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Abstract

This paper describes a novel approach to create program models, based on the generation of an
execution flow graph from the binary code. This model can be used as a program model in the
Herzog’s Three-Step Methodology for performance evaluation. When modeling a program through
this approach one overcomes instrumentation problems and can provide very good performance
data if the simulation of the flow graph is performed correctly. Results achieved with a prototype
of a simulator implemented using the approaches for program modeling described here are also
presented.
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1 Introduction

Designing parallel programs is a rather complex task since it follows a distinct
programming paradigm and the hardware involved has considerably higher
costs. The hardware cost implies in the need for the implementation of highly
efficient programs, demanding even better development techniques. This prob-
lem can be solved by performance analysis until optimal algorithm and prob-
lem decomposition are achieved. Unfortunately this demands the use of a
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parallel system in tasks that are not strictly related to data production. Al-
though the hardware cost cannot be eliminated, its use for evaluation purposes
can be reduced by the use of simulation and analytical techniques, postponing
actual benchmarks until the final phases of optimization.

The use of simulation or analytical techniques imply in less accurate results
despite a lower cost of the performance evaluation task. Several approaches for
analytical techniques and few simulators have been proposed. Some provide
interesting results but the performance evaluation field is still oriented to
benchmarking tools and techniques. The drawback of benchmarking tools is
that they have a higher cost and do not avoid accuracy problems since they
must modify the original code by the intrusion of instrumenting code.

There are several works aiming to improve benchmarking techniques, in-
cluding less intrusive instrumentations and the reduction of the amount of
time that the actual hardware is used. Other works are dedicated to simu-
lation and analytical techniques, trying to reduce problems originated from
possible modeling inaccuracies. Indeed the model used on simulation or an-
alytical techniques is the major constraint to achieve accurate performance
results. Inexact models are somewhat unavoidable since the techniques are
usually based of traces achieved from small benchmarks, which are reasonably
compromised by intrusive instrumentation and sampling problems.

A non-intrusive approach for modeling parallel programs is proposed in
this paper. This method is composed of two phases: first, the binary code of
the parallel program under analysis is converted into a directed graph, which
maps all the execution paths of the program (these paths may be optimized
in order to reduce the number of nodes and edges in the graph). Finally
the resulting graph can be simulated later, to provide the performance data
needed for the program analysis.

The advantages of this approach are the improved accuracy, provided by
the rewriting of the executable code, and the lower cost of simulation, which
can be carried out on conventional hardware. The proposed approach follows
the Herzog’s three-step methodology [7], in which the program model, the
machine model and the program-machine interaction model are handled sepa-
rately. Here, the parallel program model is represented by its execution graph
and the machine model as well as the interaction model should be provided
by the user as simulation input parameters, as illustrated in Figure 1.

In the following sections one finds initially a brief description of the re-
search on graph-based performance analysis tools. After this description, a
complete review of the execution graph approach is made, including the prob-
lems involved with the modeling of specific programming structures, such as
loops and subroutines. The fourth section contains information about the im-
plementation of this approach into a prototype, and results achieved with it.
In the final section, some relevant conclusions are drawn from this work.
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Figure 1. Herzog’s methodology mapped onto the proposed technique.

2 Related work

Performance evaluation of parallel programs is a specific field inside the whole
area of performance analysis and measurement. Most of the works in per-
formance analysis are concerned with sequential systems (software and hard-
ware). The research in this field can be classified through several taxonomies,
such as by their data collection strategy or by their data analysis technique.
Classical works on taxonomies are found on Jain [8], Pierce and Mudge [12]
and Reed [13], who provide thorough descriptions of such taxonomies. In this
work the classifications are restricted to how the different approaches for per-
formance evaluation collect their data ([12]) and what techniques are used to
analyze such data ([8]).

There are two basic forms for data collection, which are monitoring and
code modification. While monitoring could provide better results, it is rarely
used because it is more complex and expensive, since it demands special hard-
ware and knowledge. Monitoring is usually applied to hardware performance
evaluation, where the costs are comparably negligible and the hardware knowl-
edge comes without extra effort. Besides that, there are tools, such as Etnus
TotalView [4], which uses software monitoring to collect data.

