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Abstract—Increased accessibility to high-performance comput-
ing resources has created a demand for user support through
performance evaluation tools like the iSPD (iconic Simulator for
Parallel and Distributed systems), a simulator based on iconic
modelling for distributed environments such as computer grids.
It was developed to make it easier for general users to create
their grid models, including allocation and scheduling algorithms.
This paper describes how schedulers are managed by iSPD and
how users can easily adopt the scheduling policy that improves
the system being simulated. A thorough description of iSPD
is given, detailing its scheduler manager. Some comparisons
between iSPD and Simgrid simulations, including runs of the
simulated environment in a real cluster, are also presented.
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I. INTRODUCTION

The demand for high-performance computing has risen
sharply during the last decade. This trend is driven by the
need for accuracy and to solve problems with large amounts
of data. While parallel computing is the recognized approach
to provide performance, its associated costs motivated devel-
opments toward clusters, grids and, more recently, computing
clouds. Computer grids, specially, provided a very useful
ground for several applications in fields where users are not
experts in parallel computing or performance analysis. The
main reason behind this is that the low cost of deploying a
grid environment, which is mainly based on sharing existing
resources and has large computing power [1], [2], [3], made
grids available to anyone wishing to share their resources.

In distributed systems, such as computer grids, scheduling
policies have a great impact on the system’s performance.
Unfortunately, choosing the correct policy for a given envi-
ronment is not an easy task as it usually demands a big effort
to evaluate the available policies in order to select the right
one. This evaluation may be performed through simulation,
avoiding the use of the real system for measurements [4].
Simulation is also more flexible and less expensive than pure
benchmarking.

There are several grid simulators available, such as Simgrid
[5], and Gridsim [6] and others. However, none of them pro-
vide an easy-to-use interface to model the system, demanding
knowledge about scripting and/or programming. In order to
circumvent these problems, iSPD (iconic Simulator of Parallel
and Distributed systems) [7] uses an iconic-based approach to
create system models, and includes a task scheduler manager
that is presented here. While the modelling approach used in
iSPD was firstly presented in [7], this paper is concerned with
the analysis of grid schedulers using it.

In the following sections one finds a general description of
iSPD, followed by a thorough description of its simulation en-
gine, including the management of scheduling policies. After
that, results from iSPD simulations are compared to results
from Simgrid. Additional results comparing the execution of
actual programs in a cluster and their simulation with iSPD
are also provided. To conclude, a brief review of similar works
is presented, followed by general conclusions about iSPD.

II. iCONIC SIMULATOR OF PARALLEL AND DISTRIBUTED
SYSTEMS – ISPD

iSPD is a simulation framework developed and made avail-
able from the Parallel and Distributed Systems Laboratory at
Paulista State University [8]. It provides an easy interface to
create grid models that could be used by people that are not
expert in programming scripts or other simulation languages.
It is based on iconic modelling, creating models that can be
translated to queue models before simulation [7]. The general
architecture of iSPD is shown in Figure 1, where it can be seen
that the user inserts a model in the interface, which generates
a model in an iconic language. This model is converted to a
model in a queuing language before going to the simulation
engine to produce performance metrics for the user.

The reason for using two different languages during the
simulation process is the separation between the simulator
and the modelling interface. With this separation, it is very
easy to create converters of models for different simulators
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Fig. 1. ISPD’s general architecture [7]

to iSPD models, and vice versa. This enables the reuse of
models already created for other simulators into iSPD, even
allowing the user to modify the original model through the
iSPD interface.

At this time there are some restrictions to the systems that
can be simulated. They are:

• Tasks have to follow the bag-of-tasks model, and have
attributes for load, time of occurrence, and owner;

• Parallelism is modelled through the master-slave
paradigm;

• Standard scheduling policies are round-robin, FIFO,
Workqueue, WQR (WorkQueue with Replication) and
Dyn-FPLTF (Dynamic Fastest Processor to Largest Task
First);

• Standard performance metrics are turnaround-time,
waiting-time, user satisfaction, and efficiency.

iSPD is implemented in Java and contains three major
components, as seen in Figure 1. The iconic interface and the
simulation engine interact with the model interpreter, which
is responsible for converting iconic models to queue models.
Each component is briefly described in the following.

A. Iconic interface

A GUI provides some basic functionality to model computer
grids. The available icons represent hosts, clusters, one-way
communication channels, and network cloud (internet). In this
interface, the user can graphically model a system and provide
all needed parameters (loads, processing and communication
speeds, scheduling policies, etc.). It is an intuitive interface
and allows for a wide range of distributed systems models.

