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Abstract— This work describes the development of a flexible
and adaptable distributed file system model where the main
concepts of distributed computing are intrinsically incor-
porated. The file system incorporates characteristics such
as transparency, scalability, fault-tolerance, cryptography,
support for low-cost hardware, easy configuration and file
manipulation.
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1. Introduction

The amount of stored data increases at an impressive rate,
demanding more storage space and compatible processing
speeds. Aiming to avoid complete data loss from failures or
system overloads, it became usual to adopt the distributed
files model [1] [2].

Therefore, a distributed file system (DFS) is a system
where files are stored along distinct computers, linked
through a communication network. Even though several
DEFS are capable of attending several characteristics, such as
access/location transparency, performance, scalability, con-
currency control, fault-tolerance and security, to attend them
simultaneously is complex and difficult to manage. Another
important aspect to consider is that when one characteristic
has its complexity increased, the remaining ones may be
negatively affected. This explains why most of the DFS are
developed aiming at fulfilling specific scenarios [2] [3] [4].

This paper proposes a novel model for a flexible DFS,
named FlexA (Flexible and Adaptable Distributed File Sys-
tem), that can be adapted to the environment where it
is being used. This flexibility allows for DFS features to
be adapted or even replaced by other including but not
limited to the cryptography algorithm, level of replication,
application programming interfaces, move some tasks from
servers to clients and several configurations of software and
hardware.

In the following sections we start with a brief description
of other DFS in use, focusing on ones that are the basis for
the model presented here. Then we focus in the description
of the proposed model, including its main characteristics and
architecture. Results from the model evaluation are presented
next, finishing with conclusions drawn from this evaluation
and directions for future work.

2. Related work

Among the several existing DFSs, this work focused on
exploring the key features of some models of DFSs based
on traditional designs and some newer systems, allowing
to extract features for the development of a DFSs that has
characteristics such as high performance, fault-tolerance and
easiness of use.

2.1 Network File System

Network File System (NFS) [2] [3] is a DFS based
on remote procedure calls (RPC) providing a convenient
medium to applications through a virtual layer (Virtual File
System - VFS) that enables a transparent access to NFS
components [5] [6] [7].

2.2 Andrew File System

Andrew File System (AFS) was designed aiming scala-
bility to several users. In order to achieve this, aggressive
cache policies are implemented on the client side, as well
as efficient techniques for consistency [2] [3].

2.3 Google File System

Google File System (GFS) operates on an architecture
composed by parallel server clusters. GFS is distinguished
by the serialization and file distribution directly to chunk
servers that are the actual storage nodes, without the need
for additional accesses to the main server, called "master"

[1].

2.4 Tahoe - The Least-Authority Filesystem

Tahoe-LAFS is a DFS in the user space, where file sharing
occurs through a sequence of characters manipulated by the
Uniform Resource Locator (URL). This form of sharing
allied to a decentralized security model, based on individual
access control, allowed Tahoe-LAFS to manage directories
and files as independent objects, which can be referenced by
several processes using different names [8].

2.5 Another systems

Besides the systems just presented, other works seek to
establish different priorities for their DFS models, such as
SPRITE [9], CODA [10], IBM General Parallel File System
[11], Ceph [12], XtreemFS [13], HDFS [14], Red Hat Global
File System [15] and GlusterFS [16]. Among these DFSs, the



choice of NFS, AFS and GFS is justified by extensive docu-
mentation available, allowing to explore problems commonly
encountered in the development of DFSs. As regards the
Tahoe-LAFS, its importance for this project was motivated
by his development in an open-source project, providing a
model for access to files by upload/download and the use
of the Principle of Least Authority [17] to distribute files.

3. A model for DFS

This work describes a DFS model that incorporates the
important characteristics of NFS, AFS, GFS and Tahoe-
LAFS. It is expected to work in a controlled environment,
offering support to heterogeneity, flexibility, easier file man-
agement, fast and secure cryptographic mechanisms, and
fault-tolerance tools.

The main characteristics of this model are listed in this
section.