Code modification is a more common approach. It can be performed at
various levels, starting from source code modification up to executable code
modification. Their accuracy depends on how much code is inserted by the
instrumentation tool (code intrusion) and how the time spent on this code is
taken into account at analysis time. In this category one finds all profilers and
event tracers, such as SvPablo [14], Paradyn [10], Vampir [17], TAU [11], and
P3T+ [3], among others.
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As already stated in this paper, benchmarking is more accurate but de-
mands larger amount of investment since it depends on the use of the actual
hardware. Benchmarking techniques, such as NAS [2] will not be described
here since they do not employ program models. On the other hand, techniques
based on analytical and simulation approaches strongly depend of accurate
models to provide reasonable results. Despite their dependance, they have a
large application on performance evaluation due to their lower cost and the
capability of its application at very early stages of the system development.

The formulation of good program models, even for sequential programs, is
a rather complex task. There are several issues that must be addressed during
the modeling procedure, such as decision points, loop iterations, memory and
CPU availability among others. These inherent hazards on modeling become
even more noticeable when one is working with parallel systems, mainly due
to synchronization and cooperation between processes/processors. Besides
these issues, a distinct problem is posed by the selection of a good metric
for evaluation ([1],[8],[15]), since different users may be interested in different
parameters such as communication overheads, system speedup or throughput.

Despite the hazards in modeling, there are several proposals of modeling
techniques applied to software systems. Although distinct in their details,
most of them have similar characteristics. One common feature among most
of the models used in analytical or simulation techniques is their probabilis-
tic behavior. Although probabilistic models are harder to manipulate, they
mimic the system more realistically. Deterministic models are usually avoided
because the program execution on computers present a large degree of unex-
pected reactions (differences in data, system speeds, and system load).

Another characteristic is the use of graph-based approaches to model the
program and, sometimes, the entire system. Since this is also true for the
approach presented here, the remaining of this section will concentrate on
previous graph-based techniques, such as Petri nets, DAGs and their deriva-
tions.

Tools based on Petri nets include stochastic models such as the GSPN
from Gandra et all [5], which is used also by Marsan et all [9] to evaluate
multiprocessed systems. Petri net offers simple models but have a poor time
treatment, which prevents an easy achievement of more accurate results.

Methods based on queueing theory are applied to large scale models, where
each server and queue represent large portions of the system. Gelenbe and
Liu [6] or Sotz [18] are classical examples of the application of queues into
performance evaluation.

Other techniques based on graphs usually build them from function call
lists (large-sized grains) or path profiles from program execution (small-sized
grains). In all cases a common characteristic is the use of post-mortem analy-
sis, that is, the tool builds a graph, or synthetic program, that is analyzed at
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a later moment, when the program is no longer running. Research into this
category includes IDTrace [12], Reverse Tracer [16], or Partial Execution [19].

The approach presented here is distinct from previous works in the sense
that it performs all of its actions outside the real system. Although the model
generation is done using the real machine code, providing a higher level of
accuracy, it can be executed on a completely different machine. The data
acquisition and analysis phase needs only an execution graph simulator, which
also may be executed elsewhere. The use of conventional machines to perform
the modeling and simulation provide a very attractive strategy to perform
a parallel program tuning, and should avoid the need for large investments
during software development (even if one considers the availability of low-end
low-cost clusters).

3 The execution graph modeling methodology

As previously stated, this method models parallel programs as directed graphs
built from the executable code. Figure 1 shows how a performance analysis
tool should map an execution graph into the Herzog’s 3-step methodology.
From this figure, one sees that the tool may be implemented through two
separate subsystems, an execution graph generator and a graph simulator.
With this approach the performance data may be collected if one has the
executable code for the program and general knowledge from the physical and
logical environment, avoiding the need for the actual hardware.

This framework also avoids intrusive instrumentation, providing a closer
correlation between the actual code and its model. In the next paragraphs we
provide a few basic model definitions, followed by the description of techniques
to achieve such results.

3.1 The execution graph

In the execution graph, vertices represent sets of assembly instructions that
must be executed strictly in sequential order, without any intermediary
break/branch instruction. An illustrative graph is seen in Figure 2. There, the
edges map precedence constraints between any two vertices, that is, there is
an arc starting from vertex v1 and incident to vertex v2 if the computer must
execute all instructions mapped by vertex v1 before it may execute those on
vertex v2. The execution of all assembly instructions clustered into a vertex
is called the execution of such vertex.

The vertices are classified accordingly to the purpose of the assembly in-
structions clustered into them and by the number and kind of edges on them.
The number and kind of edges in a vertex describe the existence of loops,
decisions and exit points in the program. There are six basic types of vertices
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Figure 2. Execution graph of a hypothetical program.

following the number/kind scheme:

• START: characterized by a vertex with no edges incident to it.