B. Model interpreter

The model interpreter is the link between the iconic inter-
face and the simulation engine. Basically, it is a multilingual
interpreter whose target languages are either the queuing
language, used in simulation, or the iconic language, used by
the iconic interface. The former target comes when interpreting
iconic models; the latter is originated from external ones.
Currently, iSPD is capable of translating scripted models

written for Simgrid into iconic models. Other conversions are
under work. It should be observed that this functionality was
very useful to validate iSPD models against Simgrid models.

The translation process, in any direction, is defined by
the respective grammars for the iconic, queuing and external
models. These grammars are described in [7]. Since the
description of such languages is outside the scope of this
paper, it is enough to say that they are context-free grammars,
and their analyzers were produced using this characteristic to
enable easy and fast interpretation.

The existence of an interpreter for external models suggests
the possibility of an opposite conversion, that is, a conversion
from iconic models to language scripts for external grid
simulators. This is one of the new features under development.

C. Simulation engine

This is the component that effectively conducts the simula-
tion process. It reads the system’s model after its conversion
from the iconic to the queuing model. It is an event-based
simulator with two basic modules. One that manages the
service centres, including queues and their respective servers,
and another that manages the scheduling policies used by each
server. The possible events managed by the simulation engine
are:

• Task arrival: when a specific task is added to a server’s
queue;

• Task service: when a task is served by the server;
• Task delivery: when a task is removed from a service

centre and, eventually, creates a new Task arrival in
another centre.

Figure 2 shows how the simulator works. It follows the
Event Scheduling/Time Advance model [9], managing future
events (FE) list through correct insertions and removals, and
adjusting the simulated time. This means “executing” the most
immediate event in the FE list until all events have been
served. When no more events are present in the list, the engine
produces all relevant metrics that are going to be used to
evaluate the grid or any distributed system.

In the simulation engine, the computational infrastructure
for a grid is mapped to a queuing network linking service
centres. Each service centre represents specific operations
(or icons from the modelling interface) for the system, such
as communication centres and processing centres. Specific
centres include:

• Communication service centres
– Direct link centres: follow the one queue-one server

model, with a FIFO service policy. These centres are
used to connect two other centres in order to move
data around the grid;

– Switching centres: follow the multiple queues-one
server model, with a FIFO service policy. They are
used to connect cluster nodes;

– Internet center: follows a one queue-multiple
servers model, where the number of servers is al-
lowed to grow indefinitely. This allows the emulation
of a zero length queue that is fed by, and feeds, other
communication service centres;
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Fig. 2. Simulation Process

• Processing service centres
– Host service centres: follow a one queue-multiple

servers model, with a FIFO policy. This type of
center emulates the jobs processing, containing one
or more servers to represent single- or multiprocessor
hosts with shared memory;

– Centralized server service centres: follow a one
queue-multiple servers model, with FIFO policy. It
differs from the host centres by being the centre that
executes the global job scheduling policy, directing
the events to the servers that will actually execute
the job.

D. Task scheduler

The task scheduler is a central component in any simulator
of computing systems. Its relevance is even higher in grid sim-
ulation, since grids have their performance severely affected
by the scheduling policy that is applied. For this reason, it
would be very useful to have the capability of evaluating a
grid environment under different scheduling policies, without
having to create a new model, or to program the policy, for
each new configuration.

This capability is offered in iSPD through two distinct
options: a library of previously programmed policies, and an
interface to generate new policies. The latter option uses an
interface to insert the characteristics of a given scheduling
policy, including sorting rules and resource allocation policies.
A code in an intermediate language is generated from this
data. This code is later translated into a Java class, which
is compiled and added to the schedulers available in the
simulator.

In iSPD the task scheduler is one of the two modules
in the simulation engine; the other one being the service
centre manager. Figure 3 presents the UML classes diagram

for these modules, where the interface “Master” controls the
service centres (queue network) while “CSMaster” controls
the scheduler (Workqueue algorithm, in the figure). This
implementation allows for a change of the scheduling policy
simply by choosing a distinct policy during modelling.

Fig. 3. Scheduling in the simulation engine

This concludes the description of the main components of
iSPD, including the component presented in this paper, that
is the Task Scheduler. The following section describes the
tests performed with different schedulers in order to evaluate
how iSPD accommodates this into its simulations, that is, how
accurate is the simulations performed by iSPD.

III. TESTS

In order to evaluate the accuracy of the iSPD, several
conformation tests were applied. To save space in this paper,
we will not address tests related to the language translation
processes, only to those concerning the simulation engine. The
tests involved a simulation of cluster models and a comparison
of those with results measured in a real cluster, and also with
simulations executed with Simgrid. This section is organized
with a description of the test environment, followed by a
discussion about the actual results.

