
Context-Sensitive Analysis of Obfuscated x86 Executables ∗

Arun Lakhotia† Davidson R. Boccardo‡
†Center for Advanced Computer Studies

University of Louisiana at Lafayette, LA, USA
{arun, axs6222}@louisiana.edu

Anshuman Singh† Aleardo Manacero Jr.‡
‡Electrical Engineering Dept.

Paulista State University (UNESP), Brazil
drb3065@louisiana.edu, aleardo@ibilce.unesp.br

Abstract
A method for context-sensitive analysis of binaries that may have
obfuscated procedure call and return operations is presented. Such
binaries may use operators to directly manipulate stack instead of
using native call and ret instructions to achieve equivalent behavior.
Since definition of context-sensitivity and algorithms for context-
sensitive analysis have thus far been based on the specific seman-
tics associated to procedure call and return operations, classic in-
terprocedural analyses cannot be used reliably for analyzing pro-
grams in which these operations cannot be discerned. A new no-
tion of context-sensitivity is introduced that is based on the state
of the stack at any instruction. While changes in ‘calling’-context
are associated with transfer of control, and hence can be reasoned
in terms of paths in an interprocedural control flow graph (ICFG),
the same is not true of changes in ‘stack’-context. An abstract in-
terpretation based framework is developed to reason about stack-
contexts and to derive analogues of call-strings based methods for
the context-sensitive analysis using stack-context. The method pre-
sented is used to create a context-sensitive version of Venable et
al.’s algorithm for detecting obfuscated calls. Experimental results
show that the context-sensitive version of the algorithm generates
more precise results and is also computationally more efficient than
its context-insensitive counterpart.

Categories and Subject Descriptors K.6.5 [Security and Pro-
tection]: Invasive software (e.g., viruses, worms, Trojan horses);
D.2.0 [Software Engineering–General]: Protection mechanisms;
D.2.7 [Distribution, Maintenance, and Enhancement]: Restructur-
ing, reverse engineering, and reengineering; F.3.2 [Semantics of
Programming Languages]: Program analysis

General Terms Languages, Security, Theory, Verification

Keywords Analysis of binaries, Context-sensitive analysis, Ob-
fuscation, Deobfuscation

∗ This research was supported in part by funds from the Louisiana Gover-
norś Information Technology Initiative, Air Force Office of Scientific Re-
search grant AF9550-09-1-0715, and Coordination for the Improvement of
Higher Education - (CAPES - Brazil)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’10 January 18-19, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-727-1/10/01. . . $10.00

1. Introduction
Recent years have seen an increase in research activity in the area
of binary analysis [1, 2, 8, 10, 13, 16, 22, 24, 28]. For third-party
programs where the source code is not available to the analyst, anal-
ysis for malicious (hidden) behavior can reliably be performed only
on binaries. Even when the code is available, analyzing the binary
is the only true way to detect hidden capabilities, as demonstrated
by Thompson in his Turing Award Lecture [27]. Lest Thompson’s
paper be considered theoretical, a variation of his ideas has been
put into practice by the malware W32.Induc.A [20].

Current methods of analyzing binaries are modeled on methods
for analysis of source code. A program is decomposed into a col-
lection of procedures, and the program is analyzed using classical
interprocedural analysis [25]. Since a binary, albeit disassembled,
is not syntactically rich, the identification of procedure boundaries,
parameters, procedure calls, and returns is done by making assump-
tions, such as the sequence of instructions used at a procedure en-
try (prologue), at a procedure exit (epilogue), the parameter passing
convention, and the conventions to make a procedure call. These as-
sumptions are often referred, by researchers, as a ‘standard compi-
lation model.’ However, the ‘standards’ are compiler specific; they
are not industry standards. Even for a given compiler the standards
may vary depending on the optimization scheme selected.

We consider a binary to use call obfuscation if it does not
follow any particular convention for the layout of the procedure
code in memory or if it does not use call or ret instructions to
make procedure calls. Binaries may not adhere to accepted conven-
tions/assumptions because its creator, whether a compiler or a pro-
grammer, wishes to deter others from analyzing it. Such deliberate
violation of assumptions, conventions, or for that matter standards,
to make the binary harder is termed as obfuscation. It is becom-
ing increasingly common to obfuscate code to protect intellectual
property [3, 19]. However, the code may also be obfuscated to hide
malicious intent [2, 15]. Most malwares today use a variety of ob-
fuscations to deter its disassembly, its reverse engineering, or its
analysis.

Figure 1 presents an example to help visualize the problem
space. Consider the sample program of Figure 1(a). The program is
simplified only to highlight its call and return structure. Figure 1(c)
shows an obfuscated version of this program. It is generated using
a naı̈ve obfuscation: replace every call instruction by a sequence
of two push instructions and a ret instruction, where the first push
pushes the address of the instruction after the call instruction (the
return address of the procedure call), the second push pushes the
target address of the call, and the ret instruction causes execution
to jump to the target address of the call.

Figure 1(b) shows the control flow graph (CFG) of the sample
program of Figure 1(a) created by assuming that the target of a
call instruction represents the entry point of a procedure and a ret
instruction returns from call to the closest preceding entry point.

131

(a) Sample
code.

(b) CFG. (c) Obfuscated
version.

Figure 1. Example motivating context-sensitive analysis of obfus-
cated code.

The edges in this graph represent call and return edges. Context-
sensitive interprocedural analysis algorithms require pairing the
edges such that information flowing from one call node is not
propagated to another call node [25] via a mismatched return edge.

Since the program of Figure 1(c) does not have any call in-
struction, it does not provide any clues for finding procedure entry
points. Current technologies may infer that this program has only
one procedure consisting of the entire code [11]. Furthermore, most
works on analysis of binaries will assume that each ret instruction
returns to the caller of this single procedure, thus generating an in-
correct CFG. As a result, any resulting analysis based on this CFG
will also be incorrect.

The obfuscation shown in Figure 1(c) is naı̈ve and presented
to demonstrate the concept. More obfuscations, although still triv-
ial, may be performed by shuffling the two push instructions among
other code. More complex obfuscations may be achieved by not us-
ing push and ret instructions; instead one may use move, increment,
and decrement operations directly on the stack pointer to perform
equivalent behavior [16].

This paper presents a method for performing context-sensitive
analyses of binaries that obfuscate procedure calls and returns, such
as the program in Figure 1(c). Unlike current methods for per-
forming context-sensitive interprocedural analysis of binaries, our
method does not require the use of explicit call and ret instruc-
tions. Our method depends only on the knowledge of how the stack
pointer and the instruction pointer are represented, the direction of
stack growth, and the static identification of operators manipulat-
ing the stack pointer. Our method requires only that the register or
memory location used to represent a stack pointer must be known
statically prior to the analysis. Similarly, even though in most archi-
tectures stack grows towards lower memory addresses, the conven-
tion can be altered if a programmer is representing his own stack.
Our analysis assumes the knowledge of this convention.

The main contributions of this paper may be summarized as
follows:

• It introduces the concept of stack-context, used in lieu of
calling-context, to perform context-sensitive analysis of a bi-
nary that uses call obfuscation.

• It presents a systematic development of generic context-sensitive
analysis using Galois connection based abstractions of a tradi-
tional trace-based semantics. The context-abstractions it derives
are generic in that they dependent only on the LIFO nature of
creation and deletion of contexts. These abstractions enable
derivation of stack-based context-sensitive analysis, which, un-

like calling-context based analysis of prior work, do not depend
upon transfer of control semantics.

• It systematically derives generic versions of Sharir and Pnueli’s
k-suffix call-strings abstractions [25] and Emami et al.’s strat-
egy of abstracting calling-contexts (referred to in this paper as
�-contexts [9]. Prior work on these abstractions was dependent
upon the control flow semantics of call and ret instructions.