• PASS: a vertex that has only one edge incident to and only one edge inci-
dent from it.

• DECISION: a vertex that has more than one edge incident from it.

• MERGE: a vertex with more than one edge incident to it.

• FINAL: a vertex that has no edges incident from it.

• CALL: a vertex that is a PASS vertex with the incident from edge pointing
out to a vertex outside the current graph scope.

There is only one restriction in vertices compositions, which is that any ex-
ecution graph have one and only one START vertex since it maps the starting
point of the program. Besides that, the basic types can be merged to create a
more complex vertex, such as a MERGE-DECISION vertex. The constraints
that guide the merge procedure are related to the action performed by each
original vertex in the merge, that is, the purpose of the clustered assem-
bly instructions. In this classification scheme there are three basic actions
(synchronization, execution and communication) that should be considered as
categories, as described below:

• Synchronization: denotes points where some parallel tasks should syn-
chronize, as in synchronism barriers.

• Communication: denotes points where some parallel tasks communicate
to each other. The communication can be synchronous or asynchronous.

• Execution: denotes any point that is neither a synchronization nor a com-
munication point.

With vertices categorized following these schemes it is feasible to build
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a graph that maps all interactions between parallel programs in an accurate
form. All the interprocess interactions are handled by control points defined
by Communication and Synchronization vertices. The meaning of each vertex
is defined during the graph extraction process from the binary code, which is
described next.

3.2 Modeling programs through an execution graph

The first subsystem needed to implement this approach is the Execution
Graph Generator, which reads the executable code for a parallel program
and creates an execution graph that will be simulated to produce performance
data. This subsystem can be understood as a decompiler whose target lan-
guage is a graph instead of the program’s source language. The decompilation
process involves three phases:

(i) code reading, which reads the executable code and disassembles it;

(ii) instruction interpretation, that identifies the functional meaning of each
machine instruction and maps it to actions that should be simulated
afterwards;

(iii) instruction clustering, which merges consecutive instructions with similar
functional meaning into a single block (a future vertex).

The first two phases are quite simple and should be performed instruction
by instruction, in an orderly way. As a natural consequence of this method,
these phases strongly depend of the processor that is used in the machine
that will host the program under analysis. This constraint reduces the tool’s
portability, although it can be solved with careful software engineering and
implementation of processor-specific libraries.

After each instruction interpretation, it must be decided if the amount of
time (clock cycles) that that specific instruction takes at runtime should be
accounted for in the current block (a graph vertex) or should go to a different,
possibly new, block. At this point, the graph would start to take shape, with
finished blocks becoming vertices and the links between them becoming the
edges in the directed graph.

The graph edges map the control flows that the computer may follows
during the program execution. The edges are created as block entry- and exit-
points at the moment that the instruction interpretation finds an instruction
that causes any kind of program deviation. The deviation identification is
easily performed when a exit-point is found. This creates one or two outgoing
edges from the current vertex, which can be directed to a new vertex or an
existing one, depending on what are the destination addresses. On the other
side of the directed edge, the problem is to determine if the destination address
is already inside of any previously built block. This determination is solved
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by the functional meaning of each instruction, such as jumps, calls and exits.
The possible cases are:

(i) Forward jump - meaning that an instruction has, possibly, a choice be-
tween two addresses that are inside the current function scope and ahead
of the current address. These addresses usually are the next instruction
address and a branch address. When such instruction is reached the cur-
rent block is marked as a DECISION vertex and the system creates (if
necessary) two new blocks, whose starting addresses are the addresses
given by the current instruction.

(ii) Backward jump - when the instruction has the choice between ad-
dresses that are inside the current function scope and one of them is
previous to the current address. This means that the instruction is per-
forming a loop (except in rare, manually crafted situations) and its ad-
dresses include the backward one and the address of the next instruction.
This also marks the block as a DECISION vertex and creates (if neces-
sary) a single forward vertex and may cause a split of a previously created
vertex.

(iii) Subroutine call - when the destination address is outside the cur-
rent scope and is the consequence of any kind of call instruction. This
marks the vertex as a CALL vertex, and adds a “return from subroutine”
manipulation that will be explained in the next subsection.

(iv) Exit point - when the destination address is outside the current scope
and points out to a scope that is still under analysis, characterizing a
return instruction. The current vertex is marked as a FINAL vertex and
receives some subroutine call manipulation as the previous case.