A. Environment

The tests involved a real program running on a research
cluster, named cluster-GSPD, and comparing its results with
simulations from iSPD and Simgrid. The cluster ran on Debian
linux, version 2.6.26, and the tested program was written in C
with MPI library (openmpi). The hardware is composed of a
front-end plus eight nodes of Pentium dual machines, with 2
Gbytes of RAM. Figure 4 is a schematics of how the cluster is
structured. The processing speed of each node of this cluster
was measured and the average speed was around 700 billion
instructions per second (700,000 MIPS). This value was used
by the simulator as the average computational speed for the
system.

Besides comparing iSPD and the real cluster, the same
problem was modelled and simulated using Simgrid [5], which
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Fig. 4. Cluster-GSPD schematics

was developed by Henri Casanova in 1999, and was initially
aimed to study the impact of centralised scheduling policies
in distributed and heterogeneous environments. In these tests,
the Simgrid’s current version (3.6), which is available for
Windows, Linux and MacOS systems [10] was used. Although
the tests presented here involve only two distinct scheduling
policies, Round-Robin and Workqueue, tests with other poli-
cies present in iSPD have shown the same pattern of accuracy.

B. Tests with the Round-Robin scheduler

In the round-robin policy, the hosts are organized in a
circular list and the tasks are allocated, in their arrival order,
to the next available resource. After each allocation, the list
is updated and the process continues until all the tasks have
been allocated. This policy was implemented in the cluster
by a MPI program, whose behaviour is described in figure 5.
It is composed by a master process, running in the front-end,
with eight slaves, one in each of the cluster nodes. The master
process creates tasks, distributing them following the round-
robin policy. Each slave has three specific threads: receiving
data, munching data and sending back results.

Fig. 5. Testbed program running in the cluster

TABLE I
SIMULATION RESULTS FOR MODELS USING THE ROUND-ROBIN

SCHEDULER

system # of tasks Time (seconds) % of cluster
cluster-GSPD 1.819 –
iSPD 20 1.552 85.32
Simgrid 1.511 83.07
cluster-GSPD 2.831 –
iSPD 40 2.592 91.54
Simgrid 2.513 88.75
cluster-GSPD 4.306 –
iSPD 60 4.050 94.06
Simgrid 4.016 93.27
cluster-GSPD 5.308 –
iSPD 80 5.090 95.90
Simgrid 5.018 94.53
cluster-GSPD 6.797 –
iSPD 100 6.550 96.37
Simgrid 6.521 95.94
cluster-GSPD 7.807 –
iSPD 120 7.590 97.23
Simgrid 7.523 96.37

Models for the environment just described were created both
in iSPD and Simgrid. For each test there were variations in the
number of tasks and their computing and communication costs.
The plot in figure 6 presents the results achieved with Simgrid,
iSPD and cluster-GSPD when the number of tasks changed.
For this test each task has a computing cost of 384,45 Mflops
and a communication cost of 1 kbits. Tests were performed
with the number of tasks ranging from 20 to 120, in 20 task
steps.

As can be seen, the results achieved with iSPD are very
close to those provided by Simgrid. In fact, the difference
between them was 1.6% on average. The margin of error, when
compared to the actual measurements from the cluster-GSPD,
was a little higher, with an average error of 6.6%. This is
indeed an excellent result since Simgrid had an error of 8.0%.
Another aspect that confirms the accuracy of iSPD is that the
error linearly decreased when the number of tasks increased,
reaching 2.8% for 120 tasks. These results, also summarized in
Table I, are a strong indicator that models generated by iSPD
are quite accurate and can easily map real environments.

The results presented by the plot in figure 7 are from tests
changing the computing cost for the tasks. For these tests, a
set of 50 tasks was created, with communication costs varying
from 1 kbits up to 40 kbits. The task sets were classified
accordingly to their computing costs:

• Small: 384,45 - 1922,25 Mflops
• Medium: 1922,25 - 11533,5 Mflops
• Large: 11533,5 - 38445 Mflops

As in the previous test, the results achieved by iSPD are
well correlated to the times measured in the cluster. The
overall behaviour follows the same accuracy pattern identified
in the previous test, that is, accuracy increases for larger set
sizes. In this case, however, the set size is represented by the
size of the tasks being simulated, not the number of tasks,
which was fixed at 50. Even with this small number of tasks,
the error remained under 8% for the smaller tasks, which is
very acceptable for simulations. This is, indeed, an interesting
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Fig. 6. Measured and simulated times for different number of executed tasks
(Round-Robin) [7]

Fig. 7. Measured and simulated times for different computing costs (Round-
Robin)

result, showing that iSPD’s accuracy does not strongly depend
on the type of the tasks being evaluated, but instead depends,
mostly, on the amount of processing that is simulated. A
remark must be made about Simgrid’s results, which presented
a different behaviour from the previous test. This difference
can be linked to the heterogeneity in the communication costs,
which cause extra delays in the simulated execution.