• It proposes a general methodology for deriving sound context-
sensitive analysis from context-insensitive one. As an appli-
cation, a context-sensitive version of Venable et al.’s algo-
rithm [28] is derived. The resulting analysis is shown to be
sound.

• It presents empirical results comparing the context-sensitive
and insensitive versions of Venable et al.’s algorithm. The em-
pirical results show that the context-sensitive analysis requires
significantly less time and also yields more precise results.

Section 2 discusses the related works. Section 3 provides back-
ground in domain theory and abstract interpretation. Section 4 in-
troduces context-trace semantics, a trace semantics in which con-
text is made explicit. Section 5 presents generalization of Sharir
and Pnueli’s [25] and Emami et al.’s context abstractions. Section 6
presents our algorithm derives context-sensitive version of Venable
et al.’s algorithm. Section 7 presents empirical evaluation of the
method presented and is followed by our concluding remarks.

2. Related Works
Prior research related to this paper may be broadly grouped into
the following categories: interprocedural analysis (in general), in-
terprocedural analysis of binary programs, and analysis of mali-
cious/obfuscated programs.

Precise and efficient context-sensitive interprocedural data-flow
analysis of high-level languages has been an active area of research.
The general strategies fall within the two approaches proposed
by Sharir and Pnueli [25], namely the call-string approach or the
procedure summaries approach. A good summary of these works
may be found in [12].

The classic interprocedural control flow graph (ICFG) based al-
gorithms for computing function summary require a priori iden-
tification of procedure entries and exits. These methods cannot
directly be adapted for our needs because call obfuscations pre-
vent determination of the procedures and their boundaries, thus vi-
olating a pre-requisite. Reps et al.’s weighted pushdown system
based interprocedural analysis, which also computes function sum-
maries [23], does not use ICFGs. Indeed our representation of con-
text using the state of stack is analogous to Reps et al.’s use of
stack of a pushdown automata [17, 23]. However, a pushdown sys-
tem implicitly depends upon the the transfer of control semantics
of call and return instructions, and thus may not be generalizable to
programs with arbirtrary stack operations.

Might and Shivers [21] framestrings for λ-based languages is
similar to our stack-string abstraction in that the context is defined
in terms of push and pop stack operations. Their work also includes
modeling environments, with the intent of enabling certain inlin-
ing optimizations. Use of their environment theory in our context
would be a valuable direction for future work.

The call-string approach follows the execution of a program. Al-
gorithms based on this approach have classically been modeled to
determine a change of context based on the semantics of procedure
call/return and are described using ICFG. We generalize context
abstraction such that it does not depend on the semantics of pro-
cedure invocation. As is done for context-sensitive points-to anal-
ysis, the call-graph used for the call-string approach may be com-
puted on the fly [9, 31–33]. Determining transfer of control based

132

on contents of memory or register is analogous to computing the
points-to relation for higher-level languages. However, since mem-
ory addresses are linearly ordered, the resulting “points-to” sets in
our problem context can be abstracted using a linear function. Thus,
our method is analogous in spirit, though not in letter, to context-
sensitive points-to analysis.

Interprocedural analysis of binaries has also received attention
for post-compile time optimization [26] and for analyzing binaries
with the intent to detect vulnerabilities not visible in the source
code, such as those due to memory mapping of variables [1]. Good-
win uses the procedure summary approach to interprocedural anal-
ysis to aid link-time optimization [10]. Balakrishnan [1] uses the
call-string approach. As mentioned earlier, these methods assume
a certain compiler model to identify code segments related to per-
forming procedure calls, such as that supported by IDA Pro [11].
In contrast, we split the semantics of call and ret instructions. We
model their affect on the “context” separate from their affect on the
“transfer of control.” The context is represented by the state of the
stack and is modeled by an instruction’s affect on the stack pointer.
The transfer of control is analyzed using Balakrishnan and Reps’
Value-Set Analysis (VSA) [1].

Like us, Kinder et al. have developed abstract interpretation
framework for contructing control flow of binaries containing indi-
rect transfer of control [13]. Their analysis, unlike ours, is context-
insensitive since it does not model contexts of any kind. It uses con-
stant propagation to determine values in memory and register, and
thus is likely to generate greater over-approximations than those
resulting from our use of VSA [1].

There has been significant work in obfuscation of programs
with the intent to thwart static analysis [3, 19]. The obfuscation
techniques are targeted at defeating specific phases in the analysis
of a binary [15]. On the other hand a metamorphic malware, a
malware that transforms its own code as it propagates, may use
procedure call obfuscations simply to help its own transformation
algorithm, as is the case with the Win32.Evol virus, a metamorphic
virus [30]. It has the side-effect of defeating any interprocedural
analysis that depends on a traditional compiler model [15].

There has also been efforts in the use of other semantics based
methods for detecting malware [2, 7]. Term-rewriting has been
proposed to normalize variants of a metamorphic malware [29].
None of these works specifically addresses analysis of obfuscated
programs that do not conform to the standard compilation model.
The foundations of the approach presented in this paper come from
previous work of our research group in analyzing programs with
obfuscated calls [16, 28].

3. Preliminaries
3.1 Domain Theory

A binary relation �C : C × C is a partial order upon a set C iff
�C is reflexive, transitive and antisymmetric. For a set C partially
ordered by �C and a subset X of C,

F
X denotes the element

of C (if it exists) that satisfies the following conditions: (i) ∀x ∈
X, x �C

F
X; and (ii) ∀y ∈ C,∀x ∈ X, x �C y ⇒ F

X �C y.
The element

F
X is called the least upper bound (lub) of X. Its

dual, the greatest lower bound (glb) of X, is denoted by
�

X.
When operating on a set of two elements, the operations are rep-
resented by the binary operators � and �, respectively. A partially
ordered set 〈C,�C〉 is a lattice iff ∀x, y ∈ C, both x� y and x� y
exist. A partially ordered set 〈C,�C〉 is a complete lattice iff for all
subsets X of C, both

F
X and

�
X exist. For any set X, 〈℘(X),

⊆〉 is a lattice under the usual subset ordering ⊆.
Let X∗ denote the Kleene closure of the set X, i.e., the set

of finite sequences over X. Let ε ∈ X∗ denote the sequence
of length 0. Let (x i) denote the ith element of the sequence

x ∈ X∗. Let ‘.’: X × X∗ → X∗ be the cons operator, that
inserts an element at the head of a sequence, defined formally as:
a.x = y ⇔ (y 0) = a ∧ ∀i ≥ 0 : (y i + 1) = (x i). If 〈X,
�X〉 is a lattice, then 〈X∗, �X∗〉 is a lattice where �X∗ is defined
as follows:

∀x1, x2 ∈ X;s, s1, s2 ∈ X∗

ε �X∗ s

x1.s1 �X∗ x2.s2 ⇔ x1 �X x2 ∧ s1 �X∗ s2

The order resulting from �X∗ is called strong ordering, for it
defines a sequence to be smaller than another sequence iff all of
its elements are smaller than the corresponding elements of the
other sequence. We introduce some operators on sequences for
syntactic convenience. We assume two polymorphic extensions of
the cons operator “.”, one to insert element at the end of a sequence:
X∗ × X → X∗, and the other to concatenate two sequences:
X∗ × X∗ → X∗. We also define the function rest operating on
X∗ as follows: (rest a.x) = x. When convenient, we also use the
notation “Y ↓X” to denote the Xth element of the pair Y .