An extra issue appears in the management of edges that are incident to
previously created vertices, that may occur in any of the situations just de-
scribed. For exit and call points the treatment is performed by subroutine
call modeling. For jumps the treatment involves, possibly, the breakdown of a
constructed vertex into two new vertices if the destination address is internal
to the vertex. The techniques to solve these problems use features of the graph
structure, that are described in the next paragraphs.

3.2.1 Loop modeling

Once a loop is identified by the existence of a backward branch, it is necessary
to identify where the conditional instruction that actually controls the loop is.
Structured loops exist in three different flavors after compilation: while with
conditional branch, while with unconditional branch and repeat-until forms.
They have different strategies for assembling the loop control, implying differ-
ent sets of conditions to model the loop.
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In order to model such loops one has to observe that repeat-until loops
never come with a branch instruction at its entry point. Therefore, if a loop
is detected one has to inspect all DECISION vertices inside loop’s body. If
all DECISION vertices point to addresses that are internal to the loop, one
has identified a repeat-until structure. On the other hand, if there is at least
one DECISION vertex whose destination address is outside the loop’s body,
two possible conditions maybe present: the loop is non-structured, or it is an
while branch.

While non-structured loops can be modeled as repeat-until loops, that is,
the final DECISION vertex is the vertex where the system will perform the
loops’s control, while loops are more complex to manage. The first action is
to define what is the type of branch present at the end of the loop. If that
instruction is an unconditional branch, the first branch at the beginning of the
loop is tagged as the control vertex and no other changes have to be made to
the graph. Otherwise, with conditional branch at the end, the first branch is
also tagged as the control vertex, but the final vertex is modified to eliminate
the branch to the next instruction.

Finally, the last problem related with loop modeling is the determination
of the backward vertex, that is, the vertex that defines the entry-point of every
loop. The backward address given by the last instruction in the loop may not
be, exactly, the initial address of the vertex in the entry-point. This means
that the vertex containing such address must be split into two new vertices,
one that gets executed before the loop and another that becomes the actual
entry-point.

3.2.2 Subroutine modeling

Subroutines pose a different modeling problem, which is related to the pro-
gram’s capability of calling them from distinct points. Since the subgraph
modeling the subroutine must appear only once, independently of how many
times it is called from distinct points in the program, it becomes difficult to
manage the return point (or points) from the subroutine, which has to point
to different addresses, one for each call site. This problem has an even greater
impact, due to obvious reasons, when modeling recursive subroutines.

The solution for this problem is to postpone the resolution of the return
address to the simulation time. This is feasible if the return instructions are
modeled as FINAL vertices and a stack of calling addresses. The distinction
between subroutine returns and program termination is performed by the sta-
tus of the calling address stack, which will be empty only when the simulated
program must terminate.

Figure 3 sketches this scheme for a single call. There, the dashed edges
in the graph represent the subroutine call and return. The call edge actually
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Figure 3. Subroutine calls and returns

exists in the graph, while the return edge is virtual (return address stack),
becoming “physical” only during the simulation process. Therefore, if a sub-
routine is called from two different vertices, there will be two call edges but
the return edges are created only if they become necessary to proceed the
computation.

This strategy solves also the management of recursive subroutines, since
the recursion will be defined by three vertices: one FINAL vertex, indicating
that the recursion terminated, one CALL vertex, indicating that recursion
must proceed one more level, and a DECISION vertex, which decides which of
these two vertices should be executed. Therefore, the definition of how many
times a recursion occurs is postponed to simulation time (the DECISION
vertex), as well as the addresses mapping for a subroutine that must return to
itself (the calling address stack). Since the construction of recursion (the three
vertices) is inherent to the assembly instructions in the subroutine, there is
no need to actually identify a recursive function as such. This, at last, means
that both recursive and non-recursive subroutines can be treated the same
way.

3.3 Graph optimization

During the generation of the execution graph the goal is to cluster as many
instructions into a single vertex as possible. However, the effective number
of vertices and edges is usually very high (tens of thousands of vertices for a
complex program). In order to bring this number to a more manageable limit
one has to perform optimizations over the graph. Such optimizations consist
of vertices eliminations and associations. The optimization degree depends
of the accuracy that the graph must keep after this operation, and the speed
that is expected during the simulations.

The vertex elimination or association can be performed in a variety of
forms. In the standard form, optimizations are executed only if the resulting
graph would provide exactly the same simulated times as the original one. In
this case the optimization is named non-degenerative, in contrast with degen-
erative optimizations that occur when small differences in the time evaluation
are introduced.