C. Tests with the Workqueue scheduler

The Workqueue scheduler is the second algorithm already
implemented in iSPD. In the Workqueue algorithm, tasks are
submitted to individual hosts in a bag-of-tasks approach, that
is, a host receives tasks as soon as it becomes available.
It differs from Round-Robin by the moment that a task is
allocated to a host, since here, the allocation occurs only when
the host is available, while in Round-Robin the allocation
to the next host occurs when a task arrives in the system.
The same tests applied to Round-Robin were applied to the
Workqueue scheduler.

The results that were achieved confirm the analysis just
presented. Figure 8 shows the results when the number of tasks
range from 20 to 120. In this plot, it is possible to see that both
simulators are reasonably accurate and that iSPD performed
better than Simgrid (average error of 3.0% against an average
error of 8.2% for Simgrid). As expected, both simulators have
higher accuracy when more tasks are simulated.

Fig. 8. Measured and simulated times for different number of executed tasks
(Workqueue)

Simulation with the Workqueue algorithm was also evalu-
ated with tasks of different computing costs. Achieved results,
shown in Figure 9, were also similar to the Round-Robin algo-
rithm, with iSPD being slightly more accurate than Simgrid.
For smaller tasks, the error is also larger.

Fig. 9. Measured and simulated times for different computing costs
(Workqueue)

IV. RELATED WORK

Several grid simulators have been proposed during the
past decade. The most representative are Simgrid [5], and
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Gridsim [6]. We now briefly describe some of these proposals,
comparing them with iSPD.

a) Simgrid: is the first proposed simulator and is still one
of the most used. Its initial goal was the evaluation of cen-
tralized scheduling policies for heterogeneous and distributed
computational environments. New versions of Simgrid have
continually been released, although it still lacks an easy-to-
use interface to create models.

b) GridSim: is another largely used simulator, currently
in its 5.0 version. It allows the modelling of different classes of
environments, including schedulers and machines. It is based
on the SimJava simulation engine. It is quite flexible and has
an interface that makes it easier to model several types of
computing grids.

c) GangSim [11]: was developed to evaluate scheduling
policies in grid environments. It allows the analysis of the
interaction between local and global schedulers. This feature is
very interesting and is under development in iSPD. Gangsim,
as the other simulators, does not enable an easy modelling
interface, demanding the writing of scripts in an internal
language.

d) OptorSim [12]: was initially developed to evaluate
dynamic replication algorithms used to optimize data location
over the grid. This project has been mostly used in evaluations
of data replication techniques, which is a different application
field when compared to Simgrid, GridSim or other simulators.
The major differences to iSPD are that our simulator currently
does not address data location and that OptorSim does not have
a simple interface to model grids.

e) BeoSim [13], [14]: is a discrete event simulator
aimed at computer grids assembles such as Beowulf clusters,
interconnected through a dedicated network. It enables the
evaluation of smaller grids under different workloads and
scheduling policies. It offers a GUI to do part of the simulation
process but is the only simulator that is not open source.

f) GSSIM (Grid Scheduling Simulator) [15], [16]:
was built over GridSim aiming to solve the problems with
workload generation and scheduling levels present in other
simulators. Like the other simulators presented here, it suffers
from the need to model the grid using script schemes.

These simulators have been mostly used to evaluate schedul-
ing policies. In order to perform such evaluation, it is necessary
to model the grid (hosts and networks), the workload, and the
scheduling policies themselves. The tool presented here, iSPD,
makes all these tasks easier to be performed, when compared
to other simulators, while providing comparable accuracy.

V. CONCLUSIONS

Simulation is a very powerful aid for the research of
scheduling policies and performance evaluation. It can be even
more powerful if its application can be simplified for users
that are not well versed to programming, as it is the case with
typical computing grid users. This simplification is achieved
through iSPD, which offers an intuitive iconic interface to
model grid environments. The verified accuracy of iSPD, as
presented in section III, shows that this approach can provide
interesting results without prejudicing precision.

Since the impact of scheduling policies is rather important
to achieve optimal performance in distributed systems such
as computer grids, their easy modelling should be one of the
goals in their simulators. This task is the focus of this paper
and can be easily done through iSPD’s modelling interface.

Future improvements in iSPD include the implementation of
a built-in workload database, which can be used as testbeds
for specific grid environment configurations, and the addition
of a more versatile interface for results presentation, including
options to choose specific metrics. Current efforts also involve
the implementation of interpreters for models written for other
grid simulators (Simgrid, already functional, and GridSim).
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