Two complete lattices, C and A, form a Galois connection iff
there exists an adjunction between C and A, i.e., ∃α : C → A and
γ : A → C such that ∀a ∈ A, c ∈ C : α c �A a ⇔ c �C γ a. A
Galois connection is denoted by (C, α, γ, A) where α(γ) is the
left (right) adjoint of γ(α). It is enough to specify either α or
γ map because in any Galois connection the left adjoint map α
uniquely determines the right adjoint map γ and vice versa. Given
the left adjoint α, the right adjoint is determined as γ a =

F
C{c ∈

C | α c �A a}; or given the right adjoint γ, the left adjoint is
determined as α c =

�
A{a ∈ A | c �C γ a}. Two complete

lattices, C and A, form a Galois connection (C, α, γ, A) iff α is
additive or iff γ is coadditive. A Galois connection is called Galois
insertion when α is surjective (or, equivalently, γ is injective).

Given a Galois connection (C, α, γ, A), a function f# : A →
A is a sound approximation of a function f : C → C when
α ◦ f �A f# ◦ α, or equivalently, f ◦ γ �C γ ◦ f#. When
the abstraction and concretization maps are obvious from context,
we denote C � A to mean that ∃α, γ such that (C, α, γ, A) is a
Galois connection. We call A1 � A2 � . . . � An a chain of
Galois connections.

3.2 Abstract interpretation

Abstract interpretation is a unified framework for designing ap-
proximate semantics of programs [5, 6]. It allows the systematic
derivation of data flow analyses and provides methods to prove their
correctness and termination.

An analysis may be derived in stages, starting from concrete se-
mantics to abstracted semantics that satisfies computational proper-
ties. Soundness of the analysis is demonstrated by creating Galois
connections between the domains of the successive stages. Galois
connections may also be used to order two or more analyses by
their precision.

Following [4], a program may be formalized as a graph or
a transition system τ = 〈Σ, Σi, t〉, where Σ is a set of states,
Σi ⊆ Σ denotes the set of initial states and t ⊆ Σ × Σ defines
the transition relation between states. A finite partial trace σ ∈ Σ∗
is a sequence of program states s0...sn such that s0 ∈ Σi and for
all i ∈ [0, n) : (si, si+1) ∈ t. The set of all such finite partial
traces is called the trace semantics of the program and is given by
the least fixpoint of the semantic transformer F :

F T = Σi ∪ {σ.s.s′ | σ.s ∈ T ∧ 〈s, s′〉 ∈ t}
where T is a set of finite partial traces. The domain of this trace
semantics is ℘(Σ∗). Hence, the least fixpoint (lfp) of F is as
follows:

lfp�
⊥ F =

G

n≥0

Fn ⊥

133

Let (℘(Σ∗), α, γ, Abs) be a Galois connection, then F# : Abs →
Abs is sound w.r.t F when F# satisfies the above mentioned re-
quirements (in Sec. 3.1). It can be shown that F# reaches a fixpoint
by the well known fixpoint transfer theorem [6]. The precision and
cost of the approximated fixpoint is related with the choice of the
widening operator [5].

The derivation of the static analyzer using abstract interpretation
may be summarized as follows. The program state is classically
represented by the domain Σ = I × Store, where I is the domain
of instructions and Store is the domain of stores. The analysis is
derived from a chain of Galois connections linking the semantic
domain ℘((I × Store)∗) to the analysis domain I → Abstore,
where Abstore is an abstraction of stores. The derivation may have
the following stages:

1. The set ℘((I × Store)∗), called set of traces, is approximated
to trace of sets, represented by (℘(I × Store))∗.

2. The trace of sets is equivalent to (I → ℘(Store))∗. This
sequence of mapping of instructions to set of stores can be
approximated by I → ℘(Store).

3. Finally, a Galois connection between ℘(Store) and Abstore
completes the analysis.

4. Context-trace semantics
Context-sensitivity is presented in the literature classically in terms
of paths of an ICFG, a graph that encodes the transfer of control
component of semantics of instructions. An ICFG consists of CFGs
for individual procedures, and edges between these CFGs represent
interprocedural control flow, typically represented by call edges
and return edges. A path, starting from the entry node, in an indi-
vidual CFG represents a valid sequence of flow of control. A flow-
sensitive analysis propagates data over paths of a CFG. However, a
path that starts from the entry of the program and traverses nodes
in multiple CFGs may not always represent a valid flow of control.
For such a path to be valid the call and the ret edges in the path
should be paired, meeting certain constraints, the details of which
may be found elsewhere in the literature [12].

Since the prior definition of context-sensitivity is tied to seman-
tics of procedure call and return statements of high-level languages,
and therefore, call and ret instructions of assembly language, it is
not directly applicable for context-sensitive analysis of binaries that
are obfuscated.

In this section we use the machinery of abstract interpretation to
develop a generalized notion of context-sensitive analysis, where
contexts are maintained in LIFO order. The concept is general in
that it only requires the knowledge of the set of instructions that
create contexts and those that delete contexts. This generalized con-
cept of context-sensitivity does not depend on whether an instruc-
tion transfers control. The primary constraint required is that the
most recently created context be destroyed first.

Let � ⊆ I denote the set of instructions (of a language) that
open contexts, and � ⊆ I denote the set of instructions that close
contexts. A context string is the sequence of context opening in-
structions belonging to the �∗ ⊆ I∗. The function π represents the
effect of an individual state, an element of Σ, on the accumulated
context string.

π : Σ → �∗→ �∗

π s ν �
j

i.ν if i ∈ �
(rest ν) if i ∈ �

where i = s ↓ 1. If the instruction in the state given by s ↓ 1
belongs to the set �, it is pushed on the current context string. If
the instruction belongs to � it pops the topmost context from the
context string. Otherwise, the context string is left unchanged.

Now given a trace σ we can map it to its current context ν =
Π σ, where Π is defined as follows:

Π : Σ∗ → �∗

Π σ � (Π′ σ ε)

Π′ : Σ∗ → �∗→ �∗

Π′ ε ν � ν

Π′ s.σ ν � (Π′ σ (π s ν))

The function Π maps a trace to its context string–the list of contexts
that are open–by applying π repeatedly on successive elements of
σ. Let νi represent the context string from the ith application of
π. The function Π (using Π′) establishes the following relation
νi = (π (σ i) νi−1), where ν0 = ε, for 1 ≤ i ≤ |σ|.

Consider, for example, the sequence of instructions a x b c y a b a
resulting from projecting out only the instructions from a trace. Let
a, b, c ∈ � and x, y ∈ �. The context string associated with each
prefix of the projected trace sequence is given as follows:

{(a) �→ (a), (a x) �→ ε, (a x b) �→ (b), (a x b c) �→
(c b), (a x b c y) �→ (b), (a x b c y a) �→ (a b), (a x b c y a b) �→
(b a b), (a x b c y a b a) �→ (a b a b)}.

A context trace is a pair of a context string and a trace (ν, σ) ∈
(�∗×Σ∗). Not all elements of the set (�∗×Σ∗) are meaningful. We
define a context-trace in which the context string represents the
context associated with the trace as a Π-valid context trace.

Definition 1. A context-trace (ν, σ) ∈ (�∗×Σ∗) is Π-valid iff
ν = Π σ.

A Π-valid context trace is equivalent to a valid-interprocedural
path in the ICFG of a program when the sets � and � represent the
set of call and return instructions, respectively, of that program.

We denote the set of all finite partial Π-valid context traces as

℘(�∗×Σ∗)Π ≡ �∗ Π−→ ℘(Σ∗). This forms the semantic domain for
the context-trace semantics. The following lemma shows that this
semantic domain is equivalent to ℘(Σ∗), the semantic domain for
the trace semantics.

LEMMA 4.1. �∗ Π−→ ℘(Σ∗) ≡ ℘(Σ∗)

Proof Follows from the definition of Π-valid context trace.

This then gives us the framework needed to develop context-
sensitive analyses, where context is made explicit. In particular,
it gives the framework to derive context-sensitive counterpart of
context insensitive analysis.

