
Finding Fractional Identities in Multiple Sequences Using a
Fast Parallel Algorithm

Evandro A. Marucci1, Geraldo F. D. Zafalon1,2, Aleardo Manacero1, Liria M. Sato2,
José M. Machado1

1Departamento de Ciências de Computação e Estatı́stica
Universidade Estadual Paulista - UNESP

2Departamento de Engenharia de Computação e Sistemas Digitais
Escola Politécnica - Universidade de São Paulo - USP

{marucci,zafalon,liriasato}@gmail.com, {aleardo,jmarcio}@ibilce.unesp.br

Abstract. The calculation of similarities is an operation widely used in Bioin-
formatics. Usually made between pairs of sequences, it determines the relative
amount of common residues between them. The fractional identity is a mea-
sure of similarity used in many sequence alignment tools. Due to the growing
of volume of comparative data, the interest in parallel computing is increasing
remarkably. The implementation of a parallel algorithm for finding fractional
identities in multiple sequences is proposed in this paper. Tests have shown that
the algorithm presents a very good scalability and a nearly linear speedup.

1. Introduction
The use of sequence comparison methods has been growing remarkably in recent years,
in response to the volume increasing of available genomic data. Consequently, the de-
velopment of new approaches that reduce the processing time are fundamental to the
improvement of this area.

In general, the sequences comparison starts with the search of similarity degree
between pairs of sequences. This search is made by methods which may require or not
that the sequences are aligned. A method widely used by the most of sequence alignment
tools and which requires a prior alignment is the fractional identity [Edgar 2004a] method.
CLUSTALW [Thompson et al. 1994] and MUSCLE[Edgar 2004b] use this method in one
of their steps.

We propose in this paper a parallel algorithm for fractional identity method and
show implementation information 1. This algorithm can be used in the development of
any parallel tool which needs a stage of fast refinement with a great biological accuracy.

2. Fractional Identity
Given an alignment, we ignore all positions with gaps and, in the other positions, we cal-
culate the amount of them with equal residues in relation to the total amount of positions

1This work was partially supported by the São Paulo Research Foundation (FAPESP - Brazil) under
Grant No. 06/59592-0
Corresponding author: Geraldo F.D. Zafalon



with any kind of residues. Figure 1 gives an example of the fractional identity calculation.
In this figure, the aligned pair of sequences has 9 positions. Among them, only positions
1, 2, 4, 5, 6, 7, 9 and 10 have no gaps. Positions 2, 4, 6, 7 and 9, in turn, are those having
equal residues in both sequences. Thus, 8 positions without gaps and 5 positions with
equal residues. The fractional identity between these sequences is therefore 5/8.

Figure 1. Fractional identity calculation between two sequences.

3. Parallel Algorithm
This algorithm dynamically divides the computation among the processors through a
master-slave approach. This parallelism is performed by distributing the similarity calcu-
lation of sequence pairs among the available slaves. This is possible because each fixed
pair similarity calculation is independent from the remaining pair similarity calculations.
The flowchart of this algorithm is shown in figure 2.

Figure 2. Parallel algorithm flowchart for the calculation of fractional identities in multiple
sequences.

Initially, the master sends all sequences by broadcast to all slaves. The task dis-
tribution is based on the processor identifier, assigning to each slave the calculation of



specific lines in the similarity triangular matrix. This matrix is obtained as exemplified in
figure 3. Each slave initially calculates the line corresponding to the identifier, in a p-step
loop, where p is the number of processors. In the example, we have eight sequences,
and, hence, a seven by seven matrix. The first slave is responsible for the calculation of
the lines from sequences 1, 4 and 7. The second one by lines of sequences 2 and 5 and
the third by lines of sequences 3 and 6. The gray values are the results obtained in other
slaves; they will be joined in the master for the creation of the similarity matrix. Although
simple, this scheduling tends to a good load balancing for any number of sequences in-
volved.

Figure 3. Example of how the calculation of the similarity matrix is distributed between the
slaves.

4. Tests and Results
In order to verify the proposed algorithm performance, we executed tests with four dif-
ferent datasets. For each dataset, we verified the algorithm scalability when executed in a
growing number of machines. All tests were performed on a Beowulf cluster.

Some executed tests are showed in the figure 4. There are four graphics listed from
1 to 4. Basically, in this figure are showed some graphics which have in the horizontal
axis the number of processors and in the vertical axis the running time in seconds. On
the top of each graphic are placed some parameters of the sequence datasets used in the
tests. The parameter num represents the number of sequences used in the execution, the
parameter max represents the maximum number of residues found among the sequences
of dataset and the parameter avg shows the average number of residues found among the
sequences of dataset.

The first three graphics illustrated in figure 4 show an almost linear speedup for
tests with more than 500 sequences. The first one with 567 sequences, the second with
988 sequences and the third one with 2000 sequences.

The last graphic (number 4) shows a constant performance, regardless of the num-
ber of machines, for an entry with few sequences. In this case, the sequential implemen-
tation of the algorithm is so fast for that input (approximately 1 second) that the speedup
achieved with tasks division is close to the time spent with message exchanges.



Figure 4. Running time of the parallel algorithm for 2, 4, 8 and 15 processors with four
different datasets.

The performance achieved with the addition of 14 processors is more than 10
times higher. In tests we can realize a nearly linear speedup independent from the dataset
used and the number of processors in the cluster.

5. Conclusions
In this article, we propose and measure a parallel strategy to calculate similarities be-
tween multiple sequence pairs by using fractional identities. This calculation is used, for
instance, in multiple sequence alignment tools. The proposed parallel algorithm has been
implemented for distributed memory systems, due to the wide use of Beowulf clusters in
genomic research.

The performed tests show that the algorithm presents a good scalability and a
nearly linear speedup. With the use of 14 processing nodes (slaves), the system achieved
a 10 times more speedup. This speedup is justified by the total independence of the
scheduled tasks and by the good load balancing obtained with the merge distribution of
triangular matrix lines. Additionally, the communication cost is minimized because the
processed data in slaves are sent to the master in a single message.

References
Edgar, R. C. (2004a). Local homology recognition and distance measures in linear time

using compressed amino acid alphabets. Nucleic Acids Research, 32(1):380–385.

Edgar, R. C. (2004b). Muscle: a multiple sequence alignment method with reduced time
and space complexity. BMC Bioinformatics, 5(1).

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). Clustal w: improving
the sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,
22(22):4673–4680.


