
The Owner Share scheduler for a distributed system

José Nelson Falavinha Junior∗, Aleardo Manacero Júnior†, Miron Livny‡ and Daniel Bradley‡
∗Department of Electrical Engineering

São Paulo State University - UNESP, Ilha Solteira, São Paulo - Brazil
Email: junior.falavinha@gmail.com
†Department of Computer Science

São Paulo State University - UNESP, São José do Rio Preto, São Paulo - Brazil
Email: aleardo@ibilce.unesp.br

‡Department of Computer Science
University of Wisconsin, Madison, Wisconsin - USA

Email: miron@cs.wisc.edu / dan@hep.wisc.edu

Abstract—In large distributed systems, where shared re-
sources are owned by distinct entities, there is a need to reflect
resource ownership in resource allocation. An appropriate
resource management system should guarantee that resource’s
owners have access to a share of resources proportional to
the share they provide. In order to achieve that some policies
can be used for revoking access to resources currently used
by other users. In this paper, a scheduling policy based in the
concept of distributed ownership is introduced called Owner
Share Enforcement Policy (OSEP). OSEP goal is to guarantee
that owner do not have their jobs postponed for longer periods
of time. We evaluate the results achieved with the application of
this policy using metrics that describe policy violation, loss of
capacity, policy cost and user satisfaction in environments with
and without job checkpointing. We also evaluate and compare
the OSEP policy with the Fair-Share policy, and from these
results it is possible to capture the trade-offs from different
ways to achieve fairness based on the user satisfaction.

Keywords-Scheduling Algorithms; Fair Scheduling; Dis-
tribute systems; Ownership concept;

I. INTRODUCTION

The cost/performance ratio of computational systems

leads to distributed ownership [1] since groups of users who

own hardware are willing to share it if they can utilize

hardware owned by others. Once an infrastructure where

the resources are owned by distinct entities is created, a

common goal is to share resources to make the best use of

the infrastructure [2].

Resource sharing represents a good method to make use of

the processing capacity and data storage of a computational

system. An important requirement in this situation is that

resource owners must be able to access their share of the

resources whenever they want to. There are two methods to

define an owner’s share of the resources. The first method is

the precise set of resources owned by the user. The second

method does not require an exact set, but an equivalent set

of resources. The choice between the two definitions is a

matter of policy. The second model is aimed at providing

a configurable scheduling infrastructure that uses equivalent

resources to achieve the owner share.

A scheduling policy, called the Owner Share Enforcement

Policy (OSEP), is defined and applied in a preemptive space-

sharing approach [3], [4], using job preemption to achieve

the owner’s proportion of resources. We implemented this

in Condor, which supports job preemption [5], [6]. OSEP

dynamically adjusts the amount of allocated resources for

users according to the amount of resources they provide.

OSEP also enables the use of checkpointing, that is the

completion of a preempted job from the state in which it

was interrupted.

Unlike the Fair-Share scheduler [7] which takes into

account the user’s historical usage, OSEP uses instantaneous

information about the owners’ share of contributed resources

as the main factor to achieve fairness.

In the remainder of the paper we describe OSEP in detail.

We present several performance metrics, then evaluate our

implementation of OSEP through several runs over an actual

system. We also present results of comparisons between the

OSEP and the Fair-Share policies. Our analysis compares

scenarios both with and without checkpointing.

II. THE OWNER-SHARE ENFORCEMENT POLICY

The OSEP policy is based on the resource ownership

of a distributed system. In order to fully understand its

operation, it is necessary to define a few terms, which is

done in the following paragraphs.

Distributed ownership is the term used to express

the multiple ownership claims in aggregated infrastructures

composed of several parts with independent administrative

domains, with independent policies, but with some common

purpose, such as a grid [8].

The resource ownership is an important factor to be

considered by a scheduler and by a resource allocation

policy. The scheduler can allocate resources to all users

in the system, but the resource owners must be able to

2009 International Conference on Parallel Processing Workshops

1530-2016/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPPW.2009.19

298

access their share of the resources when needed. Based

on this fact, we created and evaluated a scheduling

enforcement policy called Owner-Share Enforcement Policy

(OSEP) as a method to guarantee that each user/owner can

have his/her appropriate share of resources when he needs it.

Owner Share is a parameter that measures how much

of the system resources each user can use and how much

he/she provided.

Consider now a cluster with n machines used by m
users, U = {u1,...,um} with different amounts of jobs.