Assume that an analysis I → Abstore derived from the trace
semantics ℘((I×Store))∗ is context-insensitive. Its context sensi-
tive counterpart may be derived using the following chain of Galois
connections:

�∗ Π−→ ℘((I × Store)∗)

� �∗ Π−→ (℘(I × Store))∗

≡ �∗ Π−→ (I → ℘(Store))∗

� �Abs Π−→ I → Abstore

where �Abs is an abstraction of the concrete context �∗. In the
following section we describe two context abstractions, generalized
from analogous abstractions used for calling-contexts.

5. Context abstractions
Due to recursion the set of all finite length calling-contexts in a
program may be infinite. Even when a program does not have re-
cursion, the number of calling-contexts it has can be exponentially
large [18]. So while a full call-string analysis may yield the most
precise results, it may not be practical to compute it. To make an

134

analysis scalable for large programs, it is common to reduce the
space of calling-contexts by using certain abstractions.

The literature contains two significant classes of abstractions for
calling-contexts. The first one, introduced by Sharir and Pnueli [25],
abstracts a call string by mapping it to its k-length suffix. The sec-
ond abstraction, introduced by Emami et al. [9], effectively ab-
stracts a call string by reducing recursive paths in it by a single
node. We say ‘effectively’ because the method is not stated as an
abstraction over call-strings but can be mapped to such an abstrac-
tion. There are a few later works whose calling-context abstractions
may also be mapped to this second abstraction [31, 33].

What is true of calling-contexts will also be true for any other in-
stantiation of our generalized notion of context. Hence, it is fruitful
to develop generalized context abstractions for use in any context-
sensitive analysis. Since the abstractions for calling contexts have
been defined in terms of paths over ICFG, the original definitions
cannot be directly mapped to generalized contexts that are defined
independent of control flow.

In the following subsections we derive the two abstractions us-
ing the machinery of abstract interpretation. We call the generaliza-
tion of Sharir and Pnueli’s k-suffix approach as k-context abstrac-
tion and Emami et al.’s reduction of recursive loops as �-context
abstraction. While Sharir and Pnueli used k length suffixes, our ab-
straction uses k length prefixes because in our stack the most recent
element is inserted on the head of the sequence. Mapping from our
method to Emami et al.’s is not that straightforward. Emami et al.
define a context as a node in an “invocation graph.” Our �-context
strings correspond to paths in Emami et al.’s invocation graph.

It is apparent that there is no significant algorithmic challenge in
generalizing the abstractions from calling-contexts to generalized
contexts. However, the real issue in developing the abstraction is in
how one would prove that an analysis using that abstraction will be
sound. When used for abstracting calling-context such arguments
are made by reasoning over paths of an ICFG. Since the generalized
context does not have the benefit of an ICFG, albeit by design, the
arguments about soundness must be developed.

Thus, the most significant component of the generalization we
perform is the derivation of Galois connections, for these are nec-
essary to prove the soundness of any analysis derived from these
context abstractions.

5.1 k-Context

Let �k represent the set of sequences of opening contexts of length
≤ k and k + 1 length sequences created by appending � =

F� to
k-length sequences of opening contexts. An element of �k is called
a k-context. We can establish a map αk : �∗→ �k as:

αk ν �
(

ν if |ν| ≤ k

νk. otherwise, where ∃ν′ : ν = νk ∧ |νk| = k.

In other words, when ν is longer than k, αk maps it to νk.�, where
νk is the k-length prefix of ν. A sequence of length ≤ k is mapped
to itself. It follows from the lemma below that �k is an abstraction
of �∗.

LEMMA 5.1. αk is surjective and additive.

Proof Since a k-context is formed from a k-length prefix, additiv-
ity may be shown by using strong ordering on elements of �∗.

Thus, �∗ and �k form a Galois insertion with the abstraction
map αk . Context-sensitive analyses may be derived by defining
appropriate context abstraction �k� �Abs.

In Table 1, the “Context” column provides some examples of
contexts. Their corresponding k-context abstractions, with k = 3,
are shown in the “3-Context” column.

Context 3-Context �-Context
abc abc abc
aaaaa aaa� a+

abca abc� a+

abcaaaaaabc abc� abc+

abccba abc� a+

aaabbbaaabbbcbbb aaa� a+b+

Table 1. Examples of contexts and abstract contexts

5.2 �-Context

Let B represent the set {1, +}, where 1 � +. The set ��⊆ (�×B)∗

is defined as:

Definition 2. �� is the smallest set contained in (�×B)∗ satisfying:

1. ε ∈ ��

2. ∀ν� ∈ �� ; c ∈ �; ∀x ∈ B :
(c, x) /∈ ν� ⇒ (c, 1).ν� ∈ �� ∧ (c, +).ν� ∈ ��

Assume � = {a, b, c}, the notation x denotes (x, 1), and x+

denotes (x, +). The following strings are some examples of se-
quences in ��: ε, a, ab, a+, ab+, a+b+c+. Some examples of se-
quences in (�×B)∗, but not in ��, are: aa, abba, a+a+, aba+b+.
The following lemma gives the bound on the size of strings in ��.

LEMMA 5.2. ∀ν� ∈ �� : |ν�| ≤ |�|.
Proof For any element c ∈ �, either c or c+ may be in ν�, and each
element can occur at most once.

The element a+ represents the set of all contexts that start at
the opening context a followed by a sequence of contexts and then
terminates on the opening context a. Table 1 provides examples of
contexts and their corresponding �-contexts. Consider the context
“abcaaaaaabc,” which when read right-to-left gives the order in
which the contexts were pushed. It is abstracted to abc+. The term
c+ represents the set of all non-zero length sequences starting with
c and ending with c, and thus represents all cyclic context strings
from c to c. The term abc+ thus represents the set of contexts
consisting of the opening context a, pushed on the opening context
b, pushed on a sequence of openings contexts starting with c and
ending with c.

To develop the abstraction function from �∗ to �� we first de-
velop the abstract syntax tree (AST) domain �T that is isomorphic
to �∗. The abstraction map is then defined on �T . The following rule
defines the syntactic structure of �T in terms of �∗T .

�T = ⊥ ∪ �T ×�∗T ×�

An element of �T may either be ⊥ or a 3-tuple consisting of
(νT , σT , c) where νT ∈ �T , σT ∈ �∗T , and c ∈ �. In addition,
we also require that the elements of �T further satisfy the semantic
constraint that (t, σT , c) is in �T iff c does not occur again in the
subtrees t and σT , which is formally defined as follows:

∀t ∈ �T ; σT ∈ �∗T ; c ∈ � : (t, σT , c) ∈ �T ⇔ c �∈T t ∧ c �∈T∗ σT

where the two relations ∈T ⊆ �×�T and ∈T∗ ⊆ �×�∗T are defined
as follows:

∀c, d ∈ �; σT ∈ �∗T ; t ∈ �T

c ∈T (t, σT , d) ⇔ c ∈T t ∨ c ∈T∗ σT ∨ d = c

c ∈T∗ t.σT ⇔ c ∈T t ∨ c ∈T∗ σT

The function φ maps elements from �∗ to �T . This map amounts
to parsing.

