with 26%, 43%, and 28% of occupa-
tion. Since all the remaining parameters used to calculate
the server’s load were kept in a low usage, the overload
status was dependent on the disk usage.

As shown in Table IV, the tests involved repeated
writing operations from 16 and 32 clients, which wrote
files with sizes of either 50MB or 100MB. In these
scenarios FlexA considered that server 2 was in an
overload status only for 32 clients writing 100MB files.
In this case the disk occupation reached 76%, making
its load score higher than 5.0.

Table IV
REACTION TO SIMULTANEOUS WRITING OPERATIONS WITH

PRIMARY SERVERS (P1, P2 AND P3) DISKS INITIALLY WITH 26,
43, 28% OF OCCUPATION RESPECTIVELY

Number of File Final % of disk use Status
clients size (P1, P2, P3) Status

16 50 MB 35, 52 and 37 Normal
16 100 MB 44, 59 and 45 Normal
32 50 MB 43, 59 and 45 Normal
32 100 MB 59, 76 and 60 Overload

When the situation shown at line 4 of Table IV is
reached the system has to starts the search for a replica
server that can acts as primary. In the tests the replica
servers (S1, S2, S3 and S4) had, respectively, 57%,
23%, 29% and 28% of disk occupation, resulting in the
election of server S2 as the new primary server.

C. Measuring server’s recovery

The current version of FlexA has its availability de-
pending on how frequently a server crashes and how
quickly it responds with a replacement. While the latter
is defined by the system’s implementation, the former
depends on the hardware and how is its usage. Statis-
tically speaking, distributed systems present failure be-
havior following certain patterns. From the patterns and
parameters presented by Schroeder and Gibson [14] we
can expect that a system running current hardware would
have around 4 failures per server per year (hardware type
D).

As described earlier, files will be unavailable every
time that a primary server crashes. This unavailabil-
ity lasts during the whole recovery process, including
detection, election and replacement phases. Therefore,
in order to have an estimation for system’s availability
we measured how long this process takes for different

configurations. The results for a configuration with four
replica servers are presented in table V, and allow us to
conclude that the recovery process is constrained by the
detection phase. The averages below were obtained with
200 induced crashes (removing the network cable of a
server).

Table V
TIME SPENT IN THE RECOVERY OF PRIMARY SERVERS (IN

SECONDS)

Detection Election Replacement Total
Average 13.00773 0.06935 0.00784 13.01577
Standard Deviation 0.00176 0.00352 0.05466 1.05539

As a remark, tests involving the variation in the
number of replica servers allowed to conclude that the
election is not a problem, even for a large number of
hosts. The time spent in the election process using 32
hosts was only 50ms higher than the fastest measured
time (less than 20% above the average) and its growth
curve implies that this time would remain under a second
even for few hundred servers.

Therefore, if a server crashes the system will take
less than 14s in average to recover and have one of the
replica servers working as its replacement. This is a very
short time if one remembers that it is expected only four
crashes per server per year. Combining this result with
the fact that FlexA regularly works with three primary
servers we have:

Time to replace a server < 14s
Number of servers 3
Number of server failures/year 4
Time spent recovering from server fail-
ures/year

168s

% of time without failures/year 99.999%

This result can be considered excellent. Clients using
files stored in FlexA may have access to them almost all
the time, supposedly with very few and short downtimes.
This is a direct result of replicating the metadata among
at least three primary servers, allowing the system to
respond if at least one still active.

VI. CONCLUDING REMARKS

The results presented in the previous section show that
the modifications made to FlexA, in order to improve
its availability and performance were quite successful.
Its speed improved from the former version besides
the additional processing to forward file’s chunks over
the replica servers. In another direction, the use of
parameters such as storage capacity and network latency



as metrics for balancing the file replication and access
proved to be advantageous, although this could not be
directly measured because the original version did not
implement file replication.