Then, the owner share is defined by:

Definition 1: The Owner Share of resources, denoted by

ai, is the number of nodes ni that the user ui provided to

the infrastructure, where if n is the total number of nodes

in the system, then
∑

i ai = n.

Feasible share of resources (fesi), similarly to the

concept presented in [4] for the fair-share policy, determines

the exact number of resources that should be allocated to

each user, considering his/her demand and owner share,

and the unused nodes by users that have di < ai. Its value

is determined by:

Definition 2: The parameter fesi
1 can be determined by

the equation fesi ≡ min{(ai + âi), di}, where:

- ai is the Owner-Share of nodes that ui is entitled to;

- âi is the excess share of nodes allocated to ui;

- di is the total demand for resources of ui;

-
∑

i fesi = n.

A. OSEP algorithm

The algorithm responsible for enforcing the OSEP works

in a preemptive space sharing approach for a distributed

system. It is aimed to adjust the number of running jobs

or allocated machines per user/owner in order to reach the

owner’s share of resources.

In the Owner-Share enforcement policy users must have

a number of allocated resources equivalent to the minimum

value between their demand and their owner share, or as

many machines as possible if there are extra available

machines. In order to implement OSEP, the scheduling

algorithm is divided in two main parts: one responsible for

its dynamic behavior and another that is responsible for

analyzing the user information about allocated resources

and making preemption decisions according to OSEP.

1) Dynamic Algorithm: The Owner-Share enforcement

system needs updated data about resource usage in order

1It is important to explain that when the demand di of the user ui can
not be attended, there is no excess share of nodes and then âi is zero.

to make the appropriate decisions. This data is provided by

different mechanisms in different environments, such as by

ClassAds in Condor. With this mechanism jobs can effec-

tively state their requirements and preferences and, similarly,

machines can specify requirements and preferences about the

jobs they are willing to run. We use Condor’s ClassAds to

provide the data needed by OSEP.

The Dynamic Algorithm considers the variables p and t,
where p is the maximum number of jobs to be preempted

in each iteration, and t is a pre-defined iteration interval of

the algorithm.

Dynamic Algorithm

1. Every t seconds, the updater system does:

2. For each job in the queue of the Scheduler {
3. Load the job resource usage data (ClassAd);

4. Read the owner and job status information;

5. Update the owner/user ClassAd; }
6. Update p;

7. Call Decision Algorithm(p);

In this algorithm the main work occurs in line 5, where

the information about the needs of each owner/user is

updated. This means calculating how many resources are

needed and how many must be reallocated. The actual

reorganization of job allocation is performed by the

Decision Algorithm, describe below.

2) Decision Algorithm: The Decision Algorithm is called

from the previous one. It decides whether a job is preempted

or not based on information stored in the user ClassAds.

From this information a job can be considered Active (in

execution), Idle (ready to be allocated) or on Hold (blocked

by the user or the scheduler). In every iteration, the algorithm

looks for jobs in the Idle state and negotiates the job

allocation by the preemption of a currently Active job.

The choice of which job is preempted is made by compar-

ing wall clock times of all jobs of a given user. The decision

rule selects the job with the lowest wall clock (minimizing

the loss of processing cycles). The preempted job must be

owned by the user with the largest excess share.

The execution of the Decision Algorithm depends on

parameters of a given user such as the number of idle jobs

(iuser) and the difference between his/her share and the

number of active jobs, fuser = auser − n ajobsuser, where

n ajobsuser is the current numbers of active jobs of the

user. It also needs a few parameters from every job of a

given user, such as the wall clock time (wjob), and its status

(sjob). The following algorithm operates on a cluster of m
users. The variable p holds the maximum number of jobs to

be preempted at each iteration.

299

Decision Algorithm (int p)

1. If (p > 0 ∧ (∃ umax | fmax = max(f1, ..., fm)
∧ fmax > 0 ∧ imax > 0))

2. { If (∃ umin | fmin = min(f1, ..., fm) ∧ fmin < 0)
3. { If (∃ job j ∈ umin | wj = min(w1, ..., wl)

∧ (sj =Active)
4. { vacate job(j);
5. Reserve resource for the idle job k from umax;

6. Decrease p;

7. Update the ClassAds of users umax, umin,

and jobs j and k;

8. }
9. Call Decision Algorithm(p);
10. }
11. }

In line 1, the Decision Algorithm selects the user with

the largest deficit between his/her share and his/her current

number of active jobs. This user is the one that will

receive the preempted resource at the current iteration. In

the second line it selects the user with the largest amount

of executing jobs over the share. This user will have one

of his/her jobs preempted. The job that will be preempted

is determined as the one with the lowest wallclock time.