3.1 Adaptability and Flexibility

Adaptability allows clients to become part of the server
group for helping in the provision of distributed files.
Through this feature, resources of the client station such
as disk space can be shared. Also, the client can become
a host server completely. The concept of flexibility comes
from the possibility of making changes in FlexA to adjust
the scenario utilized, in other words, providing a means to
modify their functionality by replacement or adjustment of
the model components. The components that can be modified
are designed to be independent of the set, among them
can be emphasized the modification or replacement of the
cryptographic algorithm, the changing levels of replication
and the adaptation interface for other applications such as,
for example, using the file system through a web browser.

3.2 Access Control

Our model uses a set of hash sequences to generate the
encryption key file and its variations, providing two levels
of access: read-write and read-only. The methodology used
for this process is adapted from the cryptographic security
model of the Tahoe-LAFS, which follows the Principle of
Least Authority. With this model, the files and directories
are managed directly by the user through independents
handlers, which are responsible for identifying and providing
the permissions for that type of file/directory, replacing the
traditional fields of "login" and "password". As a result, our
model enables users to interact with DFS without the need
of system administrator privileges [8].

3.3 Low Cost Hardware

The specification of this our model was based on an open
language, widely used in operating system implementations.
It also expected that the client stations are in charge of most
of the process involved on serving files to the distributed
system. This inversion of which side does the processing,

allows for several gains in the server side, making it more
reliable (less failures due to overloads) and less expensive.
Moreover, the rapid advances in of-the-shelf hardware for the
client has brought better conditions for the user to effectively
use these resources.

File storage is managed by the local file systems, making
it easier to adapt to individual operating systems. This also
makes model implementation, management and manipula-
tion easier [1] [8].

3.4 Fault-Tolerance

Fault-tolerance is achieved through the division of a
file into smaller blocks (chunks), which are transferred to
a set of servers. This process allows the client to work
with distributed chunks, thus avoiding compromising data
integrity due to isolated problems in specific servers.

File chunks are stored in two groups of servers: write
and replica. The former is composed of a fixed set of three
servers in charge of receiving or providing file chunks, and
is capable of reading and writing operations. The latter is
composed of replicas of the first group and allows only
reading operations of file chunks. Consistency is achieved
by modifications initiated by servers from the first group [1]
(31 [8].

The use of replicas is optional, enabling the control of
chunks availability according to the demand for such chunks.

For agreement and consistency purposes, it is necessary
for the write group to have two of the three servers active.
All transfer operations only occur under this condition.

3.5 Performance

FlexA tries to minimize the number of interactions with
the servers, bringing most of the operations to the client side.
Accessing a local file improves the overall performance. To
achieve this, the DFS uses a load/update model where the
client transfers the file chunks to the local file system before
executing operations on the file.

The use of a cache in the client prevents future interactions
on files already transferred. In the situation where the file’s
version becomes outdated, the client will be warned about
the availability of a newer version in the servers group.

Chunks are transferred in parallel from different servers,
using variable sized blocks. The smallest size of a block is
4096 bytes.

4. Project overview
4.1 Architecture

Differently from the conventional client-server model,
FlexA, as shown in Figure 1, eliminates the concept of a
main server that would be in charge of manage all requests
to the files.

This architecture resembles a peer-to-peer architecture,
enabling clients to interact with storage groups without the
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Fig. 1: FlexA architecture

presence of a central manager. Another point is that, due
to the access control model, a certification centre is not
necessary, since each client is responsible for controlling the
access permissions to its own files, without the intervenience
of managers or super-users.

In this model, computers belonging to the DFS are ad-
ministered in specific groups, which can be of three types:
reading, writing and clients. The first, called writing group
or primary servers, comprises computers with active server
process, and it is responsible to manage and store files
with their metadata. The second group, called replicas or
secondary servers, consists of computers that can be clients
and servers at the same time, creating a backup set of
primary servers for assistance in case of overload or failures.
The third group is formed by the client workstations, which
are responsible for encryption and distribution chunks of the
file to the primary servers.

Files can be read in parallel from several storage comput-
ers, either from the write or the replica group. The transfer
of new or update files can only be performed by computers
in the write group.

Network latency is minimized by the elimination of in-
termediary servers and the addition of concurrent access to
different sets of servers. These characteristics also allow the
prevention of possible bottlenecks in the transfer process.

As stated before, the migration of most of the operations to
the client side, including cryptography and file partitioning,
also provides gains in the model’s performance. Indeed, this
also reduces the usage of hardware resources in the storage
nodes.

