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Abstract 
 

Reconfigurable computing is one of the most recent 

research topics in computer science. The Altera™ 

Nios II soft-core processor can be included in a large 

set of reconfigurable architectures, especially because 

it is designed in software, allowing it to be configured 

according to the application. The recent growth in 

applications that demand reconfigurable computing 

made necessary the building of compilers that 

translate high level languages source codes into 

reconfigurable devices instruction sets. In this paper 

we present a compiler that takes as input the 

bytecodes generated by a Java front-end compiler and 

generates a set of instructions that attends to the Nios 

II processor instruction set rules. Our work shows how 

we process Java bytecodes to the intermediate code, 

in the Nios II instructions format, and build the 

control flow and the control dependence graphs. 

 

1. Introduction 
 

Reconfigurable computing is an important current 

research topic in computer sciences [7] [10] [11]. 

Among its many applications we may cite the 

development of embedded systems, such as cell phones 

[14]. 

We say a device is reconfigurable (reconfigware) 

when it is possible to change its configurations to 

customize the execution of an application [8]. In other 

words, reconfigurable computing systems allow the 

execution of instructions in hardware and permit 

changes to these instructions via software. 

Due to the growing need to build applications for 

reconfigwares, the development of a compiler that is 

able to translate programs written in a well-known 

language, such as Java, to the instruction set of a 

device that may be configured by the programmer, 

such as Altera™ Nios II processor, became a necessity 

in reconfigurable computing. Adopting Java as the 

primary high-level language is a good choice, as it is 

free and one of the most used programming languages 

at the moment; furthermore, its architecture allows us 

to use analysis phases from its front-end compiler. 

In our work, we present a new compiler, called 

JaNi (Java Compiler for Nios II) that takes as input 

the intermediate representation of a source code 

compiled by a Java front-end compiler (bytecodes) and 

generates an ordered set of Nios II instructions. Our 

compilation process includes bytecodes conversion 

into compiler intermediate code, control graphs 

creation and target code generation. Boards’ 

configuration is not part of this version of JaNi, as is 

postponed to a later stage, after compilation. 

An overview of Java compilation process is 

presented in section 2, along with some important 

points to be considered about Nios II instruction set. In 

section 3 we describe our compiler structure and 

phases. We focus on control graphs creation 

techniques in section 4 and bytecodes processing and 

code generation in section 5. Section 6 reports tests 

conducted on JaNi and in section 7 there are 

conclusions concerning the presented work, as well as 

future work issues. 

 

2. Overview of Java language and Nios II 

instruction set 
 

The next subsections show how Java compilation 

and the bytecodes generation works; furthermore, the 

Nios II instruction set properties. 

 

2.1. Java bytecodes 
 

We can say a code compilation in Java is 

performed in two stages. In the first one, the source 
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code is literally compiled into an intermediate 

representation in form of bytecodes. In the second, a 

Java Virtual Machine (JVM), according to the target 

architecture and operating system, interprets this 

intermediate code [13]. 

Bytecodes are instructions, 1-byte large, that may 

or may not have parameters, which are also specified 

byte after byte. The bytecodes are prearranged in stack 

form, where operations are performed only over the 

top operands [12]. 

 

2.2. Nios II instructions 
 

Altera™ Nios II processor is a soft-core processor, 

which differs from common processors especially 

because it is designed in software. This permits 

flexibility for hardware designers while software 

designers are not affected by device implementation 

details [2]. 

Nios II instructions are all 4-byte words and are 

organized by their operand types into three groups: I-

Type, for immediate values, R-Type, for register-

stored values, and J-Type for an address value (sub-

routine calls) [1]. 

 

3. JaNi conception 
 

The JaNi project aims at building a compiler able 

to generate code in the format of ordered instructions 

for the Altera™ Nios II soft-core processor [4] [5]. 

Besides this, we were also concerned about code 

optimization and code parallelization and, in a further 

step, providing means to implement them. 

Figure 1 depicts the structure of our compiler. The 

elements that compose the JaNi layers are described as 

follows: 

� .class file: a file that contains the 

intermediate representation, or bytecodes, 

from a class specification in Java. 

� Bytecodes Interpreter (BI): bytecodes are 

processed in this layer, as detailed in section 

5. The BI processes the bytecodes and 

generates the compiler intermediate code. 

� Flow Analyzer (FA): responsible for 

developing both control and data flow 

analysis. 