φ : �∗→ �T

φ ε � ⊥
φ σ.c � ((φ s1), (map φ [s2, s3, . . . , sn]), c)

135

Context T-Context
a (⊥, ε, a)
abc (((⊥, ε, a), ε, b), ε, c)
aaaaa (⊥, [⊥,⊥,⊥,⊥], a)
abca (⊥, [((⊥, ε, b), ε, c)], a)
abcabc (((⊥, ε, a), ε, b), [((⊥, ε, a), ε, b)], c)
cabcaaabab (((⊥, ε, c), ε, a), [((⊥, ε, c), [⊥,⊥], a), (⊥, ε, a)], b)

Table 2. Examples of mapping contexts and T-contexts

where σ = s1.c.s2.c. . . . c.sn for some s1, s2, . . . , sn ∈ �∗ such
that ∀ 1 ≤ i ≤ n : c �∈ si. The function splits a context string,
using its first context c, into a sequence of maximal substrings
s1, . . . , sn such that each of the si does not contain c. The triple
(s1, [s2 . . . sn], c) is used to create the recursive structure, with the
function map lifting φ to apply it point-wise on all elements of
a sequence. This construction ensures that the semantic constraint
for �T is preserved. The map from a sequence σ.c ∈ �∗ to the
triple (s1, [s2 . . . sn], c) is bijective. Thus, the domains �∗ and �T

are isomorphic. Table 2 provides examples of contexts and their
corresponding “T-contexts”, i.e., the corresponding terms in �T .

We now define an abstraction map α� : �T→ �� as follows:
∀t ∈ �T ; s ∈ �∗T ;c ∈ �

(α� ⊥) � ε

(α� (t, s, c)) � (α� t).c(αB |s|)

where αB is defined as:

(αB n) �
(

1 n = 0

+ n > 0

It follows from the definition that αB is surjective and additive.
Hence, αB is an abstraction from N to B, and N and B form a
Galois insertion. To demonstrate that α� is additive we introduce
the relation �T on �T as follows:
∀t, t1, t2 ∈ �T ;∀s1, s2 ∈ �∗T ; ∀c1, c2 ∈ �

⊥ �T t,

(t1, s1, c1) �T (t2, s2, c2) ⇔ t1 �T t2 ∧ s1 �∗
T s2 ∧ c1 � c2

It can be shown that �T is reflexive, anti-symmetric, and transitive,
and thus defines a partial order on �T .

LEMMA 5.3. α� is surjective and additive.

Proof Follows from structural induction.

Once again, a context-sensitive analysis may be derived by
defining � and �, and the appropriate context abstraction ��� �Abs.

6. Analysis of obfuscated assembly programs
We now turn our attention to context-sensitive analysis of assembly
programs in which the call and ret instructions may be obfuscated.
The semantics of the classic call and ret instructions consists of
two parts: manipulation of return address on the stack and transfer
of program control. To obfuscate a procedure call (or return from
a call) the two parts of the semantics of the instructions may
be separated and performed using other instructions. Further, all
instructions participating in simulating a call or a return may not
be contiguous in the code; they may be distributed–intermixed
with other instructions. On the other hand, call (ret) instructions
may be employed for purposes other than making (returning from)
a procedure call. For instance, a call instruction may be used to
transfer control, but the return address may be discarded [14].

Procedure call and return obfuscations thwart analysis of assem-
bly program by attacking an important step needed for interpro-
cedural analysis: identification of procedures and creation of call
graph [15]. Most assembly languages do not provide any mecha-
nism to encapsulate procedures. Thus, disassemblers use call and

Syntactic Categories:

b ∈ B (boolean expressions)
e, e′ ∈ E (integer expressions)
i ∈ I (instructions)
l, l′ ∈ L ⊆ Z (labels)
z ∈ Z (integers)
p ∈ P (programs)
r ∈ R (references)

Syntax:

e ::= l | z | r | ∗ r | e1 op e2 (op ∈ {+, −, ∗, /, ...})
b ::= true | false | e1 < e2 |¬b | b1 && b2
i ::= l : esp = esp + e � eip = e′ |

l : esp = e � eip = e′ |
l : ∗esp = e � eip = e′ |
l : r = e � eip = e′ |
l : ∗r = e � eip = e′ |
l : if (b) eip = e; eip = l′

p ::= seq(i)

Figure 2. An x86-like assembly language.

ret instructions to determine procedure boundaries and to create the
call graph [11]. When these instructions are obfuscated, the proce-
dures identified and the call graph created may be questionable and
any subsequent interprocedural analyses circumspect.

6.1 Programming language

To present our analysis of assembly programs where call and ret
instructions are obfuscated, we first introduce a simple assembly
language that does not contain these instructions. Instead, the lan-
guage provides primitives to manipulate the stack pointer and the
instruction pointer, both of which are registers in the IA32 architec-
ture. Thus, our language captures the essential properties needed to
present our algorithm for performing context-sensitive analysis of
obfuscated assembly programs.

Figure 2 presents the syntax of the language we use to model
our analysis. A program p in this language consists of a sequence
of instructions (seq(i)). Instructions can be either conditional or
unconditional. A conditional instruction at a label l has the form
“l : if (b) eip = e; eip = l′”, where b is a boolean expression, e is
an integer expression which evaluates to the label of the instruction
to execute when b evaluates to true, and l′ is the label of the
instruction to execute when b evaluates to false. An unconditional
instruction at a label l has the form of “l : assign � eip = e”,
where assign may assign the result of evaluating an expression to
a reference (a register or memory location), or a memory location
pointed to by a reference. The component “eip = e′” of an
unconditional instruction assigns to the instruction pointer eip the
label of the command to be executed next.

Our language assumes a unique symbol esp representing the
stack pointer, which may be a register or a memory location. As
noted by the rules in Figure 2 for instruction i, the operations
on (or through) the stack pointer are distinguishable from other
operations. The analysis presented assumes that the stack grows
towards lower memory addresses, but it can be changed trivially to
accommodate the opposite convention.

Though our language does not explicitly model call, ret, push,
or pop instructions, equivalent behavior may be performed using
primitives of our language. For example, a “call l” instruction
may be mapped to the following sequence of instructions in our
language:

l0 : esp = esp − 1 � eip = l1

l1 : ∗esp = l2 � eip = l

where l2 is the address of the instruction after the call instruction.
It is not necessary that these two instructions appear contiguously
in code.

136

Figure 3 presents the semantics of our language. A program
state is represented by a pair (i, δ) ∈ I × Δ, where i is the next
instruction to be executed in the store environment δ. Thus, Σ =
I ×Δ denotes the set of all possible program states. The transition
relation between program states is defined as I : Σ → ℘(Σ), i.e.,
the transition relation represents the behavior of an instruction i
when executed in a certain store environment δ. Given a program
state s ∈ Σ, the semantic function (I s) gives the set of possible
successor states of s.

The transition relation, written for the set of all possible states,
may be specialized for the states of a specific program as follows.
Let Σp = p × Δp be the set of states of a program p, then the
transition relation Ip : Σp → ℘(Σp) on program p is: (Ip i δ) =
{(i′, δ′) | (i′, δ′) ∈ (I i δ), i′ ∈ p, and δ, δ′ ∈ Δp}.

The concrete trace semantics for a program p is given by the
least fixpoint of the following function:

Fp T = Σp
i ∪ {σ.s.s′ | σ.s ∈ T ∧ s′ ∈ Ip s}

where T is a set of finite partial traces, σ is a sequence of pro-
gram states s0...sn of length |σ| > 0 such that ∀i ∈ [1, n) : si ∈
(Ip si−1), and s0 ∈ Σp

i the set of initial states. Following Sec-
tion 4, the concrete context-trace semantics can be obtained by the

least fixpoint of Fc : �∗ Π−→ ℘(Σ∗) −→ �∗ Π−→ ℘(Σ∗) which is
mapped from F : ℘(Σ∗) −→ ℘(Σ∗).

6.2 Stack-context

We now define the sets �′asm and �′asm, which are the sets of
instructions that open and close contexts, respectively, based on
operations on the stack pointer. An instruction opens a context, i.e.,
belongs in �′asm, if it decrements the stack pointer. Analogously, an
instruction closes a context, i.e., belongs in �′asm, if it increments
the stack pointer.

