
Towards a Java bytecodes compiler for Nios II soft-core processor

Willian S. Lima
1
, Renata S. Lobato

1
, Aleardo Manacero Jr.

1
 and Roberta Spolon

2

1
DCCE, UNESP – São Paulo State University – Brazil

2
DC, UNESP – São Paulo State University – Brazil

willian.lima@sjrp.unesp.br, renata@ibilce.unesp.br, aleardo@ibilce.unesp.br and

roberta@fc.unesp.br

Abstract

Reconfigurable computing is one of the most recent

research topics in computer science. The Altera™

Nios II soft-core processor can be included in a large

set of reconfigurable architectures, especially because

it is designed in software, allowing it to be configured

according to the application. The recent growth in

applications that demand reconfigurable computing

made necessary the building of compilers that

translate high level languages source codes into

reconfigurable devices instruction sets. In this paper

we present a compiler that takes as input the

bytecodes generated by a Java front-end compiler and

generates a set of instructions that attends to the Nios

II processor instruction set rules. Our work shows how

we process Java bytecodes to the intermediate code,

in the Nios II instructions format, and build the

control flow and the control dependence graphs.

1. Introduction

Reconfigurable computing is an important current

research topic in computer sciences [7] [10] [11].

Among its many applications we may cite the

development of embedded systems, such as cell phones

[14].

We say a device is reconfigurable (reconfigware)

when it is possible to change its configurations to

customize the execution of an application [8]. In other

words, reconfigurable computing systems allow the

execution of instructions in hardware and permit

changes to these instructions via software.

Due to the growing need to build applications for

reconfigwares, the development of a compiler that is

able to translate programs written in a well-known

language, such as Java, to the instruction set of a

device that may be configured by the programmer,

such as Altera™ Nios II processor, became a necessity

in reconfigurable computing. Adopting Java as the

primary high-level language is a good choice, as it is

free and one of the most used programming languages

at the moment; furthermore, its architecture allows us

to use analysis phases from its front-end compiler.

In our work, we present a new compiler, called

JaNi (Java Compiler for Nios II) that takes as input

the intermediate representation of a source code

compiled by a Java front-end compiler (bytecodes) and

generates an ordered set of Nios II instructions. Our

compilation process includes bytecodes conversion

into compiler intermediate code, control graphs

creation and target code generation. Boards’

configuration is not part of this version of JaNi, as is

postponed to a later stage, after compilation.

An overview of Java compilation process is

presented in section 2, along with some important

points to be considered about Nios II instruction set. In

section 3 we describe our compiler structure and

phases. We focus on control graphs creation

techniques in section 4 and bytecodes processing and

code generation in section 5. Section 6 reports tests

conducted on JaNi and in section 7 there are

conclusions concerning the presented work, as well as

future work issues.

2. Overview of Java language and Nios II

instruction set

The next subsections show how Java compilation

and the bytecodes generation works; furthermore, the

Nios II instruction set properties.

2.1. Java bytecodes

We can say a code compilation in Java is

performed in two stages. In the first one, the source

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 104

code is literally compiled into an intermediate

representation in form of bytecodes. In the second, a

Java Virtual Machine (JVM), according to the target

architecture and operating system, interprets this

intermediate code [13].

Bytecodes are instructions, 1-byte large, that may

or may not have parameters, which are also specified

byte after byte. The bytecodes are prearranged in stack

form, where operations are performed only over the

top operands [12].

2.2. Nios II instructions

Altera™ Nios II processor is a soft-core processor,

which differs from common processors especially

because it is designed in software. This permits

flexibility for hardware designers while software

designers are not affected by device implementation

details [2].

Nios II instructions are all 4-byte words and are

organized by their operand types into three groups: I-

Type, for immediate values, R-Type, for register-

stored values, and J-Type for an address value (sub-

routine calls) [1].

3. JaNi conception

The JaNi project aims at building a compiler able

to generate code in the format of ordered instructions

for the Altera™ Nios II soft-core processor [4] [5].