� Dependence Analyzer (DA): performs both 

control and data dependence analysis. 

� Code generator (CG): creates the words in 

format to be executed according to Nios II 

processor and, before this, optimizations at 

intermediate code level. 

� Executable: binary file with Nios II 

instruction words organized according to the 

compiled source code. 

 

 
Figure 1. JaNi conceptual scheme. 

 

The intermediate code used from BI to CG follows 

the Nios II instruction set pattern, differing only on 

how they are internally stored. The only translations 

required by CG are related to instruction storage and 

register allocation, as the final code is in 32-bit words 

format having the addresses of Nios II registers. 

In Section 5 we will analyze each JaNi’s layer role 

in a source code compilation. 

 

4. Control graphs 
 

The use of control graphs in a compiler is 

important as they allow studies of program 

instructions execution paths, enabling optimizations 

on implementation and, indeed, vectorization or 

parallelization [6]. 

The next subsections show how we implemented 

both control flow and control dependence graphs. 

 

4.1. Control Flow Graph (CFG) 
 

A CFG is responsible for storing information about 

program control flow, which means that this kind of 

structure keeps track of possible execution paths. CFG 

is used as the basic structure in a compiling process, 

especially because it supplies important information to 

the following compilation phases. 

Implementation of a CFG may vary about the level 

of information a node must contain. A node can 

represent either an intermediate instruction, or a basic 
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block1. Edges are directed and represent a control flow 

between two nodes in the CFG, which means that the 

program control can go from the former to the latter. 

Our approach to build the CFG is presented by 

Figure 2. Nodes representing basic blocks are found 

traversing the instructions, looking for branches or 

targets from branches. The code sequences that form 

the basic blocks are inserted afterwards. 

 

1. Find all basic blocks in the intermediate 

code, considering branch instructions and 

instructions that are the target of branches. 

2. For each basic block: 

2.1. Inspect the last instruction to track 

where the control can flow after its 

execution. 

2.2. Create an edge from the basic block 

analyzed to the basic(s) block(s) that 

could pass a program control. 

Figure 2. Algorithm for CFG building. 

 

4.2. Control Dependence Graph (CDG) 
 

The CFG construction enables CDG construction 

since relations of control dependence are strongly 

associated to control flow [3]. Control dependence 

graphs are useful for control dependence analysis, 

which allows stronger program optimizations and 

instruction scheduling. 

We use standard control dependence definition [6], 

which states that an instruction Ψ is control-dependent 

of another instruction Φ (Ψ ≠ Φ) if and only if we can 

reach the end node Τ of the control flow graph from Ψ 

passing through Φ. In other words, this means that we 

cannot reach the end node of the control flow graph 

from Ψ without executing instruction Φ. 

To use the previous definition, it is necessary to 

have only one end node in the CFG. This is achieved 

by adding a “sink” instruction that will be the target 

for any other instruction that causes program 

termination [3]. 

Considering the fact that when a basic block is 

reached during a program execution all of its 

instructions are executed, we shaped our CDG to have 

basic blocks as nodes. As a consequence, this will 

produce a small graph structure. 

In Figure 3 we present our DFS-based algorithm to 

generate the CDG. 

                                                        
1
 A sequence of instructions in which once the first instruction of the set 

is executed, then every instruction in the sequence will also be. 

1. Take CFG and copy all nodes to CDG. 

2. For each two nodes at CFG: 

2.1. If they are control-dependent: 

2.1.1. Create an edge connecting these two 

nodes at CDG. 

Figure 3. Algorithm for CDG building. 
 

5. The compilation process 
 

In this section we explain how JaNi actually works. 

Figure 4 summarizes the compilation process, and the 

following subsections provide details of each step. 

 

5.1. Bytecodes processing 
 

The first task to be done is to translate the 

bytecodes being compiled into JaNi intermediate 

representation (step 1 in Figure 4). The Bytecodes 

Interpreter is responsible for that. 

The BI traverses all bytecodes simulating their 

execution but, instead of producing the results, it 

generates instructions during bytecodes interpretation. 

Thus, we first transform the stack top operands [13] 

into variables and then choose the most suitable 

instructions that apply. 

 

 
Figure 4. JaNi compilation process. 