After a job preemption, the preempted job is put back in

the queue, being completely reexecuted if checkpointing is

not used. The steps on lines 4 through 8 perform the actual

job termination and resource reservation. This algorithm is

called recursively until the OSEP is achieved. The resource

alocation is done by a separate process that runs between

iterations of the OSEP algorithm.

III. PERFORMANCE METRICS

The performance metrics used to analyze the behavior

of the enforcement policy are related to the utilization of

the resources and the accomplishment of the Owner-Share

enforcement policy based on its ideal case. It is important

to remember that the infrastructure supports different con-

figurations based on the owner’s needs. Once the owner’s

needs and the ideal case are defined, the infrastructure can

be configured in order to reach the ideal behavior as close

as possible.

Therefore, in order to analyze, compare and measure the

performance metrics, we defined the ideal case described in

the following subsection. Some concepts and rules also need

to be defined in order to describe the performance metrics.

A. Ideal case for OSEP

The ideal case for OSEP is a definition used to mea-

sure the effect of the policy actions over the system’s

performance. Different idealized goals can be established,

according to the needs of the users. The general case adopts

the notion that every user wants all of his/her resources as

soon as the jobs are submitted. This is the level adopted

throughout the tests.

Figure 1. Ideal situation for OSEP

As an example, consider an environment with 10 available

nodes, and two users, u1 and u2, with the same owner share

of resources, 5. The first user has 10 active jobs and no idle

jobs at time t0, and at t1 the user u2 submits 10 jobs. Before

t1 there was just one user in the system, u1, and he had the

right to use all resources. After t1, both users must share

the resources. In the ideal case they will have a feasible

share of 5 (fes1= fes2=5) and no excess share (â1=â2=0).

In an ideal case the system should satisfy the owner-share

policy instantaneously. However, in real systems it would

take (t2−t1) seconds to reach the Owner-Share policy where

t2 > t1. Figures 1 and 2 show the plots of the system usage

in an ideal situation and in a real system with the Owner-

Share enforcement policy (OSEP).

300

Figure 2. Real situation for OSEP

B. Policy Violation

Policy Violation (PV) measures the latency introduced

by the real system when compared to the ideal situation.

Consider the previous example again, and the plots presented

at figure 2. These plots results from the OSEP application

in a real distributed system.

Formally the Policy Violation is defined as the area in

the system usage plot where one user should have his/her

share but does not have due to the policy latency, as

shown at Figure 3. It measures the time spent by OSEP to

reach the appropriate system utilization, being calculated by:

• PV =
∫ t2

t1
SuIi − SuRi where:

– SuIi is the curve of the system utilization for the

user ui in the ideal case and;

– SuRi is the curve of the system utilization for the

user ui
in the real case and.

The Policy Violation is calculated only for users who have

demand but do not have their share of resources yet.

Figure 3. Area for Policy Violation

C. Loss of Capacity

The second metric is the Loss of Capacity (LC), also

called Capacity Loss in [9]. It defines the amount of the

system utilization that was lost due to the actions of the

enforcement algorithm. During the interval between job

preemption and allocation of other jobs the resources remain

idle. This is defined as a lack of utilization and measures

computing cycles wasted by the policy. In practical terms

it can be calculated by the area where system utilization is

under 100%. Figure 4 shows the Loss of Capacity between

t1 and t2. It is calculated only for users who actually have

excess resources by:

• LC =
∫ t2

t1
SuIi − SuRi where:

– SuIi is the curve of the system utilization for the

user ui in the ideal case and;

– SuRi is the curve of the system utilization for the

user ui in the real case and.

Figure 4. Area for Loss of Capacity

D. Policy cost

The policy cost (PC) measures the overhead caused by

OSEP in the system or the waste of CPU cycles by job

301

reprocessing. It is defined by the difference between the

areas of system usage in the real system and in the ideal

case, as in:

• PC =
∫ tfr

t0r
SuR− ∫ tfi

t0i
SuI

The PC value may be affected by the non-distributed load

of individual resources, that is, loads that are not allocated

by OSEP could delay the execution of OSEP jobs, increasing

PC value. Besides that it is an important metric to evaluate

the impact of checkpointing in OSEP application.