4.2 Security

The access to files is determined by the client’s handler,
which can be read-write or read-only. Each handler has two
keys: one cryptographic and other for validation.

The "write" cryptographic key (WK) is given by WK
= SHA256Trunc(Key), where Key is a 16 bytes sequence
randomly generated, and the function SHA256Trunc is the
hash 256 bits (32 bytes) with output encoded in Base64 and
truncated in 32 bytes. The "read" cryptographic key (RK)

is given by RK=sha256Trunc(WK). Each file is encrypted
using its RK and the symmetric AES 256 bits algorithm in
the CBC (Cipher Block Chaining) mode [18]. This allows
modifying a WK to a RK, but not the other way round. These
steps are illustrated in Figure 2.
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File
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Fig. 2: FlexA security

Two other keys determine the validation process: Verify
Key (VK) and Valid Write (VW), both in 48 bytes. The VK
is present in the client handler and in the token sent to
the servers. It is used to certify the communication between
nodes and it is generated by VK = SHA384(Key). The VW
is also generated by the client, but only the servers have
its copy. It is used to verify the validity of the client’s WK.
This key is given by VW = SHA384(WK). If the result from
the client’s VW is equal to the stored chunk’s VW, the file
modification is executed in the write group.

File decryption can be performed only through the keys
generated by the client. This is true independently of the
communication channel in use or the server security level.
This process produces three chunks, each one with one token
containing file attributes, VK and VW and the handlers that
allow the user to change the permissions.

4.3 Client

Three separated modules make up the client process,
as shown in Figure 3: Collector manages the data input,
Synchronizer manages outward data transmission, and Com-
municator identifies which hosts are active and which are in
the replica group or are clients.

In each client there is a reduced part of the storage server
database. This part contains some information about the
availability and locality of file chunks. This local database
helps for a fast search/recovery of data, without the need of
performing these operations in the storage servers.
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4.4 Storage

The servers, in the DFS model proposed here, have the
function of store file chunks, validate client requests and
execute replication between the groups of servers. Since
there is no specific server in charge of the communication
management or acting as a central unit, all servers follow
architecture close to the client’s model.

The chunk organization is performed through the local
database, which provides the file properties with its routing
table and keys for verification and validation.

4.5 Communication

Communication between the components of FlexA occurs
with TCP/IP protocol and persistent connections. Each file
chunk is transferred this way.

The Communicator module scans the network searching
for active hosts and looking at what functions they execute.
This operation enables the interaction between clients and
storage groups. Periodically, the identified hosts exchange
messages in order to keep their status updated.

The user performs the choice between a client or storage
station, whilst the definition of the write servers group is
made independently. The independent definition of write
servers guarantees that the needed number of storage servers
is satisfied.

In case of a failure in the servers of the write group, it is
possible to relocate stations from the replica group through
an election process. Specifically, a Bully algorithm is used
to determine a new candidate to the write group through the
priority of each member of the replica group. Once the new
station is defined, all active process in FlexA are informed
of the new member [19].

4.6 Synchronization

Chunk synchronization occurs automatically through
client interactions with the write group. These interactions

are propagated to the replica group and the active clients are
informed about new updates.

Indexers present in each local database are used to iden-
tify if the copies in cache are obsolete in relation to the
write group. The update of these copies, however, is only
performed when a user tries to use them.

Since each station keeps a record of the status of every
other station, services can be re-established quickly in case
of failures or a host crash.

The consistency of the chunks is determined by its version
in the database on each station, which is controlled by write
group. All clients and the read group are notified about every
operation that modifies a file in a server. Periodically, stations
communicate with the write group to update its data base.

The entry of a new station needs a token from the write
group, that token contains information about the actual state
of all stations.

5. Performance evaluation
5.1 Micro-benchmarks

Performance evaluation used a set of computers with
Intel Pentium Dual E2160 - 1,8 GHz processor, 2GB of
RAM memory, hard disk of 40GB at 7200RPM, Ubuntu
Linux operating system with 64-bit and interconnected by
Ethernet 100 Mbps full-duplex using a 3Com switch. To do
the performance tests, we used operations of reading and
writing (upload/download) of files of 1MB, SMB, 10MB,
25MB and 50MB. These files seeking include the variation
of data found in the academic environment, which can be
text files, music, photos, videos and applications.