Besides this, we were also concerned about code

optimization and code parallelization and, in a further

step, providing means to implement them.

Figure 1 depicts the structure of our compiler. The

elements that compose the JaNi layers are described as

follows:

� .class file: a file that contains the

intermediate representation, or bytecodes,

from a class specification in Java.

� Bytecodes Interpreter (BI): bytecodes are

processed in this layer, as detailed in section

5. The BI processes the bytecodes and

generates the compiler intermediate code.

� Flow Analyzer (FA): responsible for

developing both control and data flow

analysis.

� Dependence Analyzer (DA): performs both

control and data dependence analysis.

� Code generator (CG): creates the words in

format to be executed according to Nios II

processor and, before this, optimizations at

intermediate code level.

� Executable: binary file with Nios II

instruction words organized according to the

compiled source code.

Figure 1. JaNi conceptual scheme.

The intermediate code used from BI to CG follows

the Nios II instruction set pattern, differing only on

how they are internally stored. The only translations

required by CG are related to instruction storage and

register allocation, as the final code is in 32-bit words

format having the addresses of Nios II registers.

In Section 5 we will analyze each JaNi’s layer role

in a source code compilation.

4. Control graphs

The use of control graphs in a compiler is

important as they allow studies of program

instructions execution paths, enabling optimizations

on implementation and, indeed, vectorization or

parallelization [6].

The next subsections show how we implemented

both control flow and control dependence graphs.

4.1. Control Flow Graph (CFG)

A CFG is responsible for storing information about

program control flow, which means that this kind of

structure keeps track of possible execution paths. CFG

is used as the basic structure in a compiling process,

especially because it supplies important information to

the following compilation phases.

Implementation of a CFG may vary about the level

of information a node must contain. A node can

represent either an intermediate instruction, or a basic

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 105

block1. Edges are directed and represent a control flow

between two nodes in the CFG, which means that the

program control can go from the former to the latter.

Our approach to build the CFG is presented by

Figure 2. Nodes representing basic blocks are found

traversing the instructions, looking for branches or

targets from branches. The code sequences that form

the basic blocks are inserted afterwards.

1. Find all basic blocks in the intermediate

code, considering branch instructions and

instructions that are the target of branches.

2. For each basic block:

2.1. Inspect the last instruction to track

where the control can flow after its

execution.

2.2. Create an edge from the basic block

analyzed to the basic(s) block(s) that

could pass a program control.

Figure 2. Algorithm for CFG building.

4.2. Control Dependence Graph (CDG)

The CFG construction enables CDG construction

since relations of control dependence are strongly

associated to control flow [3]. Control dependence

graphs are useful for control dependence analysis,

which allows stronger program optimizations and

instruction scheduling.

We use standard control dependence definition [6],

which states that an instruction Ψ is control-dependent

of another instruction Φ (Ψ ≠ Φ) if and only if we can

reach the end node Τ of the control flow graph from Ψ

passing through Φ. In other words, this means that we

cannot reach the end node of the control flow graph

from Ψ without executing instruction Φ.

To use the previous definition, it is necessary to

have only one end node in the CFG. This is achieved

by adding a “sink” instruction that will be the target

for any other instruction that causes program

termination [3].

Considering the fact that when a basic block is

reached during a program execution all of its

instructions are executed, we shaped our CDG to have

basic blocks as nodes. As a consequence, this will

produce a small graph structure.

In Figure 3 we present our DFS-based algorithm to

generate the CDG.

1
 A sequence of instructions in which once the first instruction of the set

is executed, then every instruction in the sequence will also be.

1. Take CFG and copy all nodes to CDG.

2. For each two nodes at CFG:

2.1. If they are control-dependent:

2.1.1. Create an edge connecting these two

nodes at CDG.

Figure 3. Algorithm for CDG building.

5. The compilation process

In this section we explain how JaNi actually works.

Figure 4 summarizes the compilation process, and the

following subsections provide details of each step.

5.1. Bytecodes processing

The first task to be done is to translate the

bytecodes being compiled into JaNi intermediate

representation (step 1 in Figure 4). The Bytecodes

Interpreter is responsible for that.