E. User satisfaction

The user satisfaction (US) is a performance metric that

shows how satisfied the user is with the system. Satisfaction

is something complex to define since a lot of factors can be

used. Quality, fast response, and delivery time are the most

common factors to measure the user/customer satisfaction in

any kind of system.

The main point to be analyzed in order to achieve 100%

satisfaction is the user/owner need. In some cases, it is

better for the user to wait and get more resources later than

to get all the share of resources at the moment, depending

on the system workload. Therefore, the user satisfaction

metric must be based on the ideal behaviour of the system

that is expected by the user, independent of the system

workload. Based on this fact we define the ideal case for

the user satisfaction.

Definition 3: The ideal case of satisfaction for a user

occurs when gets all resources needed to execute the jobs

and they finish at the expected moment, no matter what.

The parameter that measures the user satisfaction is the

delivery time of the job, so the user satisfaction USij
is

calculated for each job j and the average of these values

represented by A USi determine how satisfied the user i is

with the system, where:

• USij = ((tjideal
− tj0)/(tjreal

− tj0))x100;

• A USi =
∑

j USij
/n where n is the number of jobs

of the user i.

IV. TESTS AND RESULTS

Several tests were conducted to evaluate the influence

and performance of OSEP, when applied to different con-

figurations of the infrastructure and workload. The tests

provided benchmarks to evaluate the policy against the

defined performance metrics, that is, the Policy Violation,

Loss of Capacity, Policy cost, and User Satisfaction.

We benchmarked a pool of machines distributed along

several departments of the University of Wisconsin in Madi-

son using the Condor System. Therefore, the results reflect

a real testbed for the OSEP analysis, where resource owners

from different departments may want their Owner-Share of

resources. The machines are distributed in multiple clusters

and they run distributions of UNIX operating systems.

The evaluation environment created was a system with

several resources from different departments and users,

where the job submission is controlled by a centralized

Condor. We nominated a share of resources for each user

and then, they start to submit jobs to the system.

The main situation to be analysed occurs when a

user/owner u1 submits, at certain time t0, k jobs to the

system, and a second user/owner u2 submits l jobs to the

same system at time t1, where t1 > t0. If k and l are bigger

than the number of resources equivalent to the corresponding

user share, it creates a dispute over the resources among the

users.

The system starts to enforce the OSEP policy when the

number of resources alocated to some user is smaller than

his/her share and if there is at least one user with extra

resources. In order to reduce the loss of CPU cycles due

to job reprocessing, we minimized the iteration interval

between two OSEP activations. The definition of this interval

is dependent on the OSEP policy implementation. As we

implemented it through the Condor system, we define the

iteration interval according to Condor’s negotiation interval.

A. Evaluating the impact of environment variations

The tests were conducted by several cases involving the

main system variables, such as the number of resources in

the system, the number of jobs per user, the size of the jobs

and the number of users and their shares.

The results for all tests showed that the best and less

expensive way to achieve the OSEP policy is to give to

the user all his/her share in just one iteration, that is,

allocating all viable tasks in a single invocation of the

Decision Algorithm. This means that the variable p used

at the OSEP algorithm must receive the value of the highest

share among the users.

One important result achieved with OSEP is user satisfac-

tion of the owners. A major problem with the well known

FCFS (First Come, First Served) policy, as well as with the

Fair-Share policy, is that they give a higher priority to the

first user that submits jobs. On the other hand, the OSEP

policy enforces the reallocation of resources according to

the user share, making the user satisfaction proportional to

their share.

Consider the case represented by figure 5 and table I,

where user 1 and user 2 have the same share of resources

(50% for each one). Also user 1 submits jobs that execute

for 3600 seconds each at t1 = 0s, and user 2 submits jobs

that execute only for 600 seconds each at moment t2 =
300s. The graphs at figure 5 show the system utilization.

OSEP policy applied with the checkpointing capability is

represented by the symbol Θ in table I.

302

Figure 5. Variation of the job size

Table I
VARIATION OF THE JOB SIZE

OSEP OSEP Θ Fair-Share
PV 600 550 -
LC 275 195 -
PC 9845 625 -

A US1 93.21% 95.66% 99.26%
A US2 95.63% 97.28% 21.24%

The difference among the results for the OSEP with and

without the checkpointing capability is clear. All the metrics,

Policy Violation (PV), Loss of Capacity (LC) and Policy

Cost (PC) are reduced with the checkpointing capability

since all the work done before the preemption of jobs is

not lost. The Fair-Share policy causes a lower satisfaction

level for the user 2 while the OSEP gets good satisfaction

for both users (more than 90%).