�′asm� {i|∃n ∈ N,∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp) − n}
�′asm � {i|∃n ∈ N,∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp) + n}

Consider the class of programs in which (a) an instruction that
modifies the stack pointer always increments or decrements it by
a statically known constant and (b) that constant is the same for all
instructions. This class includes programs that use only call, ret,
push, and pop instructions to modify the stack pointer. Programs
generated by conventional compilers typically fall in this class.
For this class of programs the analysis domain �′�asm→ Abstore
or �′kasm→ Abstore may be used to derive a context-sensitive
analysis.

Now consider the programs that meet constraint (a), but not (b).
That is, programs in which the increment/decrement applied to a
stack pointer can be statically determined, but not all instructions
use the same constant. Since the size of space allocated/deallocated
on the stack is not the same, a closing context statement may not re-
move the entire context on the top of the stack. The analysis can be
trivially extended for this class of programs by statically introduc-
ing pseudo instructions such that all stack pointer operations use
the same constant.

Obfuscated programs, however, may not meet either of the
constraints. They may contain instructions that modify the stack
pointer by direct assignment of values, such as using the instruction
l : esp = e � eip = e, or contain instructions that increment or
decrement the stack pointer by an expression whose value cannot
be determined statically. In the absence of any further information
about the possible values of the expression, say from using the
Abstore, to derive a safe analysis a worst case assumption would
need to be made.

To analyze the most general class of assembly programs, we
need to develop a concrete context-trace semantics that allows
for non-fixed size contexts. The set of opening contexts for such
semantics may be represented by the domain: �asm ⊆ I × N,

meaning that a context is a pair of a statement and stack units. The
set of closing contexts is represented by the domain �asm ⊆ I ×N.
The domains are described as follows:

�asm� {(i, n) | ∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp) − n ∧ n > 0}
�asm � {(i, n)| ∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp) + n ∧ n > 0}
A context string is a sequence belonging to �∗asm. A function
Πasm : Σ∗ → �∗asm may now be defined that maps a trace to its
context string. This function accounts for creation and destruction
of varying size contexts.

Πasm :Σ∗
asm → �∗asm

Πasm σ � (Π′ σ ε)

Π′
asm :Σ∗

asm → �∗asm→ �∗asm

Π′
asm ε ν � ν

Π′
asm s1.ε ν � ν

Π′
asm s1.s2.σ ν � (Π′

asm s2.σ (πasm (i1, n) ν))

where n = (δ2 esp) − (δ1 esp), s1 = (i1, δ1), δ2 = s2 ↓ 2

πasm :(I × N) → �∗asm→ �∗asm

πasm (i, 0) ν � ν

πasm (i, n) ν � (i,−n).ν, if n < 0

πasm (i, n) (j, m).ν �
j

(j, m − n).ν if m > n
πasm (i, n − m) ν otherwise

if n > 0

The function πasm above is a counter-part of the function π de-
scribed in Section 4. It performs the push and pop operations on a
context-string depending on the value of n. A negative value of n
implies a push operation when the stack grows towards lower mem-
ory addresses. Correspondingly, a positive value of n implies a pop
operation.

The concrete domains �asm and �asm form infinite lattices
because N is infinite. Besides, the value of n, representing the size
of a context, may not be statically computable. Hence, we need
an abstraction of these domains. We use the lattice of constant-
propagation to abstract N. Let N represent the flat lattice consisting
of the set of numbers in N and the special values � and ⊥. The
lattice is flat in that ∀n, n1, n2 ∈ N : ⊥ �N n �N �, and
if n1 �= n2 then n1 � n2 = �. We can now define the abstract
context domains �̂asm = I ×N and �̂asm = I ×N . The �-context

abstraction of �̂∗asm, denoted by �̂�

asm, will be used in the context-
sensitive analysis of assembly programs.

Let us compare the difference between the stack-context and the
calling-context of a non-obfuscated program. It is apparent that the
set �̂asm specialized for instructions in a program P may be larger
when using stack-context than for calling-context. This is because
when using stack-context, a context is created not just for call in-
structions, but also for push instructions. What is the implication of
these extra nodes on the computational complexity of the analysis?
The complexity depends on two factors. The total number of con-
text strings created for a program and the number of context strings
reaching a statement. The total number of context strings (which
includes all partial strings) will increase as will the length of the
strings. Empirical investigation is needed to ascertain the impact of
this increase on the expected computational complexity. Similarly,
encoding of the stack graph using binary-decision diagrams (BDD)
may lead to efficient computation the exponential relation, as pre-
viously reported for context-sensitive pointer analysis [31, 33].

6.3 Modeling transfer of control

To complete the analysis of programs in the model assembly lan-
guage we still need to develop abstraction for modeling the transfer

137

Semantic domains:

δ ∈ Δ = R + L → Z (store environment)
s ∈ Σ = I × Δ (program states)
z ∈ Z (integers)
B = {true, false} (truth values)

Transition relation:

I : Σ → ℘(Σ)
I(�l : esp = esp + e � eip = e′�, δ) = {((Fexpr e′ δ), Fesp (Fexpr e δ) δ)}
I(�l : esp = e � eip = e′�, δ) = {((Fexpr e′ δ), Freset (Fexpr e δ) δ)}
I(�l : ∗esp = e � eip = e′�, δ) = {((Fexpr e′ δ), F∗esp (Fexpr e δ) δ)}
I(�l : r = e � eip = e′�, δ) = {((Fexpr e′ δ), Fassign r (Fexpr e δ) δ)}
I(�l : ∗r = e � eip = e′�, δ) = {((Fexpr e′ δ), (F∗assign r (Fexpr e δ) δ)}

I(�l : if (b) eip = e; eip = l′�, δ) =

8><
>:

{((Fexpr e δ), δ)}
if true = (Fbool b δ)

{(l′, δ)}
if false = (Fbool b δ)

Semantic functions:

Fesp : Z → Δ → Δ
Fesp z δ = [esp 	→ ((δ esp) + z)]δ

Freset : Z → Δ → Δ
Freset z δ = [esp 	→ z]δ

F∗esp : Z → Δ → Δ
F∗esp z δ = [l′ 	→z]δ, where l′ = δ esp

Fassign : R → Z → Δ → Δ
Fassign r z δ = [r 	→z]δ

F∗assign : R → Z → Δ → Δ
F∗assign r z δ = [l′ 	→ z]δ, where l′ = δ r

Fexpr : E → Δ → Z

Fexpr�l�δ = l
Fexpr�z�δ = z
Fexpr�r�δ = δ r
Fexpr�∗r�δ = δ l, where l = δ r
Fexpr�e1 op e2�δ = Fexpr�e1�δ op Fexpr�e2�δ

Fbool : B → Δ → B
Fbool�true�δ = true
Fbool�false�δ = false
Fbool�e1 < e2�δ = Fexpr�e1�δ < Fexpr�e2�δ
Fbool�¬b�δ = ¬Fbool�b�δ
Fbool�b1 && b2�δ = Fbool�b1�δ ∧ Fbool�b2�δ

Figure 3. Semantics for our model language of Figure 2.

of control. In the concrete semantics, the register eip represents the
instruction pointer. Upon execution of each instruction the eip is
updated with the label (a numerical value) of the next instruction to
be executed. The value of the label may be computed from an ex-
pression involving values of registers and memory locations. Thus,
to model transfer of control we need an abstraction of the values
computed by an expression.

We use Balakrishnan and Reps’ Value-Set Analysis (V SA) [1]
to recover information about the contents of memory locations
and registers manipulated by an assembly program. VSA uses the
domain RIC = N × Z × Z to abstract ℘(Z). A value s[lb, ub] ∈
RIC, where s ∈ N and lb, ub ∈ Z are mapped to ℘(Z) by the
following concretization map:

γ(s[lb, ub]) = {z|lb ≤ z ≤ ub, z ≡ lb (mod s)}.
Thus, γ(2[1, 9]) = {1, 3, 5, 7, 9}.