The BI traverses all bytecodes simulating their

execution but, instead of producing the results, it

generates instructions during bytecodes interpretation.

Thus, we first transform the stack top operands [13]

into variables and then choose the most suitable

instructions that apply.

Figure 4. JaNi compilation process.

As an example, consider an addition operation. In

bytecodes representation, the two operands must be at

the operand stack top to be popped out, and then the

result of this operation is pushed onto the operand

stack. These two values could have been obtained by a

load operation or they could be constants. In this

situation, the BI identifies the origin of the operand

and assembles the correlated intermediate instruction

taking into account this information.

JaNi currently supports only a relevant subset of

Java bytecodes. The supported bytecodes are the ones

capable of implementing the following high-level

instructions (commands) in Java:

• Selection: if, if-else;

• Loop: while, for, do-while, break, continue;

• Operators: +, -, *, /, %, ++, --, <<, >>, ||,

&&, |, &, ^, ~, <, >, <=, >=, ==, !=;

• Data types: boolean, byte, short, int, char;

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 106

5.2. Graphs generation

With the intermediate code, it is possible to create

the control graphs through steps 2 and 3 in Figure 4.

Both graphs are represented at basic block level, and

the basic blocks finding stage is common to all. The

CFG is generated by FA module while the DA

generates CDG, as explained in section 4.

5.3. Target code generation

As mentioned earlier, JaNi intermediate code meets

the requirements of Nios II instruction set. Therefore,

the CG can build a binary file through a one-to-one

association with intermediate instructions relationship

with intermediate instructions (step 4 in Figure 4),

without extra effort.

Steps 5 and 6 are included in order to provide

intermediate code optimizations and a register

allocation policy. This task becomes feasible by the

use of the control graphs (CFG and CDG).

The binary file contains a list of Nios II instructions

in 4-byte words with little-endian representation.

6. Case studies

In this Section we present and discuss the

compilation of two different examples by JaNi.

In the first test, the Java source code in Figure 5a is

compiled, and the associated bytecodes can be viewed

in Figure 5b. For the sake of brevity, parameters for

bytecodes that have parameters (the ones in bold in

Figure 5b) are not shown.

It is important to note that it was necessary to

perform a transformation from a code specified in

operands stack form to another one in instructions

sequence. To do this we create movement instructions,

where operands from stack become values for

auxiliary variables at the intermediate code.

The generated intermediate code has several add

and addi instructions. This happens because in Nios II

instruction set the movement instructions are not

implemented. They are pseudo-instructions [1], and

they can be performed by addition operations where

one of the parameters has a zero value. This parameter

is represented by register zero, which is a read-only

register that always contains value zero.

Figure 6 shows the CFG and the CDG for the

compiled code. In both sides of the figure, the shaded

node represents the “sink” basic block of each graph.

By looking at Figure 6a, it is possible to notice that

we have two loops: B1, B2, B1 and B4, B5, B4.

Formally, we can find loops in a CFG by identifying

back-edges inside the graph, such as edges B2 – B1

and B5 – B4.

In addition, just as with the information provided

by CFG, we can infer that blocks B1 and B4 are loop

control headers, because they decide whether the

program control enters the loop path or the other path.

In Figure 6b we have the CDG for the CFG in

Figure 6a. Its edges are directed from node X to node

Y if X is control-dependent of Y. As an example, let

us take into account the node referring to basic block

B2. By analyzing the CFG we know that it is

impossible for B2 to reach B6 without passing through

B1, thus B2 is control-dependent of B1. However, B1

can reach B6 by passing through nodes B3 and B4,

making it control-dependent of B3 and B4. As B2 is

control-dependent of B1, it will also be control-

dependent of B3 and B4. Moreover, node B4 is not

control-dependent of any other node, since the

program control can flow directly from B4 to B6, and

no instruction is control-dependent of B6, because B6

is the end node of CFG.