Looking at our major goal, that was availability, it
is clear that the process to recover from a server crash
was highly efficient, besides simple. Our contribution
resides in providing a distributed mechanism for failure
detection and recovery that is simple, fast and efficient.
Even the detection phase, which is the bottleneck of
this process, is quite fast. This avoids that the remaining
servers get overloaded by a long period with less than
three hosts working as metadata providers. The process
of replacing the crashed server is also simple and usually
fast, since it consists simply of copying the metadata to
the elected host.

In the same direction, allowing that a replica server
become a primary server during a temporary overload
condition also improved availability. The continuous
monitoring of the server’s load can be done without
a significant overhead. Servers have only to collect
simple data to calculate a simple load index, electing a
secondary host to act as a primary if a sustained overload
condition is observed.

Overall, the new FlexA is faster than the version
without replica servers and Tahoe-LAFS, although being
slower than NFS for smaller files. It should be noted,
however, that NFS does not provide a stronger mecha-
nism for file availability (does not provide replicas) and
does not work for larger files, which are usual nowadays.
This allows us to conclude that FlexA has a good overall
performance and provides a strong file availability.

ACKNOWLEDGMENT

The authors would like to thanks FAPESP for the
grants that partially allowed this work.

REFERENCES

[1] S. Fernandes, R. Lobato, A. Manacero, R. Spolon, and M. Cave-
naghi, “A flexible and adaptable distributed file system,” in
Proceedings of the Intl. Conf. on Parallel and Distributed
Processing Techniques and Applications, ser. PDPTA 2013, Las
Vegas, NV, USA, 2013, pp. 258–263.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” in Proceedings of the ACM Symposium on Operating
Systems Principles. ACM, 2003, pp. 29–43.

[3] A. Osadzinski, “Gfs: Evolution on fast-forward,” Communica-
tions of the ACM, vol. 53, no. 3, pp. 42–49, 2010.

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” in Proc. of IEEE Symposium on
Mass Storage Systems and Technologies (MSST). Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[5] A. S. Tanenbaum and M. Van Steen, Distributed systems:
principles and paradigms. Pearson Prentice Hall, 2007.

[6] J. Williams, E.H., N. Sullivan, J. Rusnak, J. Menges, D. Ogle,
R. Floyd, and W. Chung, “The andrew file system on os/2 and
sna,” in Proceedings of TRICOMM ’91, 1991, pp. 181–191.

[7] J. H. Howard, “An overview of the andrew file system,” in Pro-
ceedings of the Usenix Winter Technical Conference. Usenix
Association, 1988.

[8] A. Siegel, K. Birman, and K. Marzullo, “Deceit: a flexible
distributed file system,” in Management of Replicated Data,
1990. Proceedings., Workshop on the, 1990, pp. 15–17.

[9] S. Jian, L. Zhan-huai, and Z. Xiao, “The performance optimiza-
tion of lustre file system,” in 7th Intl Conf on Computer Science
Education (ICCSE), 2012, pp. 214–217.

[10] J. Logan and P. Dickens, “Towards an understanding of the
performance of mpi-io in lustre file systems,” in IEEE Intl Conf
on Cluster Computing, 2008, pp. 330–335.

[11] W. Yu, R. Noronha, S. Liang, and D. Panda, “Benefits of
high speed interconnects to cluster file systems: a case study
with lustre,” in 20th Intl Parallel and Distributed Processing
Symposium, IPDPS, 2006, pp. 8 pp.–.

[12] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The least-authority
filesystem,” in Proceedings of the 4th ACM International Work-
shop on Storage Security and Survivability, ser. StorageSS ’08.
New York, NY, USA: ACM, 2008, pp. 21–26.

[13] E. Chang and R. Roberts, “An improved algorithm for decen-
tralized extrema-finding in circular configurations of processes,”
Commun. ACM, vol. 22, no. 5, pp. 281–283, May 1979.

[14] B. Schroeder and G. A. Gibson, “A large-scale study of failures
in high-performance computing systems,” in Proceedings of
the International Conference on Dependable Systems and Net-
works, ser. DSN ’06. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 249–258.