5.2 Evaluation

The evaluation process considered five cases of access to
the servers. Each one contains sequential access of writing
and reading for each one the clients simultaneously.

For each test scenario, levels of interactions were used
12 times for each size in each read and write operation,
totalising 120 interactions for each client. In tests with more
than 1 client, simultaneous interactions followed the same
read/write sequences with same sized files.

For evaluation and comparison of performance we used
Tahoe-LAFS, because it is precursor of FlexA, and NFS
because it is a client-server DFS without additional layers.

For the comparison between DFSs, the tests were consid-
ered with 5 concurrent clients using 5 types of files to read
and write operation.

For the write operation, as shown in Figure 4, it is possible
to verify that the NFS in environment with multiple requests
becomes slower, affecting the overall system performance.
Even in an environment small-scale, centralized architectures
may represent a factor of performance degradation and risks
of failure.

The write operation using FlexA and Tahoe-LAFS has
similarity, because the logic of this operation (encryption,
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split and distribution) is similar, differing in some aspects
such as the encryption without using RSA asymmetric keys
in FlexA, in the splitting the file in 66% compared with 50%
for Tahoe-LAFS and distribution using TCP/IP compared
to the HTTP in Tahoe-LAFS. However, the write operation
using Tahoe-LAFS is faster than FlexA during the evolution
of files, being less optimized for files smaller than 4MB, to
which FlexA is slightly faster than Tahoe-LAFS (8MB/s in
FlexA and 5MB/s in Tahoe-LAFS). The reason for FlexA
be significantly slower than Tahoe-LAFS for writing files
over SMB is justified by the large number of divisions and
distributions of chunks of files that FlexA does for set of
three servers, totaling 66% of the file for each computer
against 50% of a file in Tahoe-LAFS.

Considering the read operation, showed in Figure 4, FlexA
has the highest rate of evolution for the transfer. Because of
its number of divisions of the file and the process of choice
for distributed chunks, the read operation in FlexA can uses
all the available servers of the writing group. This situation
does not happen with the Tahoe-LAFS which is limited to
a few servers to restore the file again.

The fact that the client station is responsible for data
processing (division and cryptography) causes a small part
of the consumption of the hardware resources compared
with NFS, but much smaller compared to Tahoe-LAFS, as
is shown in Figure 5.
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Fig. 5: Variation of hardware consumption

The advantage of our DFS model is to permit a larger
quantity of simultaneous operations to big client files, while

the storage server only concentrates on receiving and orga-
nizing the chunks.

Another point implemented in our model is the direct
replication by the client, allowing more control and security
for the user if failures occur in some servers.

6. Conclusion

The developed model is a way of expressing the possi-
bility of aggregating the characteristics of others DFS and
making it functional.

The simplicity of its construction brought flexibility to the
utilization of computational resources, a more efficient use
of the client’s processing power and less conditions for an
overload in the servers.

The adaptation of the model of decentralized permissions
allowed more independence for system administrators and
a quicker cryptography process. This is due to the smaller
number of steps that are used to achieve an acceptable
security level.

It brought more data reliability with the use of cryptog-
raphy directly on the files, avoiding cases where security
failure or fault of the storage set compromises data integrity.

The use of storage groups guarantees availability of the
files and presents conditions for fault tolerance by distribut-
ing data among several nodes.

FlexA model was constructed to create an environment
favouring the client, to provide a DFS that is easier to
implant and use in normal conditions, and offer some of
characteristics that are found in most file systems.

In this evaluation, focusing only on the technical up-
load/download the files, there is a similarity between FlexA
and Tahoe-LAFS. FlexA has better read rate than Tahoel-
LAFS, but Tahoe-LAFS has the best writing performance.

The best performance in FlexA in read operation is
explained by the division factor of the files in order to
simultaneously use 3 servers, which therefore creates greater
consumption in the writing process than Tahoe-LAFS.

At this stage, this research work presents the components
that are needed for an operational use in a controlled
environment. Among the next steps of the research are
the enlargement of the model’s functionality, aiming at
providing a more convenient way of interacting with the
operating system, support for efficient chunk compression,
optimize cryptography, support mobile devices, and other
characteristics.
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