int fib = 1, fat = 1;

int n = 12;

int fAux1 = 1, fAux2 = 1;

for (int i = 2; i <= n; i++){

 fib = fAux1 + fAux2;

 fAux1 = fAux2;

 fAux2 = fib;

}

int i = n + 1;

while (--i >= 2)

 fat *= i;

(a)

ICONST_1

ISTORE_1

ICONST_1

ISTORE_2

BIPUSH

ISTORE_3

ICONST_1

ISTORE

ICONST_1

ISTORE

ICONST_2

ISTORE

ILOAD

ILOAD_3

ILOAD_3

IF_ICMPGT

ILOAD

ILOAD

IADD

ISTORE_1

ILOAD

ISTORE

ILOAD_1

ISTORE

IINC

GOTO

ICONST_1

IADD

ISTORE

IINC

ILOAD

ICONST_2

IF_ICMPLT

ILOAD_2

ILOAD

IMUL

ISTORE_2

GOTO

RETURN

(b)

Figure 5. Source code (a) in Java and (b) its
bytecodes.

Hence, for the first test, we could achieve the

construction of intermediate graphs that permit

obtaining useful information from the code (in

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 107

bytecodes form) that is being compiled. It also showed

that the CFG mapped the program compiled.

Our second test aims at building a more complex

graph structure. The Java source code is given in

Figure 7, and its respective graphs in Figure 8. The

end nodes of each graph are also shaded.

As previously said, a loop can be identified at CFG

of Figure 8a by looking at the unique back-edge. The

presence of forward-edges allows us to infer the

existence of selection instructions. Differently from

CFG in the first test, this CFG enables a number of

distinct paths to get to the end node for some nodes.

(a)

(b)

Figure 6. (a) CFG and (b) CDG for the
compiled source on test 1.

The Java code presented in Figure 7 has a

repetition structure, which includes two simple

selection structures, and still has a compound selection

instruction after the loop. Variables of different types

are used and diverse operators are introduced as well.

boolean TRUE = true, FALSE = false;

short s = -14, r = 21;

char letter;

int n = 4, n = 2008;

int i = n;

do{

 if (s < r && TRUE && i < m/256){

 i += 2;

 continue;

 }

 i *= 2;

 if (!FALSE || FALSE) n = n << 1;

}while(i < n2);

n = n & 1;

if (n == 0) letter = 'P';

else letter = 'I';

Figure 7. Java code for test 2.

With CFG, we see that all nodes executed before

node B92 are control-dependent of B9, because all

2
 The statements related to node B9 in this paragraph are also valid for

node B8, in the second test.

paths to reach B12 pass through B9. In this case, it is

true to say that B9 is a digraph articulation point. At a

lower level, if the program control was previously on

some instruction of nodes B0..B8, then it is necessary

that all instructions in basic block B9 be performed in

order to reach the end node.

Like the first test, the last one provided results

showing how JaNi performs the classic intermediate

graphs generation.

For both tests, the binary file was generated

successfully, as did our register allocation policy,

based on Chaittin-Briggs algorithm [9].

(a)

(b)

Figure 8. (a) CFG and (b) CDG for test 2.

The binary files generated by JaNi were tested on a

Nios II simulator [15] and produced the expected

results. All registers had the correct values for the

variables that were mapped to them, during the whole

simulation.

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 108

7. Conclusions and future work

In this work we introduced a new compiler called

JaNi. JaNi aims to be a full compiler for the Nios II

soft-core processor, which can be configured into a

reconfigware. We have shown how JaNi handles Java

bytecodes processing and controls graphs generation.

Tests conducted on JaNi showed that the compiler

successfully compiles bytecodes generated from source

code comprised by statements present on the defined

subset of Java language, being able to separate basic

blocks and correctly create both CFG and CDG. It was

also possible to guarantee that our strategy for

bytecodes translation works for the tested Java subset.