B. Evaluating the impact of several users and different
shares

This section presents a more general and realistic case. It

defines 4 users with different shares and jobs of several sizes

submitted at different moments. Size restrictions limited us

to a single example of the tested environments. This case is

described as:

• System with 20 resources;

• Different Shares: user 1 with 30%, user 2 with 40%

and user 3 and 4 with 15% each;

• 15 jobs per user, job size ranging from 600 to 3600

seconds each;

• t1 =0s, t2 =100s, t3 =200s e t4 =210s, where tx is

the moment when user x submits his/her jobs;

Figure 6 shows the graphs of system utilization resulting

from this test while table II presents the results for the per-

formance metrics and user satisfaction. The results show that

the OSEP policy guarantees a user satisfaction proportional

to the user share, meaning that the bigger the user share,

the bigger will be the user satisfaction. This explains the

large difference for the user 2 between the OSEP and Fair-

Share policies (about 20% of satisfaction). As said before,

the Fair-Share policy favours the users who submitted their

jobs first, so the user 1 is the most satisfied one.

Table II
GENERAL CASE

OSEP OSEP Θ Fair-Share
PV 2395 2115 -
LC 915 800 -
PC 18380 790 -

A US1 67.18% 70.01% 99.40%
A US2 77.02% 78.20% 56.7%
A US3 47.98% 50.61% 50.59%
A US4 50.02% 50.60% 50.58%

The only situation where OSEP does not guarantee the

best user satisfaction levels occurs when one user has a

very small share and submits a reasonable amount of jobs.

In this case it will get only a small amount of resources

if there is dispute with other users. The Fair-Share policy,

in this situation, could compensate this user according to

the historical usage of the system, providing a better user

satisfaction.

V. RELATED WORK

The concept of ownership is introduced from an economic

point of view, by Grossman and Hart [10], showing the

benefits of ownership and also the costs associated with the

wrong allocation of residual rights or shares. Alstyne and

others [11] apply ownership to a distributed database design

in order to describe its impact on information sharing and

system performance.

303

Figure 6. General Case

Besides these seminal works, most of the scheduling

policies and distributed share of resources use the Fair-Share

approach. Fair-Share policies try to distribute resources

proportionally among users based on historical usage. From

its definition, jobs already running are not preempted and

users that are postponed are compensated with heavier use

at a later moment. Based on this approach Arpaci-Dusseau

and Culler [12] introduced a policy where the share is based

on a time-sharing technique. In other approach, Kleban

and Clearwater [13] use a non-preemptive space-sharing

algorithm in order to provide the fair-share policy.

Amar and others [4] use the concept of fair-share to build

an algorithm for node allocation in a cluster, where they used

preemption in a space-sharing approach. Their algorithm is

concerned with addition or subtraction of nodes into the

system. Andrade and others [14] introduced the Network

of Favours that is an incentive mechanism for p2p systems

sharing multiple resources, it uses an accounting information

between peers (sites) in order to give or take resources.

Also, Wang and Merchant [15] use the idea of fair-share

into a distributed algorithm to enforce proportional sharing

of storage resources among streams of requests, but this is

a context that is not directly concerned with cpu usage.

None of these works use the concepts of owner share

and distributed ownership. These concepts are relatively

new, since they were better defined with the appearance of

computational grids and large resource sharing systems.

VI. CONCLUSION AND FUTURE WORK

This paper presented a scheduling infrastructure for the

Owner Share scheduler based on the distributed ownership

concept. It was implemented through a dynamic enforcement

algorithm in a distributed system with a preemptive space-

sharing approach, and tested on different scenarios, where

job checkpointing is or is not possible.

The infrastructure provides a configurable and flexible

framework to analyze and evaluate ownership as the main

factor of a scheduling policy. Based on the owner’s policies,

the system variables can be analyzed and evaluated to

determine the best configuration to reach the owner’s share

of resources according to his/her need.

The results showed that the OSEP policy aims to provide a

user satisfaction proportional to the user’s share of resources,

since it tries to achieve fairness based on the distributed

ownership concept. The comparisons with the Fair-Share

policy were useful to determine the problems and advantages

of each policy. The OSEP policy presents a smaller standard

deviation for user satisfaction when compared to the results

of the Fair-Share policy.