Since memory addresses are numerical values, the domain RIC
provides a safe approximation of the set of numerical values as well
as addresses held by a register or a memory location. Whether the
values represented by an element s[lb, ub] are memory addresses
or numerical values follows from how the information is used in
an instruction. When the value is assigned to eip it is treated as a
memory address, in particular, a label of an instruction. Similarly,
the value represents a memory address when used in an indirect
memory operand, such as when computing the expression ∗r.

6.4 Semantic domain for context-sensitive Venable et al.’s
algorithm

We now discuss the derivation of semantic domain for the context
sensitive version of Venable’s et al.’s algorithm, a static analyzer
that tracks stack manipulations where the stack pointer may be
saved and restored in memory or registers. It combines Lakhotia
and Kumar’s Abstract Stack Graph (ASG) [14] with Reps and
Balakrishnan’s Value-set Analysis (VSA) [1].

The ASG domain was introduced by [14] as an abstraction of
the set ℘(�∗asm). Each element of ℘(�∗asm) represents a set of (par-
tial) stack strings. To create a finite representation of a possibly in-
finite set of such strings, Lakhotia and Kumar abstracted ℘(�∗asm)

using the domain ASG = ℘(�̂asm) × ℘(�̂asm × �̂asm). The rel-
evant abstraction/concretization maps to show that ℘(�∗asm) �
℘(�̂asm) × ℘(�̂asm × �̂asm) may be derived from the following
insight. The first component of the ASG domain, ℘(�̂asm), repre-
sents the set of top of stacks. Starting from a node in the set of

stack tops, a path in the graph representing the second component,
℘(�̂asm × �̂asm), gives a partial stack string.

Venable et al. combined the ASG and VSA domains to derive
the context-insensitive analysis I → R + L → ASG × RIC.
We derive a context-sensitive equivalent of this analysis using the

domain �̂�

asm → I → R + L → RIC. This domain does not
include a mapping from an instruction to its ASG because the
abstraction of the stack is implicitly available in a context-sensitive
analysis. The analyzer may be derived using the chain of Galois
connections. To ensure termination of the analyzer, we use the
widening operator for RIC domain as given by [1] to accelerate
fixpoint computation.

6.5 Soundness

The concrete context-trace semantics is given by the least fixpoint

of the function Fc : �∗asm
Πasm−−−−→ ℘(Σ∗) −→ �∗asm

Πasm−−−−→ ℘(Σ∗),
where Σ = I × R + L → Z. The context-trace semantics of
the context-sensitive analyzer is given by the least fixpoint of the

function F# : (�̂�

asm → I → R + L → RIC) −→ (�̂�

asm →
I → R + L → RIC).

LEMMA 6.1. �∗asm
Πasm−−−−→ ℘(Σ∗) � �̂�

asm → I → R + L →
RIC.

Proof From Lemma 5.3 and Balakrishnan and Reps’ [1] follows

that �∗asm� �̂�

asm and ℘(Z) � RIC. Then, it follows that:

�∗asm
Πasm−−−−→ ℘((Σ)∗)

� �∗asm→ (℘(Σ))∗

≡ �∗asm→ (I → R + L → ℘(Z))∗

� �∗asm→ I → R + L → ℘(Z)

� �̂
�

asm → I → R + L → RIC.

It follows from lemma 6.1 and the fixpoint transfer theorem
that F# is a sound approximation of Fc. Though, F# may not
be complete w.r.t Fc.

7. Empirical evaluation
We now present the results of an empirical evaluation of context-
sensitive analysis of obfuscated programs. We study the improve-
ments in analysis of obfuscated code resulting from the use of our �-

138

Figure 4. Time evaluation of the set of hand-crafted, obfuscated
programs.

context-sensitive version of Venable et al.’s analysis [28] against its
context-insensitive version. The two versions of the analysis were
implemented on the Eclipse workbench and the evaluations per-
formed on an Intel Core2 Duo 2Ghz/3GB Dell Workstation

Our empirical evaluation shows that, as expected, a context-
sensitive analysis produces more precise results than its context-
insensitive counterpart. Quite unexpectedly our evaluation also
shows that for certain call structures the context-sensitive analy-
sis is also more efficient.

In the absence of any accepted gold standard or benchmark for
evaluating obfuscated programs, we crafted our own procedure. We
performed the analysis using two sets of programs. Programs in
the first set were hand-crafted with a certain known obfuscated
calling structure. By hand-crafting the programs we were able to
control the call-structure and study how the performance changed
with changes in the structure. While the extreme case of the call-
structures we created are unlikely to occur in real programs, they
nonetheless reveal how the performance varies with the growth of
context. The second set contains W32.Evol.a, a metamorphic virus
that employs call obfuscation. This virus has been thorougly an-
alyzed in our lab, and hence we are in a position to evaluate the
results of our analysis. While we have thousands of malicious pro-
grams in our repository, we have not used them for our analysis
because of lack of knowledge of their details and hence our inabil-
ity to evaluate the results of their analysis.

For quantitative comparison we use two metrics: time, measured
as CPU time in milliseconds, and size of the sets, measured as the
cumulative size of the value sets for all instructions. The size of
the value set at an instruction i for context-insensitive analysis is
denoted by Sin(i), and that for context-sensitive analysis is denoted
by Ssen(i).

Each program in the hand-crafted set contains a single proce-
dure that adds two parameters and returns the value. The programs
differ in the number of calls to this procedure. We constructed 10
programs, where program number n has n “calls” to the same
procedure. Each “call” passes different pairs of numbers and is
implemented using a combination of two push instructions and a
ret instruction. Although all stack-contexts in these programs are
bounded by four (the number of push instructions), this class of
programs helps us evaluate the effect of the number of contexts.

Figure 4 plots the time for analyzing the 10 programs and Fig-
ure 5 plots the sizes of the value sets. The results show that for
this limited class of programs, the computational cost of context-
sensitive analysis grows linearly with the number of contexts. In
contrast, the cost of context-insensitive analysis grows quadrati-
cally. This is expected because Venable et al.’s context-insensitive
analysis essentially performs intraprocedural analysis on the pro-
gram. Since the program is obfuscated, its calling structure is un-
available. The analysis, thus, returns the results of a “call” to every
“call”-site, leading to O(n2) paths for returning values.

Figure 5. Size of the sets evaluation of the set of hand-crafted,
obfuscated programs.

Figure 6. Histogram of approximations for Win32.Evol.a.

Figure 5 shows the size of the value sets for all stores in the
whole program in the context-sensitive analysis (Ssen) and context-
insensitive analysis (Sin). Observe that Ssen grows linearly with
the growth of contexts; however, Sin grows quadratically. The
quadratic growth can be explained due to the analysis being per-
formed on a much larger number of invalid paths.

To quantify the improvement resulting from analyzing the meta-
morphic virus W32.Evol.a using our context-sensitive analysis over
Venable et al.’s context-insensitive analysis we compute the dif-
ference in the size of the value sets resulting from the two anal-
ysis for each instruction. Since the sizes resulting from context-
insensitive analysis are always higher, we compute the difference
as Sin(i) − Ssen(i), for instruction i.

Figure 6 presents a histogram that shows the number of instruc-
tions where the context-insensitive analysis gives larger sets (for
various intervals of differences). The data shows an improvement
in precision with 25 of 98 interpreted instructions of W32.Evol.a
virus producing answers with better precision. The time for an-
alyzing W32.Evol.a virus was 300 ms and 1100 ms for context-
sensitive and context-insensitive analysis, respectively. Thus, our
context-sensitive analysis is more efficient and more precise than
the Venable et al.’s context-insensitive analysis.