There are still some features that must be added to

JaNi. First of all, data graphs generation must be

included: DFG (Data Flow Graph) and DDG (Data

Dependence Graph) [6]. The addition of program data

graphs enables data analysis, which is responsible for

a large variety of optimizations, including copy

propagation for reducing the size of the intermediate

code. Moreover, data analysis also allows

vectorization or parallelization to be implemented.

Thus, JaNi makes possible for a program written in

Java to be run over an Altera™ Nios II soft-core

processor, contributing to reconfigurable computing.

JaNi can be found at <http://www.dcce.ibilce.unesp.br/

spd/english/index.html>.

8. Acknowledgments

The authors would like to thank Brazilian research

funding agencies CNPq (process n. 134450/2008-6),

FAPESP and Fundunesp.

9. References

[1] Altera Nios II Custom Instruction - User Guide,

http://www.altera.com/literature/ug/ug_nios2_custom_

instruction.pdf. 2005.

[2] Altera Literature: Nios II Processor, http://www.

altera.com/literature/lit-nio2.jsp. 2007.

[3] Amtoft, T., Banerjee, A., Hatcliff, J. and Ranganath,

V. P. A New Foundation for Control Dependence and

Slicing for Modern Program Structures, ACM Trans.

on Programming Languages and Systems, 29, 5

(2007), 1-43.

[4] Cardoso, J. M. P. and Neto, H. C. Towards an

Automatic Path from JavaTM Bytecodes to Hardware

Through High-Level Synthesis, In Proc. of 5
TH

 IEEE

Intl. Conf. On Electronics, Circuits And Systems

(ICECS-98) (Lisboa, Portugal, 1998).

[5] Cardoso, J. M. P. and Neto, H. C. Macro-based

hardware compilation of JavaTM bytecodes into a

dynamic reconfigurable computing system, In Proc. of

IEEE Symp. on FPGAs for Custom Computing

Machines (United States, 1999).

[6] Chapman, B. and Zima, H. Supercompilers for

Parallel and Vector Computers, ACM Press, 1990.

[7] Cheung, P. Y. K., Constantinides, G. A., Luk W.,

Mencer, O., Todman, T. J. and Wilton, S. J. E.

Reconfigurable Computing: architectures and design

methods, IEE Proc. - Computers And Digital

Techniques, 152, 2 (2005), 193-207.

[8] Compton, K. and Hauck, S. Reconfigurable

Computing: A Survey of Systems and Software, ACM

Computing Surveys, 34, 2 (2002), 171-210.

[9] Cooper, K. D., Dasgupta, A. and Eckhardt, J.

Revisiting Graph Coloring Register Allocation: A

Study of Chaitin-Briggs and Callahan-Koblenz

Algorithms, In Proc. of Workshop on Languages and

Compilers for Parallel Computing (2005).

[10] El-Ghazawi, T. and Saha, P. Extending Embedded

Computing Scheduling Algorithms for Reconfigurable

Computing Systems, In Proc. of 3rd Southern Conf.

on Programmable Logic (Argentina, 2007).

[11] El-Araby, E., El-Ghazawi, T. and Nosum, P.

Productivity of High-level Languages on

Reconfigurable Computers: A HPC Perspective, In

Proc. of Intl, Conf. on Field-Programmable

Technology (Japan, 2007).

[12] Henessy, J. L. and Patterson, D. A. Computer

Architecture: A Quantitative Approach, Morgan

Kauffman Publishers, 2002.

[13] Lindholm, T. and Yellin, F. The Java
TM

 Virtual

Machine Specification - Second Edition, http://java.

sun.com/docs/books/jvms/. 1999.

[14] Mange, D., Mudry, P., Tempesti, G. and Vannel F.

CONFETTI: A reconfigurable hardware platform for

prototyping cellular architectures, In Proc. of IEEE

Intl. Parallel and Distributed Processing Symp.

(United States, 2007).

[15] Lima, W. S., Lobato, R. S., Silva, A. C. F., Ulson, R.

S. Simulação de execução de instruções do

processador de núcleo virtual Nios II, In Proc. of Conf.

Latinoamericana de Informática (Santa Fé, Argentina,

September 8-12, 2008).

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 109