 

As an example, consider an addition operation. In 

bytecodes representation, the two operands must be at 

the operand stack top to be popped out, and then the 

result of this operation is pushed onto the operand 

stack. These two values could have been obtained by a 

load operation or they could be constants. In this 

situation, the BI identifies the origin of the operand 

and assembles the correlated intermediate instruction 

taking into account this information. 

JaNi currently supports only a relevant subset of 

Java bytecodes. The supported bytecodes are the ones 

capable of implementing the following high-level 

instructions (commands) in Java: 

• Selection: if, if-else; 

• Loop: while, for, do-while, break, continue; 

• Operators: +, -, *, /, %, ++, --, <<, >>, ||, 

&&, |, &, ^, ~, <, >, <=, >=, ==, !=; 

• Data types: boolean, byte, short, int, char; 
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5.2. Graphs generation 
 

With the intermediate code, it is possible to create 

the control graphs through steps 2 and 3 in Figure 4. 

Both graphs are represented at basic block level, and 

the basic blocks finding stage is common to all. The 

CFG is generated by FA module while the DA 

generates CDG, as explained in section 4. 

 

5.3. Target code generation 
 

As mentioned earlier, JaNi intermediate code meets 

the requirements of Nios II instruction set. Therefore, 

the CG can build a binary file through a one-to-one 

association with intermediate instructions relationship 

with intermediate instructions (step 4 in Figure 4), 

without extra effort. 

Steps 5 and 6 are included in order to provide 

intermediate code optimizations and a register 

allocation policy. This task becomes feasible by the 

use of the control graphs (CFG and CDG). 

The binary file contains a list of Nios II instructions 

in 4-byte words with little-endian representation. 

 

6. Case studies 
 

In this Section we present and discuss the 

compilation of two different examples by JaNi. 

In the first test, the Java source code in Figure 5a is 

compiled, and the associated bytecodes can be viewed 

in Figure 5b. For the sake of brevity, parameters for 

bytecodes that have parameters (the ones in bold in 

Figure 5b) are not shown. 

It is important to note that it was necessary to 

perform a transformation from a code specified in 

operands stack form to another one in instructions 

sequence. To do this we create movement instructions, 

where operands from stack become values for 

auxiliary variables at the intermediate code. 

The generated intermediate code has several add 

and addi instructions. This happens because in Nios II 

instruction set the movement instructions are not 

implemented. They are pseudo-instructions [1], and 

they can be performed by addition operations where 

one of the parameters has a zero value. This parameter 

is represented by register zero, which is a read-only 

register that always contains value zero. 

Figure 6 shows the CFG and the CDG for the 

compiled code. In both sides of the figure, the shaded 

node represents the “sink” basic block of each graph. 

By looking at Figure 6a, it is possible to notice that 

we have two loops: B1, B2, B1 and B4, B5, B4. 

Formally, we can find loops in a CFG by identifying 

back-edges inside the graph, such as edges B2 – B1 

and B5 – B4. 

In addition, just as with the information provided 

by CFG, we can infer that blocks B1 and B4 are loop 

control headers, because they decide whether the 

program control enters the loop path or the other path. 

In Figure 6b we have the CDG for the CFG in 

Figure 6a. Its edges are directed from node X to node 

Y if X is control-dependent of Y. As an example, let 

us take into account the node referring to basic block 

B2. By analyzing the CFG we know that it is 

impossible for B2 to reach B6 without passing through 

B1, thus B2 is control-dependent of B1. However, B1 

can reach B6 by passing through nodes B3 and B4, 

making it control-dependent of B3 and B4. As B2 is 

control-dependent of B1, it will also be control-

dependent of B3 and B4. Moreover, node B4 is not 

control-dependent of any other node, since the 

program control can flow directly from B4 to B6, and 

no instruction is control-dependent of B6, because B6 

is the end node of CFG. 

 
int fib = 1, fat = 1; 

int n = 12; 

         

int fAux1 = 1, fAux2 = 1; 

for ( int i = 2; i <= n; i++ ){ 

    fib = fAux1 + fAux2; 

    fAux1 = fAux2; 

    fAux2 = fib; 

} 

         

int i = n + 1; 

while ( --i >= 2 ) 

    fat *= i; 

(a) 

 
ICONST_1 

ISTORE_1 

ICONST_1 

ISTORE_2 

BIPUSH 

ISTORE_3 

ICONST_1 

ISTORE 

ICONST_1 

ISTORE 

ICONST_2 

ISTORE 

ILOAD 

ILOAD_3 

ILOAD_3 

IF_ICMPGT 

ILOAD 

ILOAD 

IADD 

ISTORE_1 

ILOAD  

ISTORE 

ILOAD_1 

ISTORE 

IINC 

GOTO 

ICONST_1 

IADD 

ISTORE 

IINC 

ILOAD 

ICONST_2 

IF_ICMPLT 

ILOAD_2 

ILOAD 

IMUL 

ISTORE_2 

GOTO 

RETURN 

(b) 
 

Figure 5. Source code (a) in Java and (b) its 
bytecodes. 