8. Conclusions
We have presented a method for performing context-sensitive anal-
ysis for binaries in which calling-contexts cannot be discerned.
Such binaries are often crafted to break existing methods of anal-
ysis. For instance, the IDA Pro disassembler identifies the proce-
dures in a binary by analyzing its call instructions. Any analysis
based on such a disassembler would fail if the binary does not use
the call instruction to make a procedure call. Obfuscations that de-
feat analyzers are commonly used by authors of malware. They are
also used to protect intellectual property.

Our method of context-sensitive analysis does not rely on find-
ing procedure boundaries and determining procedure calls. Instead,
it defines a context based on the state of the stack. Thus, any op-
eration that pushes data on the stack creates a context. Conversely,

139

any operation that removes data from the stack removes a context.
The problem of determining transfer of control, also an important
problem for obfuscated binaries, is solved separately by using Bal-
akrishnan and Reps’ Value-Set Analysis (VSA) [1].

We adapt prior work on context-sensitive analysis using call-
strings to use with the stack-context. The notion of call-strings has
in the past been described in terms of valid paths of an ICFG [25].
We generalize the concept using abstract interpretation and define
contexts using trace semantics. We implement a context-sensitive
variant of Venable et al.’s analysis that combines the VSA and ASG
domains [28]. Empirical evaluation shows that context-sensitive
analysis using �-context leads to several order of magnitude im-
provement in the running time and improvement in precision.

While the method improves upon the state-of-the-art by en-
abling context-sensitive analysis of obfuscated programs its perfor-
mance on non-obfuscated programs is equally important. Treating
any push on the stack to create a new context increases the number
of nodes in a context-graph, a graph that contains the call-graph.
Further empirical investigation is needed to study the impact of this
increase on the computational complexity of the analysis.

Acknowledgements. We are thankful to Michael Venable for his
assistance with the implementation.

References
[1] G. Balakrishnan. WYSINWYX: What You See Is Not What You eXecute.

PhD thesis, C.S. Dept., Univ. of Wisconsin, Madison, WI, 2007.

[2] M. Christodorescu and S. Jha. Static analysis of executables to detect
malicious patterns. In Proc. of the 12th USENIX Security Symposium,
2003.

[3] C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing,
and obfuscation tools for software protection. IEEE Trans. on Soft.
Eng., 28(8):735–746, Aug 2002.

[4] P. Cousot and R. Cousot. Basic concepts of abstract interpretation.
In IFIP World Computer Congress, pages 359–366, Toulouse France,
August 2004.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction of approxima-
tion of fixed points. In Proc. Principles of Programming Languages
(POPL), pages 238–252, Los Angeles, CA, USA, January 1977.

[6] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks by abstract interpretation. In Proc. Principles of Program-
ming Languages (POPL), pages 269–282, San Antonio, TX, USA,
January 1979.

[7] M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray. A
semantics-based approach to malware detection. In Proc. Principles
of Programming Languages (POPL), pages 377–388, New York, NY,
USA, 2007. ACM. ISBN 1-59593-575-4.

[8] S. K. Debray, R. Muth, and M. Weippert. Alias analysis of executable
code. In Proc. Principles of Programming Languages (POPL), pages
12–24, January 1998.

[9] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-
sensitive interprocedural points-to analysis in the presence of function
pointers. SIGPLAN Not., 29(6):242–256, 1994. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/773473.178264.

[10] D. W. Goodwin. Interprocedural dataflow analysis in an executable
optimizer. In Conf. on Prog. Lang. Design and Implementation
(PLDI), pages 122–133, New York, NY, USA, 1997. ACM. ISBN
0-89791-907-6. doi: http://doi.acm.org/10.1145/258915.258927.

[11] IdaPro. Ida pro - disassembler, Last accessed October 2010. URL
http://www.hex-rays.com/idapro/.

[12] U. P. Khedkar, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory
and Practice. CRC Press, 2009.

[13] J. Kinder, H. Veith, and F. Zuleger. An abstract interpretation-based
framework for control flow reconstruction from binaries. In 10th In-

ternational Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2009), pages 214–228, January 2009.

[14] A. Lakhotia and E. U. Kumar. Abstack stack graph to detect obfus-
cated calls in binaries. In 4th IEEE Int. Workshop on Source Code
Analysis and Manipulation(SCAM), Chicago, Illinois, 2004.

[15] A. Lakhotia and P. K. Singh. Challenges in getting ’formal’ with
viruses. Virus Bulletin, pages 15–19, September 2003.

[16] A. Lakhotia, E. U. Kumar, and M. Venable. A method for detecting
obfuscated calls in malicious binaries. IEEE Transactions on Software
Engineering, 31(11):955–968, November 2005.

[17] A. Lal and T. Reps. Improving pushdown system model checking. In
Proc. Computer-Aided Verification, 2006. Springer-Verlag, 2006.

[18] Ondřej Lhoták and Laurie Hendren. Context-sensitive points-to anal-
ysis: Is it worth it? In Compiler Construction, 15th International Con-
ference, volume 3923 of LNCS, pages 47–64. Springer, 2006.

[19] C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In 10th ACM Conf. on Computer and
Communications Security (CCS), 2003.

[20] John McDonald. Delphi falls prey, Last accessed October 2010. URL
http://www.symantec.com/connect/blogs/delphi-falls-prey.

[21] Matthew Might and Olin Shivers. Environment analysis via Δcfa.
SIGPLAN Not., 41(1):127–140, 2006. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1111320.1111049.

[22] T. Reps and G. Balakrishnan. Improved memory-access analysis for
x86 executables. In Proc. Int. Conf. on Compiler Construction, April
2008.

[23] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown
systems and their application to interprocedural dataflow analysis.
Science of Computer Programming, 58(1–2):206–263, October 2005.

[24] T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation re-
covery from low-level code. In Proc. Workshop on Partial Evaluation
and Program Manipulation (PEPM), Charleston, SC, January 2006.

[25] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. S.S. Muchnick and N.D. Jones, editors, Program Flow Anal-
ysis: Theory and Applications, chapter 7, pages 189-234. Prentice-
Hall, Englewood Cliffs, NJ, 1981.

[26] A. Srivastava and D. Wall. A practical system for intermodule code
optimization at linktime. Journal of Programming Languages, 1(I):
1–18, March 1993.

[27] K. Thompson. Reflections on trusting trust. Commun.
ACM, 27(8):761–763, 1984. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/358198.358210.

[28] M. Venable, M. R. Chouchane, M. E. Karim, and A. Lakhotia. Ana-
lyzing memory accesses in obfuscated x86 executables. In DIMVA’05,
pages 1–18, 2005.

[29] A. Walenstein, R. Mathur, M. R. Chouchane, and A. Lakhotia. Nor-
malizing metamorphic malware using term-rewriting. In 6th IEEE Int.
Workshop on Source Code Analysis and Manipulation (SCAM), 2006.

[30] Andrew Walenstein, Rachit Mathur, Mohamed R. Chouchane, and
Arun Lakhotia. The design space of metamorphic malware. In 2nd
International Conference on i-Warfare and Security (ICIW), 2007.

[31] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI
’04: Proceedings of the ACM SIGPLAN 2004 conference on Pro-
gramming language design and implementation, pages 131–144,
New York, NY, USA, 2004. ACM. ISBN 1-58113-807-5. doi:
http://doi.acm.org/10.1145/996841.996859.

[32] Jianwen Zhu. Towards scalable flow and context sensitive
pointer analysis. In DAC ’05: Proceedings of the 42nd
annual Design Automation Conference, pages 831–836, New
York, NY, USA, 2005. ACM. ISBN 1-59593-058-2. doi:
http://doi.acm.org/10.1145/1065579.1065798.

[33] Jianwen Zhu and Silvian Calman. Symbolic pointer analysis revisited.
In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation, pages 145–157,
New York, NY, USA, 2004. ACM. ISBN 1-58113-807-5.

140

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