10



Manacero, A.

The main non-degenerative optimizations are:

(i) Elimination of PASS vertices, where a PASS vertex is incorporated into
its precedent neighbor vertex. Considering V1 a PASS vertex with t1
cycles that is preceded by V0 (with t0 cycles) and succeeded by V2, this
elimination makes V2 the new sucessor of V0, which now will be (t0 +
t1) cycles long.

(ii) Elimination of MERGE vertices, where this vertex is incorporated by its
successor, except when the successor is also a MERGE vertex;

(iii) Branch elimination in DECISION vertices, aimed to reduce the number
of paths that leave a DECISION vertex, through the hoisting of the paths
with minimal execution times.

Degenerative optimizations can be performed through the elimination of
certain conservative constraints. Which constraints are eliminated depends
upon the definition of how accurate must the resulting model be. This, usually,
means that a given reduction is performed if the resulting vertex has a number
of cycles that is within the original ranges of every eliminated path.

4 Implementation of a graph generator

The methodology described in this paper was applied to build a generator that
is capable of understanding codes from MIPS and Sparc processors. The initial
choice of these processors was made due to their simple architecture (RISC)
and instruction sets. A set of libraries was written in order to uniquely iden-
tify and evaluate each instruction in the instruction set of these processors.
Currently, a third library aiming the Intel family of processors is under work.
This new library could be used for the analysis of a large amount of com-
mercial cluster systems currently under production. This prototype is named
Grasptool (Graph Simulator Performance prediction Tool).

The graph generator clusters individual instructions into several subgraphs
that will make up a large forest. The forest-like structure of this graph is
a direct consequence of the technique used to model subroutines, since each
subroutine is converted to a graph as if it were an atomic piece, that is linked to
a partially connected sub-graph (caller and called functions). The connections
between sub-graphs are formed by the call edge and the respective return
instructions.

The output of the generation phase is a file containing data about each
sub-graph, appearing in the order of their logical addresses. The format of
this data is shown on Figure 4, which depicts selected lines of a given graph
file. The beginning of the graph file is composed by the list of all sub-graphs,
given as pairs of their initial addresses and function names. Every entry on
this list has a corresponding sub-graph, in the order of their list’s appearance,
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00407960 __start
00407a80 input_
00407ae0 async_reader_

.

.

.
Tree
Tree Number 1
vtx 3 00407960 2 00407968 00407968 null
vtx 7 00407968 282 00407a44 00407a80 null
vtx 0 00407a44 112 return
Tree Number 2
vtx 7 00407a80 126 00407ad0 00407ae0 null
vtx 0 00407ad0 6 return
Tree Number 3
vtx 7 00407ae0 14 00407b08 00409400 null
vtx 7 00407b08 9 00407b20 004095e0 null
vtx 7 00407b20 1218 00407c80 00409ac0 null
vtx 7 00407c80 8 00407c98 0040a200 null
vtx 1 00407c98 5 1 id_sync 00407cf4 rdr cli null
vtx 0 00407cf4 5 00407d08
vtx 7 00407d08 12 00407d24 004133a8 null
vtx 3 00407d24 11 00407d40 00407d6c null
vtx 0 00407d40 18 00407d6c
vtx 4 00407d6c 79 00407e24 00407d08 null
vtx 2 00407e24 352 broadcast ...

Figure 4. Section of execution graph’s output file.

where each sub-graph is preceded by a “Tree Number N” line. Every vertex in
the graph is denoted by a single line on that file. Each vertex line starts with
an integer defining the type of that vertex (execution, call, return, branches,
communication, etc.). This integer is followed by a string (the logical address
of its first instruction), an integer (number of clock cycles in its execution),
addresses of candidate vertices to proceed the execution and other data when
necessary.

5 Results

Results presented here were collected with a simple prototype which was built
following this approach. Although this prototype provided only coarse grained
data about the evaluated programs, it is possible to draw interesting conclu-
sions about the technique.

5.1 Timing tests

Timing tests were performed in order to verify what level of accuracy could
be achieved at the simulation phase. The tests were performed through the
comparison between the execution times of a benchmark program and the
predicted execution times. The benchmark program consisted of a set of three
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Figure 5. Measured and simulated execution speeds.

large interacting programs used in physics of particles. This set of programs
is coded in Fortran and run over small clusters of workstations. Each cluster
has 12 to 20 hosts and the program follows the bag-of-tasks model, with
several client processes and a pair of reader-writer processes acting as masters.
Measurement of smaller programs was not conducted since even major errors
in the number of cycles would represent only few microseconds in time and
these programs are not usual components of high performance systems.