 

Hence, for the first test, we could achieve the 

construction of intermediate graphs that permit 

obtaining useful information from the code (in 
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bytecodes form) that is being compiled. It also showed 

that the CFG mapped the program compiled. 

Our second test aims at building a more complex 

graph structure. The Java source code is given in 

Figure 7, and its respective graphs in Figure 8. The 

end nodes of each graph are also shaded. 

As previously said, a loop can be identified at CFG 

of Figure 8a by looking at the unique back-edge. The 

presence of forward-edges allows us to infer the 

existence of selection instructions. Differently from 

CFG in the first test, this CFG enables a number of 

distinct paths to get to the end node for some nodes. 

 

 
(a) 

 
(b) 

Figure 6. (a) CFG and (b) CDG for the 
compiled source on test 1. 

 

The Java code presented in Figure 7 has a 

repetition structure, which includes two simple 

selection structures, and still has a compound selection 

instruction after the loop. Variables of different types 

are used and diverse operators are introduced as well. 

 
boolean TRUE = true, FALSE = false; 

short s = -14, r = 21; 

char letter; 

int n = 4, n = 2008; 

 

int i = n; 

do{ 

   if ( s < r && TRUE && i < m/256 ){ 

      i += 2; 

      continue; 

   } 

   i *= 2; 

   if ( !FALSE || FALSE ) n = n << 1; 

}while( i < n2 ); 

         

n = n & 1; 

if ( n == 0 ) letter = 'P'; 

else letter = 'I'; 

Figure 7. Java code for test 2. 
 

With CFG, we see that all nodes executed before 

node B92 are control-dependent of B9, because all 

                                                        
2
 The statements related to node B9 in this paragraph are also valid for 

node B8, in the second test. 

paths to reach B12 pass through B9. In this case, it is 

true to say that B9 is a digraph articulation point. At a 

lower level, if the program control was previously on 

some instruction of nodes B0..B8, then it is necessary 

that all instructions in basic block B9 be performed in 

order to reach the end node. 

Like the first test, the last one provided results 

showing how JaNi performs the classic intermediate 

graphs generation. 

For both tests, the binary file was generated 

successfully, as did our register allocation policy, 

based on Chaittin-Briggs algorithm [9]. 

 

 
(a) 

 

 

 
(b) 

 

Figure 8. (a) CFG and (b) CDG for test 2. 
 

The binary files generated by JaNi were tested on a 

Nios II simulator [15] and produced the expected 

results. All registers had the correct values for the 

variables that were mapped to them, during the whole 

simulation. 
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7. Conclusions and future work 
 

In this work we introduced a new compiler called 

JaNi. JaNi aims to be a full compiler for the Nios II 

soft-core processor, which can be configured into a 

reconfigware. We have shown how JaNi handles Java 

bytecodes processing and controls graphs generation. 

Tests conducted on JaNi showed that the compiler 

successfully compiles bytecodes generated from source 

code comprised by statements present on the defined 

subset of Java language, being able to separate basic 

blocks and correctly create both CFG and CDG. It was 

also possible to guarantee that our strategy for 

bytecodes translation works for the tested Java subset. 

There are still some features that must be added to 

JaNi. First of all, data graphs generation must be 

included: DFG (Data Flow Graph) and DDG (Data 

Dependence Graph) [6]. The addition of program data 

graphs enables data analysis, which is responsible for 

a large variety of optimizations, including copy 

propagation for reducing the size of the intermediate 

code. Moreover, data analysis also allows 

vectorization or parallelization to be implemented. 

Thus, JaNi makes possible for a program written in 

Java to be run over an Altera™ Nios II soft-core 

processor, contributing to reconfigurable computing. 

JaNi can be found at <http://www.dcce.ibilce.unesp.br/ 

spd/english/index.html>. 
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