The results also showed that checkpointing represents a

performance improvement for the owner share scheduler,

since the waste of CPU cycles related to job preemption

is minimized. Moreover, the overhead due to preemption is

even lower for long-running jobs, for which preemption is

a smaller percentage of the runtime.

In this work, the ownership concept is represented by the

number of machines since the infrastructure was considered

to be homogeneous machines. For systems with heteroge-

neous resources the ownership concept can be represented

by the resource’s processing capacity instead of the number

of resources.

Some things can still be done for future work, as the

treatment for non owner users, to allocate available resources

among non-owner users and owners when every owner

already has the owner share. We would like to study and

verify how the OSEP and Fair-Share policies could be mixed

to create a new policy, more efficient and fair. Also, we aim

304

to include the support of virtual machines and resources to

the OSEP system.

ACKNOWLEDGMENT

The authors wish to thank all members of the Condor

team for their help. This research was supported in parts by

funds from the Coordination for the Improvement of Higher

Education - (CAPES - Brazilian government agency) and

FAPESP.

REFERENCES

[1] M. Livny and R. Raman, “High-throughput resource man-
agement,” in The Grid: Blueprint for a New Computing
Infrastructure, I. Foster and C. Kesselman, Eds. Morgan
Kaufmann, 1998.

[2] M. Lathia, “Advantages of grid computing,” IEEE Distributed
Systems Online, vol. 6, no. 2, p. 5, 2005.

[3] S. W. Turner, L. M. Ni, and B. H. C. Cheng, “Time
and/or space sharing in a workstation cluster environment,”
in Supercomputing ’94: Proceedings of the 1994 ACM/IEEE
conference on Supercomputing. New York, NY, USA: ACM,
1994, pp. 630–639.

[4] L. Amar, A. Barak, E. Levy, and M. Okun, “An on-line
algorithm for fair-share node allocations in a cluster,” in
CCGRID ’07: Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 83–91.

[5] A. Roy and M. Livny, “Condor and preemptive resume
scheduling,” in Grid resource management: state of the art
and future trends. Norwell, MA, USA: Kluwer Academic
Publishers, 2004, pp. 135–144.

[6] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny,
“Checkpoint and migration of UNIX processes in the Condor
distributed processing system,” University of Wisconsin -
Madison Computer Sciences Department, Tech. Rep. UW-
CS-TR-1346, April 1997.

[7] J. Kay and P. Lauder, “A fair share scheduler,” Commun.
ACM, vol. 31, no. 1, pp. 44–55, 1988.

[8] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of
the grid: Enabling scalable virtual organizations,” Int. J. High
Perform. Comput. Appl., vol. 15, no. 3, pp. 200–222, 2001.

[9] J. F. C. M. de Jongh, “Share scheduling in
distributed systems,” PhD Thesis, 2002. [Online]. Available:
citeseer.ist.psu.edu/jongh02share.html

[10] G. S. and O. Hart, “The cost and benefits of
ownership: A theory of vertical and lateral integration,”
in CEPR Discussion Paper no. 70, London, Centre for
Economic Policy Research, 1985. [Online]. Available:
http://www.cepr.org/pubs/dps/DP70.asp

[11] M. V. Alstyne, E. Brynjolfsson, and S. Madnick,
“Ownership principles for distributed database design,”
MIT Center for Coordination Science, Working
Paper Series 142, May 1993. [Online]. Available:
http://ideas.repec.org/p/wop/mitccs/142.html

[12] A. Arpaci-Dusseau and D. Culler, “Extending proportional-
share scheduling to a network of workstations,” in
PDPTA’97: International Conference on Parallel and
Distributed Processing Techniques and Applications,
Las Vegas, NV, USA, 1997. [Online]. Available:
http://now.cs.berkeley.edu/Papers2/Postscript/pdpta.ps

[13] S. D. Kleban and S. H. Clearwater, “Fair share on high per-
formance computing systems: What does fair really mean?”
in CCGRID ’03: Proceedings of the 3st International Sympo-
sium on Cluster Computing and the Grid. Washington, DC,
USA: IEEE Computer Society, 2003, p. 146.

[14] N. Andrade, F. Brasileiro, and M. Mowbray, “Discouraging
free riding in a peer-to-peer cpu-sharing grid,” in Proceedings
of the 13th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC 04), IEEE Computer
Society, 2004, pp. 129–137.

[15] Y. Wang and A. Merchant, “Proportional share scheduling for
distributed storage systems,” Proc. 5th USENIX Conference
on File and Storage Technologies, San Jose, CA, February
2007.

305