Although the benchmarks were limited by the cluster’s size and by the
instrumentation that was already provided inside the code, a scalability test
was executed by simulation. As described earlier, the size limitations are not
present in the simulator, enabling the execution of other tests, such as the
system’s scalability and even measurements of metrics that were not part of
the original production system. Another feature is that the environment and
machine models for the simulator are provided by input parameters, enabling
the simulator’s tuning by two distinct approaches: communication oriented or
execution oriented. Actually, the tuning can be performed simply by changing
the expected delay value for communication vertexes, in order to introduce
higher or lower communication costs into the system.

The plots in Figures 5, 6, and 7, show the results achieved with both the
simulator’s prototype and the benchmarks. Each plot is the average of at least
50 simulations for each point, with each simulation taking about 30 seconds
in a personal computer. Each benchmark run took about 20 minutes, and the
plots give the average of 10 runs for each point.

Figure 5 shows the execution speed, measured as the number of data
records processed per second (each record contained about 64kbytes of data,
and consisted of about 10 to 12 atomic particles). As one can see from the
figure 5 (note that the y axis is scaled to improve visibilty), when the simu-
lator is execution oriented, the measured speeds have a higher correlation to
the benchmark values. A good correlation is also achieved with the commu-
nication oriented tuning, although in this case the deviation from the actual
values is higher, and the error rate goes up to 20%. Even this result is quite
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Figure 6. Simulated execution times for a larger cluster.

Figure 7. Measured and simulated communication times for execution oriented simulation.

reasonable since the proposed approach is aimed only at performance predic-
tion.

As already stated, the simulation could be performed for a larger number of
nodes, since it is not physically restricted by the actual cluster. Figure 6 shows
the simulated processing speeds for a larger cluster. From this plot the analyst
can estimate speedup curves and, therefore, scalability limitations over the
program and the parallel machine where it should run. From this experiment
one can realize that clusters larger than 30 machines are not efficient for this
kind of system.

In order to understand the difference between the two opposite tunings,
the influence of communication delays was evaluated. Figure 7 shows the com-
munication delays achieved without tuning the simulator for communication
costs. It is easy to see that the simulated costs grow in a much higher speed
than the actual ones. This happens because the execution oriented tuning
does not take into account the fact that although the system needs more mes-
sages between nodes, these messages occur in an interleaved fashion. If this
condition is observed during the simulation the results improve remarkably.

The balance on communication costs implies in a compromise that should
be easily achievable in a complete version of Grasptool through a set of tuning
parameters. In spite of this the results provided by the simple prototype are
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very promising since the time spent on processing could be predicted with a
margin of error under 10%. This is very accurate since the simulator was not
optimally tuned and previous published works about prediction tools indicate
that errors under the 40% range are admissible.

6 Conclusions

The preliminary tests provided interesting conclusions about the proposed
methodology. First, its accuracy is very high, with an upper bound in the
error rate for CPU time under 20%, even for the worst tuning attempted.
This accuracy was achieved with very little manipulation over the environment
model, which is a good indicator of its usability.

It is also noticeable that the execution graph model provides a great degree
of flexibility, enabling to test a large set of variations during the simulation
process (depending on the simulator capabilities, of course). This flexibility is
provided by the graph itself, which does not disable any possible configuration
prior to the simulation. Although it was not shown here, it is a very simple
task to define, for example, a simulator capable of measuring time spent on
program’s functions and even inner loop blocks.

One drawback with the execution graph is that a binary code can be under-
stood, and therefore interpreted, only if the specific library for its processor
is available. Nowadays there are libraries for the MIPS and Sparc proces-
sors. A third library is under construction for the x86 family, and there are
preliminary investigations for the IA-64 and Power architectures.

To conclude this discussion, the use of the execution graph reconstruction
approach is promising. Future work should concentrate on the building of
a larger set of processor specific libraries, as has been done so far, and the
implementation of a powerful simulator, capable of providing more analysis
data, with a friendly interface. On a different front, a probable extension would
include the use of the execution graph as a basis for a software verification
tool, which would investigate all paths of concurrent or parallel programs in
the search of breaches for deadlocks, starvation and missed mutual exclusions.
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